

Low Gain Avalanche Detectors for the ATLAS High Granularity Timing Detector: laboratory and test beam campaigns

Kuo Ma

(University of Science and Technology of China)

On behalf of the ATLAS HGTD Group

Sep 5th, 2023

- ATLAS HGTD upgrade and LGAD technology
- LGAD performance in Laboratory
 - Evolution of radiation hardness
 - Collected charge and time resolution with ⁹⁰Sr source
- LGAD performance in DESY and CERN test beam
 - LGAD Single Event Burnout
 - Collected charge, time resolution and hit efficiency
- Summary and outlook

ATLAS High Granularity Timing Detector (HGTD)

- High-Luminosity phase of LHC (HL-LHC): It's hard to associate track to primary vertex in high pileup environment, especially in the forward region (2.4 < $|\eta|$ < 4.0)
- High-Granularity Timing Detector (HGTD): to measure high-precision time of charged particles in the forward region, complementing the Inner Tracker (ITk)

Introduced in Xuewei's talk

3 ring layout

HGTD requirements:

- Withstand intense radiation environment
 - Maximum fluence: 2.5E15 n_{eq}/cm²
 - Total Ionising Dose (TID): 2 MGy
- Collected charge per hit > 4 fC
- time resolution: 35 ps (start), 70 ps (end) per hit / 30 ps (start), 50 ps (end) per track
- Hit efficiency of 97% (95%) at the start (end)

Low Gain Avalache Detector (LGAD)

N⁺-P-P⁻-P⁺ structure, moderate gain (10 ~ 20), ps time resolution (~ 30 ps) and mm position resolution (Granularity: 1.3 × 1.3 mm²)

Moderate gain (larger S/N), thin detector (50 μ m, faster rise time) and finite segment (Granularity: 1.3 × 1.3 mm², uniform weight field) \rightarrow fast timing

Current

Low Gain Avalache Detector (LGAD) R&D

- The reduction of effective doping in the gain layer is caused by the "acceptor removal" process ->
 LGADs' gain reduces <u>M. Ferrero et al, NIMA, 2019</u> <u>G. Kramberger et al, 2015 JINST 10 P07006</u>
- Explored use of different designs, doping materials and C-enriched substrates -> Boron + Carbon shows largest gain after irradiation ($C_i + O_i \rightarrow C_i O_i$ competes with $B_i + O_i \rightarrow B_i O_i$)

Acceptor (B_s) removal in the gain layer after irradiation

Latest prototypes produced by different venders

- LGADs has been widely studied by many producers in last few years, including:
 - CNM (Spain), FBK (Italy), HPK (Japan), IHEP-IME (China), USTC-IME (China), IHEP-NDL (China) ...
- For each vender, the prototypes includes **small-array** sensors (1×1, 2×2...) and **large-array** sensors (5×5 and full-size (15×15) sensor for ATLAS)

IHEP-IME-v2 (07/2022, 8")

USTC-IME-v2.0/2.1 (2021, 8")

NDL-v4 (2021)

 First full 15 xt15 wafer

Evolution of radiation hardness

• The key parameter: acceptor removal coefficient (c-factor) (the lower the better)

$$V_{gl} = V_{gl0} \times \exp(-c \times \phi_{eq})$$

• Optimization directions: adjust carbon enrichment dose and diffusion techniques

 V_{gl} (V_{gl0}), depletion voltage of gain layer (before irradiation), is the voltage value where the two green straight lines intersect

FBK, IHEP-IME, USTC-IME have shown so far to master the process!

Collected charge and time resolution with ⁹⁰Sr source

- Sensors were exposed to fluence up to 2.5×10¹⁵ n_{eq}/cm² at the TRIGA reactor in Ljubljana, Slovenia with fast neutrons
- After irradiation LGADs' performance degrades due to loss of gain -> increase of bias voltage to recover
- Carbon-enriched LGAD (blue region) allows the sensors to be operated at lower voltages

Beam test campaigns

- The collaboration has carried out numerous test beam campaigns and the results are documented in this list of papers: 2018 JINST 13 P06017, 2022 JINST 17 P09026 (2018-2019 data), **2023 JINST 18 P07030 (2021 data), 2023 JINST 18 P05005 (2021 - 2022 data)**
 - Determine safe bias voltages to avoid "Single Event Burnout" (SEB)
 - Qualify carbon-enriched LGADs performance (collected charge, time resolution, and hit efficiency)
 - DESY T22 beamline (5 GeV e⁻ beam) and CERN North Area SPS H6A beamline (120 GeV pion beam)
 - Use of beam telescope for tracking

LGAD Single Event Burnout (SEB)

- Single Event Burnout (SEB) has been observed in several test beam campaigns
 - Irreversible breakdown while operating at high voltage (~100 V lower than voltage at laboratory)
 - Observed by CMS/ATLAS/RD50 teams

More details in Xuewei's talk

- A safe zone has been defined
 - Safe zone: electric field < 11 V/ μ m (50 μ m \rightarrow Max bias voltage is 550 V)

C-enriched LGAD prototypes for HGTD

- Tested collected charge, time resolution and hit efficiency of C-enriched prototypes from 3 vendors (FBK, USTC-IME and IHEP-IME)
- LGAD (CNM-0) was used as a time reference at CERN as well as a SiPM device at DESY
- Sensors were exposed to fluences up to 1.5×10¹⁵ n_{eq}/cm² and 2.5×10¹⁵ n_{eq}/cm² at the TRIGA reactor in Ljubljana, Slovenia with fast neutrons
- Bias voltages were kept lower than the SEB voltage

Device name	Vendor	Sensor ID	Implant	Irradiation type	Fluence [n _{eq} /cm ²]	Tested at
CNM-0	CNM	W9LGA35	boron	unirradiated	_	DESY/CERN
FBK-1.5	FBK	UFSD3.2 W19	boron + carbon	neutrons	1.5×10^{15}	DESY/CERN
FBK-2.5	FBK	UFSD3.2 W19	boron + carbon	neutrons	2.5×10 ¹⁵	DESY/CERN
USTC-1.5	USTC-IME	v2.1 W17	boron + carbon	neutrons	1.5×10^{15}	DESY
USTC-2.5	USTC-IME	v2.1 W17	boron + carbon	neutrons	2.5×10^{15}	DESY
IHEP-1.5	IHEP-IME	v2 W7 Q2	boron + carbon	neutrons	1.5×10 ¹⁵	DESY/CERN
IHEP-2.5	IHEP-IME	v2 W7 Q2	boron + carbon	neutrons	2.5×10^{15}	CERN

Device name	V _{gl0} [V]	Diffusion	c [cm ²]
FBK-1.5/2.5	50	Н	1.73×10^{-16}
USTC-1.5/2.5	27	L	1.23×10^{-16}
IHEP-1.5/2.5	25	CHBL	1.14×10^{-16}

Collected charge

- Distribution of charge in the Region of Interest (ROI) was fitted with a Landau-Gaussian convoluted function
- Collected charge:
 - Defined as the Most Probable Value (MPV) from fit
 - Above the minimum required charge of 4 fC needed for a good timing measurement with the HGTD project

ATLAS HGTD Preliminary Test Beam

ROI

0.5 mm

IHEP-1.5, 400V

Efficiency (%)

.5 mm

.5×10¹

-0.8-0.6-0.4-0.2 0

[uu] ∧ 0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

100

90

-80

-70

60

50

40

30

20

10

@DESY

0.2 0.4 0.6 0.8

Time resolution method

- Constant Fraction Discrimination (CFD) method was used to calculate Time of Arrival (TOA) to minimizes the contribution of time walk: 20% for the SiPM and 50% for the irradiated LGADs
- To extract the LGADs' time resolution, the distribution of the difference between the TOA (Δ TOA) of the LGADs and that of the time reference device were fitted with a Gaussian function, each of them giving a width σ_{ij}

• For set-up at DESY, the Δ TOA of three devices is σ_{ij} , σ_{ik} and σ_{jk} , respectively. So the time

resolution of LGADs and reference SiPM are $\sigma_i = \sqrt{(\sigma_{ij}^2 + \sigma_{ik}^2 - \sigma_{jk}^2)/2}$, $\sigma_j = \sqrt{(\sigma_{ij}^2 + \sigma_{jk}^2 - \sigma_{ik}^2)/2}$

and
$$\sigma_k = \sqrt{(\sigma_{ik}^2 + \sigma_{jk}^2 - \sigma_{ij}^2)/2} (\sigma_{SiPM(k)} = 62.6 \text{ ps})$$

For set-up at CERN, $\sigma_i = \sqrt{\sigma_{ij}^2 - \sigma_j^2}$ (the reference CNM-0 is known, which means $\sigma_j = 55$ ps)

Hit efficiency

Hit Efficiency =

 $\frac{\text{Rescontructed tracks with } q > Q_{cut}}{\text{Total rescontructed tracks}}$

- Q_{cut} is set to 2 fC, the minimum achievable threshold of the ALTIROC chip
- Achieved the efficiency of 95% required for HGTD after irradiation

ATLAS HGTD Preliminary Test Beam

Efficiency (%) IHEP-1.5, 400V

ROI

0.5 mm

.5 mm

1.5×10¹⁵n_{ea}/cm²

-0.8-0.6-0.4-0.2 0

[uu] ∧ 0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

100

90

-80

-70

60

50

40

30

20

10

@DESY

0.2 0.4 0.6 0.8

- The LGAD, as a fast timing as well as radiation hard silicon based detector, has reached a mature state in recent years
- Carbon-enriched LGADs from three vendors (FBK, IHEP-IME and USTC-IME) have been studied both in terms of radiation hardness and performance
 - irradiated at fluences of 1.5 $2.5 \times 10^{15} n_{eq}/cm^2$, the LGADs were operated at voltages below 550 V
 - Under these conditions, LGADs achieved the objectives of:
 - Collected charge of more than 4 fC while guaranteeing an optimal time resolution better than 70 ps
 - An efficiency larger than 95% uniformly over sensors' surface is obtained with a charge threshold of 2 fC
- These results confirm the feasibility of an LGAD-based timing detector for HL-LHC
- Outlook:
 - The IHEP-IME and USTC-IME Pre-production have been started and the laboratory test is ongoing, looking forward to do beam test soon

Thanks for your attention!

Back up

HGTD: Layout and requirements

Pseudo-rapidity coverage	$2.4 < \eta < 4.0$
Thickness in z	75 mm (+50 mm moderator)
Position of active layers in z	±3.5 m
Weight per end-cap	350 kg
Radial extension:	
Total	$110 \mathrm{mm} < r < 1000 \mathrm{mm}$
Active area	$120 \mathrm{mm} < r < 640 \mathrm{mm}$
Pad size	1.3 mm × 1.3 mm
Active sensor thickness	50 µm
Number of channels	3.6 M
Active area	6.4 m ²
Module size	30 x 15 pads (4 cm × 2 cm)
Modules	8032
Collected charge per hit	> 4.0 fC
Average number of hits per track	
$2.4 < \eta < 2.7$ (640 mm > r > 470 mm)	≈2.0
$2.7 < \eta < 3.5$ (470 mm > r > 230 mm)	≈2.4
$3.5 < \eta < 4.0$ (230 mm > r > 120 mm)	≈2.6
Average time resolution per hit (start and end of operational lifetime)	
$2.4 < \eta < 4.0$	\approx 35 ps (start), \approx 70 ps (end)
Average time resolution per track (start and end of operational lifetime)	$\approx 30 \mathrm{ps} \mathrm{(start)}, \approx 50 \mathrm{ps} \mathrm{(end)}$

Introduction to the contribution of time resolution

• Jitter

$$\sigma_{\text{Jitter}} = \frac{N}{dV/dt} \approx \frac{t_{\text{rise}}}{S/n}$$

• Landau noise

WF2 simulation, MIP, 50 μ m, Gain \sim 20

• Distortion (distribution of weighting field)

• Time walk

Segmented LGADs and Inter-pad region

Gregor, Detector Semiar, 2021

>JTE enables efficient isolation of the electrode – allows for segmentation of the LGAD – the key to multi electrode LGADs

- >Inter-pad region is the distance between two electrodes. It is effectively the non-active region as it is without the gain and effectively reduces the "fill factor" of the LGAD
- The IP distance can't be too small as in a case of a bad connection floating pad there is a danger of an early breakdown (~30-90 μm)
- \succ Distance to edge determines the breakdown through the edges and is 300-500 μ m

Radiation effect on Silicon

Three main effect:

- Increase of leakage current
- Changes in doping concentration
- Decrease of charge collection

- Acceptor creation: $g_{eff} \varphi$
 - By creation of deep traps
- Acceptor removal mechanism: $N_A(\phi = 0)e^{-c\phi}$
 - Reduction of doping \rightarrow reduction of gain
 - C-factor (acceptor removal constant) depending on detector type (the lower the better)

Experimental techniques for LGADs

Experimental Techniques	Purposes	Comments	
	Gain layer depletion voltage (V^{I}_{GL})	Doping information of gain layer	
Leakage current-Voltage	Device break down voltage (V_{BD})	Safe operating voltage range	
(IV)	Leakage current@V $_x$ or voltage@I $_x$	Power consumption of circuit	
	Inter pad resistance	Isolation between pads	
	Gain layer depletion voltage (V^{C}_{GL})	Depletion behavior of gain layer	
Capacitance-Voltage	Full depletion voltage of the device $\left(V_{FD} ight)$	Depletion behavior of bulk	
(CV)	Electrode capacitance (C_{pad})	Depletion behavior of sensor	
	Inter pad capacitance	Cross talk between pads	
	Voltage required to collect 15 fC (V15fC)	Voltage required to collect 15 fC at -30°C	
Beta-scope test	Minimum operation voltage $(V_{op,min})$	S/N>10, V>4fC, noise < 1.2 noise at low bias, no ghosts, I<500nA/5µA	
(Sr)	Maximum operation voltage (V_{op,max})	The above conditions can be met	
	Time resolution at 4fC (τ4fC)	Time resolution at $V_{\text{op,min}}$	
Transient Current Technology (TCT, laser)	The no-gain distance between two adjacent pads (Effective IP width)	No-gain area where collected charge is less than 50%*Max (collected charge)	
Test Beam	Hit efficiency	97% (95%) at the start (end)	
	Charge collection and timing resolution	35 ps (start), 70 ps (end) per hit	

IV & CV setup (USTC for example)

Equivalent circuit diagram of 1×1 LGADs

Tested by probe needles

Tested by probe card

Equivalent circuit diagram of 15×15 LGADs

<u>J.J. Ge, NIMA, 2021</u>

β -scope setup (USTC for example)

<u>C.H. Li, NIMA, 2022</u>

- Tempareture: -30 °C
- Trigger
 - Sensor (HPK Type1.1, un-irradiated)
 - & Pre-amplifier board
 - With the 2nd stage amplifier
 - Bias: -165.00 V
 - *σ*_t: 33.88 ps
- DUT (Device Under Test)
 - Sensor & Pre-amplifier board
 - With the 2nd stage amplifier
- Oscilloscope
 - Sampling rate: 20 Gs/s
 - Bandwidth: 1 GHz

Performance of IME-LGAD prototypes with ⁹⁰Sr

Inter-pad (IP) gap measurements

Laser (infra-red, 1064 nm)

ATLAS HGTD Public Plots

- For IP3 and IP5, the effective IP gap is about 100 um. For IP7, the effective IP gap is about 130 um.
- Effective IP gap is large than nominal IP gap from 50-75 um.

Uniformity of full-size (15×15) LGADs

• Tested by single probe needle (neighbors and GR floating)

Tested by probe card (neighbors and GR are grounded)

- Very homogenous break down voltage (V_{BD}, I_{pad} < 500 nA)
- GR floating affects the outermost pads for IHEP-IME v2 LGADs