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• ATLAS HGTD upgrade and LGAD technology

• LGAD performance in Laboratory

• Evolution of radiation hardness

• Collected charge and time resolution with 90Sr source

• LGAD performance in DESY and CERN test beam

• LGAD Single Event Burnout

• Collected charge, time resolution and hit efficiency

• Summary and outlook
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ATLAS High Granularity Timing Detector (HGTD)
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• High-Luminosity phase of LHC (HL-LHC): It’s hard to associate track to primary vertex in 
high pileup environment, especially in the forward region (2.4 < 𝜂 < 4.0)

• High-Granularity Timing Detector (HGTD): to measure high-precision time of charged 
particles in the forward region, complementing the Inner Tracker (ITk)

z position

Ti
m

e

Introduced in Xuewei’s talk

HGTD requirements:
• Withstand intense radiation environment

• Maximum fluence: 2.5E15 neq/cm2

• Total Ionising Dose (TID): 2 MGy
• Collected charge per hit > 4 fC
• time resolution: 35 ps (start), 70 ps (end) per hit / 

30 ps (start), 50 ps (end) per track
• Hit efficiency of 97% (95%) at the start (end)

3 ring layout

https://indico.cern.ch/event/1230837/contributions/5518128/attachments/2708628/4702971/PSD13_HGTD_overview_v3_Xuewei.pdf


Low Gain Avalache Detector (LGAD)
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• N+-P-P--P+ structure, moderate gain (10 ~ 20),	ps time resolution (~ 30 ps) and mm position 
resolution (Granularity: 1.3 × 1.3 mm2)

Gain layer

σ!" = σ#$!!%&" + σ'$(%)*+,
" + σ-*./*0

" + σ1$2!3&!$3." + σ'14"

• σ!"##$% ~
#!"#$
&/(

, where t%")$ is rise time and ⁄S N is signal to noise ratio

• σ*"+$,-./ ~
0%&
⁄& #!"#$ 23&

, where V#4 is threshold 

• σ5-67-8: caused by non-uniform energy deposition

• σ9")#:%#":6: caused by non-saturated velocity ν and non-uniform 

weighting field E;
• σ*"+$<#:<9"="#-. >:6?$%# (*9>) ~ ⁄25 12 (7.2) ps, can be neglected

Ramo’s theorem: i = qνE!

Moderate gain (larger S/N), thin detector (50 µm, faster rise time) and finite segment
(Granularity: 1.3 × 1.3 mm2, uniform weight field) → fast timing



Low Gain Avalache Detector (LGAD) R&D
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IrradiationInitial lattice

• The reduction of effective doping in the gain layer is caused by the “acceptor removal” process -> 
LGADs’ gain reduces

• Explored use of different designs, doping materials and C-enriched substrates -> Boron + Carbon 
shows largest gain after irradiation (C$ + O$ → C$O$ competes with B$ + O$ → B$O$)

G.Paternoster, TREDI 2019

Acceptor (B") removal in the gain layer after irradiation

M. Ferrero et al, NIMA, 2019 G. Kramberger et al, 2015 JINST 10 P07006

https://indico.cern.ch/event/777112/contributions/3314805/attachments/1802242/2939922/TREDI_19_paternoster.pdf
https://doi.org/10.1016/j.nima.2018.11.121
http://dx.doi.org/10.1088/1748-0221/10/07/P07006


Latest prototypes produced by different venders
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IHEP-IME-v2  (07/2022, 8’’) NDL-v4 (2021)

FBK-UFSD 4.0 (2022)HPK-P2 (2022) CNM-Run15973 (2022)

USTC-IME-v2.0/2.1 (2021, 8’’)

• LGADs has been widely  studied by many producers in last few years, including: 

• CNM (Spain), FBK (Italy), HPK (Japan), IHEP-IME (China), USTC-IME (China), IHEP-NDL (China) …

• For each vender, the prototypes includes small-array sensors (1×1, 2×2…)  and large-array 

sensors (5×5 and full-size (15×15) sensor for ATLAS)

First full 15×15 wafer



Evolution of radiation hardness
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G. Kramberger, ATLAS HGTD Week, 2022

ATLAS HGTD Preliminary

1.14×10-16 cm2

1.85×10-16 cm2

1.36×10-16 cm2

1.23×10-16 cm2

1.87×10-16 cm2

1.41×10-16 cm2
√

c-factor

√

√
√
√
√

V=. (V=.B), depletion voltage of gain layer 
(before irradiation), is the voltage value where 
the two green straight lines intersect

K. Wu et al, NIMA, 2022

FBK, IHEP-IME, USTC-IME have shown so far to master the process!

• The key parameter: acceptor removal coefficient (c-factor) (the lower the better)
V!" = V!"# × exp(−c × ϕ$%)

• Optimization directions: adjust carbon enrichment dose and diffusion techniques

https://indico.cern.ch/event/1088953/
https://doi.org/10.1016/j.nima.2022.167697


Collected charge and time resolution with 90Sr source
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• Sensors were exposed to fluence up to 2.5×1015 neq/cm2 at the TRIGA reactor in 
Ljubljana, Slovenia with fast neutrons

• After irradiation LGADs’ performance degrades due to loss of gain -> increase of bias 
voltage to recover

• Carbon-enriched LGAD (blue region) allows the sensors to be operated at lower voltages

T=30 oC
90Sr electrons

ATLAS HGTD Preliminary ATLAS HGTD PreliminaryT=30 oC
90Sr electrons

ϕ!"=2.5×1015 cm2 (reactor neutrons)

ϕ!"=2.5×1015 cm2 (reactor neutrons)
4 fC

70 ps

Laboratory results Laboratory results



Beam test campaigns
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• The collaboration has carried out numerous test beam campaigns and the results are documented in 

this list of papers: 2018 JINST 13 P06017,  2022 JINST 17 P09026 (2018-2019 data), 2023 JINST 18 

P07030 (2021 data), 2023 JINST 18 P05005 (2021 - 2022 data)

• Determine safe bias voltages to avoid “Single Event Burnout” (SEB)

• Qualify carbon-enriched LGADs performance (collected charge, time resolution, and hit efficiency)

• DESY T22 beamline (5 GeV e- beam) and CERN North Area SPS H6A beamline (120 GeV pion beam)

• Use of beam telescope for tracking

Set-up at DESY Set-up at CERN



LGAD Single Event Burnout (SEB)
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• Single Event Burnout (SEB) has been observed in several test beam campaigns

• Irreversible breakdown while operating at high voltage (~100 V lower than voltage at laboratory) 

• Observed by CMS/ATLAS/RD50 teams

• A safe zone has been defined

• Safe zone: electric field < 11 V/µm (50 µm → Max bias voltage is 550 V)

More details in Xuewei’s talk

https://indico.cern.ch/event/1230837/contributions/5518128/attachments/2708628/4702971/PSD13_HGTD_overview_v3_Xuewei.pdf


C-enriched LGAD prototypes for HGTD
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• Tested collected charge, time resolution and hit efficiency of C-enriched prototypes from 3 vendors 

(FBK, USTC-IME and IHEP-IME)

• LGAD (CNM-0) was used as a time reference at CERN as well as a SiPM device at DESY

• Sensors were exposed to fluences up to 1.5×1015 neq/cm2 and 2.5×1015 neq/cm2 at the TRIGA reactor 

in Ljubljana, Slovenia with fast neutrons

• Bias voltages were kept lower than the SEB voltage



Collected charge
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ROI

• Distribution of charge in the Region of Interest (ROI) was 
fitted with a Landau-Gaussian convoluted function

• Collected charge:
• Defined as the Most Probable Value (MPV) from fit
• Above the minimum required charge of 4 fC needed for 

a good timing measurement with the HGTD project @DESY

0.5 mm

0.
5 

m
m



Time resolution method
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• Constant Fraction Discrimination (CFD) method was used to calculate Time of Arrival (TOA) to 
minimizes the contribution of time walk: 20% for the SiPM and 50% for the irradiated LGADs

• To extract the LGADs’ time resolution, the distribution of the difference between the TOA (𝚫TOA) 
of the LGADs and that of the time reference device were fitted with a Gaussian function, each of 
them giving a width σ$;

Constant Threshold Discriminator
(CTD)

Constant Fraction Discrimination
(CFD) 

C. Agapopoulou et al., 2022 JINST 17 P09026

https://doi.org/10.1088/1748-0221/17/09/P09026


Time resolution
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• For set-up at DESY, the ΔTOA of three devices is σ&', σ&( and σ'(, respectively. So the time 

resolution of LGADs and reference SiPM are σ" = ⁄(σ"EF + σ"/
F − σE/

F ) 2, σE = ⁄(σ"EF + σE/
F − σ"/

F ) 2  

and σ/ = ⁄(σ"/
F + σE/

F − σ"EF) 2 (σ&"G3(/) = 62.6 ps)

• For set-up at CERN, σ" = σ"EF − σEF (the reference CNM-0 is known, which means σ' = 55 ps)

LGAD1 (i)

SiPM (k)

LGAD2 (j)

LGAD (i)

CNM-0 (j)

@DESY

electron

pion

@CERN



Hit efficiency
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• Q)*+ is set to 2 fC, the minimum achievable threshold of 
the ALTIROC chip

• Achieved the efficiency of 95% required for HGTD after 
irradiation

Hit Ef7iciency =
Rescontructed tracks with q > Q)*+

Total rescontructed tracks

ROI

@DESY

0.5 mm

0.
5 

m
m



• The LGAD, as a fast timing as well as radiation hard silicon based detector, has 
reached a mature state in recent years

• Carbon-enriched LGADs from three vendors (FBK, IHEP-IME and USTC-IME) have 
been studied both in terms of radiation hardness and performance
• irradiated at fluences of 1.5 - 2.5×1015 neq/cm2, the LGADs were operated at 

voltages below 550 V
• Under these conditions, LGADs achieved the objectives of:
• Collected charge of more than 4 fC while guaranteeing an optimal time 

resolution better than 70 ps
• An efficiency larger than 95% uniformly over sensors’ surface is obtained 

with a charge threshold of 2 fC
• These results confirm the feasibility of an LGAD-based timing detector for HL-LHC
• Outlook: 
• The IHEP-IME and USTC-IME Pre-production have been started and the 

laboratory test is ongoing, looking forward to do beam test soon

Summary and outlook
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Thanks for your attention!
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Back up
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HGTD: Layout and requirements

Per hit Per track



Introduction to the contribution of time resolution
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• Jitter

• Time walk   

• Landau noise

WF2 simulation, MIP, 50 𝜇m, Gain ~ 20

• Distortion (distribution of weighting field)
290 𝜇m 50 𝜇m

σ*"+$,-./ = [t7]23&= [
V#4
⁄S t%")$

]23&∝ [
N
⁄dV dt

]23&

σ!"##$% =
N
⁄dV dt

≈
t%")$
S/n



Segmented LGADs and Inter-pad region
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Gregor, Detector Semiar, 2021

https://indico.cern.ch/event/1088953/attachments/2340254/3989714/GK-CERN-Seminar-Timing-HL-LHC.pdf
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Radiation effect on Silicon

Three main effect:

• Increase of leakage current

• Changes in doping concentration

• Decrease of charge collection

• Acceptor creation: g%>>ϕ
• By creation of deep traps

• Acceptor removal mechanism: N?(ϕ = 0)e@AB

• Reduction of doping → reduction of gain
• C-factor (acceptor removal constant) 

depending on detector type (the lower the 
better)

S. M. Mazza et al, PSD12, 2021

https://indico.cern.ch/event/797047/contributions/4455221/attachments/2308578/3927985/170821_PSD12_LGAD_radhard.pdf


Kuo Ma PSD13, Oxford, 2023
23

Experimental techniques for LGADs
Experimental Techniques Purposes Comments 

Leakage current-Voltage 

(IV) 

Gain layer depletion voltage (!!"# ) Doping information of gain layer 

Device break down voltage (!$%) Safe operating voltage range 

Leakage current@Vx or voltage@Ix Power consumption of circuit 

Inter pad resistance Isolation between pads 

Capacitance-Voltage 

(CV) 

Gain layer depletion voltage (!!"& ) Depletion behavior of gain layer 

Full depletion voltage of the device (!'%) Depletion behavior of bulk 

Electrode capacitance ("()*) Depletion behavior of sensor 

Inter pad capacitance Cross talk between pads 

Beta-scope test 

(
90

Sr) 

Voltage required to collect 15 fC (V15fC) Voltage required to collect 15 fC at -30

o
C 

Minimum operation voltage (!+(,-./) 
S/N>10, V>4fC, noise < 1.2 noise at low 

bias, no ghosts, I<500nA/5µA 

Maximum operation voltage (!+(,-)0) The above conditions can be met 

Time resolution at 4fC (t4fC) Time resolution at Vop,min 

Transient Current Technology 

(TCT, laser) 
The no-gain distance between two 

adjacent pads (Effective IP width) 

No-gain area where collected charge is less 

than 50%*Max (collected charge) 

Test Beam 

(TB, proton or electron or …) 
Hit efficiency 97% (95%) at the start (end) 

Charge collection and timing resolution 35 ps (start), 70 ps (end) per hit 
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IV & CV setup (USTC for example)

Tested by probe needles

Tested by probe card J.J. Ge, NIMA, 2021

Equivalent circuit diagram of 1×1 LGADs 

Equivalent circuit diagram of 15×15 LGADs 

https://www.sciencedirect.com/science/article/pii/S0168900221003843


𝛽-scope setup (USTC for example)

• Tempareture: -30 oC

• Trigger

• Sensor (HPK Type1.1, un-irradiated) 

& Pre-amplifier board

• With the 2nd stage amplifier

• Bias: -165.00 V

• 𝜎,: 33.88 ps

• DUT (Device Under Test)

• Sensor & Pre-amplifier board

• With the 2nd stage amplifier

• Oscilloscope

• Sampling rate: 20 Gs/s

• Bandwidth: 1 GHz

Amplifier board
(UCSC)

DUTTrigger

Beta source 
(90Sr)

Sensor

Cold box
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C.H. Li, NIMA, 2022

https://doi.org/10.1016/j.nima.2022.167008


Performance of IME-LGAD prototypes with 90Sr
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ATLAS HGTD Public Plots

K. Wu et al NIMA, 2022

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HGTDPublicPlots
https://iopscience.iop.org/article/10.1088/1748-0221/7/11/P11010/pdf


Inter-pad (IP) gap measurements
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• For IP3 and IP5, the effective IP gap is about 100 um. For IP7, the effective IP gap is about 130 um.
• Effective IP gap is large than nominal IP gap from 50-75 um.

Laser (infra-red, 1064 nm)  

Wafer IPnominal (Nominal IP) IPeff (Effective IP) IPeff - IPnominal 

W17
30um 100um 70um

50um 107um 57um

70um 130um 60um

W19
30um 103um 73um

70um 124um 54um

ATLAS HGTD Public Plots

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HGTDPublicPlots
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Uniformity of full-size (15×15) LGADs

GR

Pads
Total current

HPK-3.2

• Tested by single probe needle (neighbors and GR floating)

• Tested by probe card (neighbors and GR are grounded)

• Very homogenous break down 
voltage (VBD, Ipad < 500 nA)

• GR floating affects the
outermost pads for IHEP-IME 
v2 LGADs


