

Low Gain Avalanche Detectors for the ATLAS High Granularity Timing Detector: laboratory and test beam campaigns

Kuo Ma (University of Science and Technology of China) On behalf of the ATLAS HGTD Group

Sep $5th$, 2023

- ATLAS HGTD upgrade and LGAD technology
- LGAD performance in Laboratory
	- Evolution of radiation hardness
	- Collected charge and time resolution with ⁹⁰Sr source
- LGAD performance in DESY and CERN test beam
	- LGAD Single Event Burnout
	- Collected charge, time resolution and hit efficiency
- Summary and outlook

ATLAS High Granularity Timing Detector (HGT

- **High-Luminosity phase of LHC (HL-LHC): It's hard to associate track to primarty** high pileup environment, especially in the forward region (2.4 < $|\eta|$ < 4.0)
- **High-Granularity Timing Detector (HGTD): to measure high-precision time of** particles in the forward region, complementing the **I**nner **T**rac**k**er (ITk)

HGTD requirements:

- Withstand intense radiation enviror
	- Maximum fluence: $2.5E15 n_{eq}/$
	- Total Ionising Dose (TID): 2 MG
- Collected charge per hit > 4 fC
- time resolution: 35 ps (start), 70 ps 30 ps (start), 50 ps (end) per track
- Hit efficiency of 97% (95%) at the start (end)

Low Gain Avalache Detector (LGAD)

• N⁺-P-P⁻-P⁺ structure, moderate gain (10 \sim 20), ps time resolution (\sim 30 ps) and mm position resolution (Granularity: 1.3×1.3 mm²)

Moderate gain (larger S/N), thin detector (50 µm, faster rise time) and finite segment (Granularity: 1.3 \times 1.3 mm², uniform weight field) \rightarrow fast timing

Current

Low Gain Avalache Detector (LGAD) R&D

- The **reduction of effective doping** in the gain layer is caused by the "acceptor removal" LGADs' gain reduces M. Ferrero et al, NIMA, 2019 G. Kramberger et al, 2015 JINST 10 P07006
- Explored use of different designs, doping materials and C-enriched substrates -> Boron shows largest gain after irradiation $(C_i + O_i \rightarrow C_i O_i$ competes with $B_i + O_i \rightarrow B_i O_i$)

Acceptor (B_s) removal in the gain layer after irradiation

Latest prototypes produced by different venders

- LGADs has been widely studied by many producers in last few years, including:
	- CNM (Spain), FBK (Italy), HPK (Japan), IHEP-IME (China), USTC-IME (China), IHEP-NDL (China) …
- For each vender, the prototypes includes **small-array** sensors (1×1, 2×2…) and **large-array** sensors (5×5 and full-size (15×15) sensor for ATLAS)

IHEP-IME-v2 (07/2022, 8'') NDL-v4 (2021) USTC-IME-v2.0/2.1 (2021, 8'')

Evolution of radiation hardness

The key parameter: acceptor removal coefficient (c-factor) (the lower the bet

$$
V_{gl} = V_{gl0} \times \exp(-c \times \phi_{eq})
$$

Optimization directions: adjust carbon enrichment dose and diffusion technic

 V_{gl} (V_{gl0}), depletion voltage of gain layer (before irradiation), is the voltage value where the two green straight lines intersect

FBK, IHEP-IME, USTC-IME have shown so far to ma

Collected charge and time resolution with ⁹⁰Sr source

- Sensors were exposed to fluence up to 2.5×10^{15} n_{eq}/cm² at the TRIGA reactor in Ljubljana, Slovenia with fast neutrons
- After irradiation LGADs' performance degrades due to loss of gain -> increase of bias voltage to recover
- Carbon-enriched LGAD (blue region) allows the sensors to be operated at lower voltages

Beam test campaigns

- The collaboration has carried out numerous test beam campaigns and the results are documented in this list of papers: 2018 JINST 13 P06017, 2022 JINST 17 P09026 (2018-2019 data), **2023 JINST 18 P07030 (2021 data), 2023 JINST 18 P05005 (2021 - 2022 data)**
	- Determine safe bias voltages to avoid "Single Event Burnout" (SEB)
	- Qualify carbon-enriched LGADs performance (collected charge, time resolution, and hit efficiency)
	- DESY T22 beamline (5 GeV e- beam) and CERN North Area SPS H6A beamline (120 GeV pion beam)
	- Use of beam telescope for tracking

LGAD Single Event Burnout (SEB)

- Single Event Burnout (SEB) has been observed in several test beam campaigns
	- Irreversible breakdown while operating at high voltage (\sim 100 V lower than voltage at
	- Observed by CMS/ATLAS/RD50 teams

More details in

- A safe zone has been defined
	- Safe zone: electric field < 11 V/ μ m (50 μ m \rightarrow Max bias voltage is 550 V)

C-enriched LGAD prototypes for HGTD

- Tested collected charge, time resolution and hit efficiency of C-enriched prototypes from 3 vendors (FBK, USTC-IME and IHEP-IME)
- LGAD (CNM-0) was used as a time reference at CERN as well as a SiPM device at DESY
- Sensors were exposed to fluences up to 1.5×10^{15} n_{eq}/cm² and 2.5×10^{15} n_{eq}/cm² at the TRIGA reactor in Ljubljana, Slovenia with fast neutrons
- Bias voltages were kept lower than the SEB voltage

Collected charge

- Distribution of charge in the Region of Interest (ROI) was fitted with a Landau-Gaussian convoluted function
- Collected charge:
	- Defined as the Most Probable Value (MPV) from fit
	- Above the minimum required charge of 4 fC needed for a good timing measurement with the HGTD project $\qquad \qquad -0.8 \frac{E}{2}$ $\qquadPhi_{\text{max}} = 1.5 \times 10^{15} n_{\text{eq}}/\text{cm}^2$. $\qquad \qquad \text{CDESY}$

ROI

ATLAS HGTD Preliminary Test Beam

Efficiency (%) - IHEP-1.5, 400V

100

190

- 80

 -170

160 450 40

30

20 10

0.5 mm

 $-0.8 - 0.6 - 0.4 - 0.2$

 $x = 0.8$

 0.6

 0.4

02

-0.2 -0.4

 -0.6

0.5 mm

 $\bf{0}$

 0.2 0.4 0.6 0.8

Time resolution method

- **Constant Fraction Discrimination (CFD) method was used to calculate Time of Arrival (** minimizes the contribution of time walk: 20% for the SiPM and 50% for the irradiated I
- To extract the LGADs' time resolution, the distribution of the difference between the T of the LGADs and that of the time reference device were fitted with a Gaussian function them giving a width σ_{ii}

For set-up at DESY, the Δ TOA of three devices is σ_{ij} , σ_{ik} and σ_{ik} , respectively. So the time

resolution of LGADs and reference SiPM are $\sigma_i = \sqrt{(\sigma_{ij}^2 + \sigma_{ik}^2 - \sigma_{jk}^2)/2}$, $\sigma_j = \sqrt{(\sigma_{ij}^2 + \sigma_{ik}^2 - \sigma_{ik}^2)/2}$

and
$$
\sigma_k = \sqrt{(\sigma_{ik}^2 + \sigma_{jk}^2 - \sigma_{ij}^2)/2 (\sigma_{SiPM(k)} = 62.6 \text{ ps})}
$$

• For set-up at CERN, $\sigma_i = \int \sigma_{ij}^2 - \sigma_j^2$ (the reference CNM-0 is known, which means $\sigma_j = 55$ ps)

Hit efficiency

Rescontructed tracks with $q > Q_{\text{cut}}$

Total rescontructed tracks

- Q_{cut} is set to 2 fC, the minimum achievable threshold of the ALTIROC chip
- Achieved the efficiency of 95% required for HGTD after irradiation

@DESY

 0.2 0.4 0.6 0.8

 100

190

- 80

 -170

160 450 40

30

20

10

ROI

ATLAS HGTD Preliminary Test Beam

Efficiency (%) - IHEP-1.5, 400V

0.5 mm

 $-0.8 - 0.6 - 0.4 - 0.2$ 0

 $x = 0.8$

 0.6

 0.4

02

 -0 . -0.4

 -0.6

 -0.8

0.5 mm

- The LGAD, as a **fast timing as well as radiation hard** silicon based detector, has reached a mature state in recent years
- Carbon-enriched LGADs from three vendors (FBK, IHEP-IME and USTC-IME) have been studied both in terms of radiation hardness and performance
	- irradiated at fluences of 1.5 2.5 \times 10¹⁵ n_{eq}/cm², the LGADs were operated at voltages below 550 V
	- Under these conditions, LGADs achieved the objectives of:
		- Collected charge of more than 4 fC while guaranteeing an optimal time resolution better than 70 ps
		- An efficiency larger than 95% uniformly over sensors' surface is obtained with a charge threshold of 2 fC
- These results confirm the feasibility of an LGAD-based timing detector for HL-LHC
- Outlook:
	- The IHEP-IME and USTC-IME Pre-production have been started and the laboratory test is ongoing, looking forward to do beam test soon

Thanks for your attention!

Back up

HGTD: Layout and requirements

Introduction to the contribution of time resolution

• Jitter

$$
\sigma_{\text{Jitter}} = \frac{N}{dV/dt} \approx \frac{t_{\text{rise}}}{S/n}
$$

• Landau noise

WF2 simulation, MIP, 50 μ m, Gain ~ 20

• Distortion (distribution of weighting field)

• Time walk

Segmented LGADs and Inter-pad region

Gregor, Detector Se

 \triangleright JTE enables efficient isolation of the electrode - allows for segmentation of the LGAD - the key to multi electrod

Inter-pad region is the distance between two electrodes. It is effectively the non-active region as it is without th effectively reduces the "fill factor" of the LGAD

The IP distance can't be too small as in a case of a bad connection - floating pad there is a danger of an early bre $(*30-90 \mu m)$

 \triangleright Distance to edge determines the breakdown through the edges and is 300-500 µm

Radiation effect on Silicon

Three main effect:

- Increase of leakage current
- Changes in doping concer
- Decrease of charge colled

- Acceptor creation: $g_{eff}\phi$
	- By creation of deep traps
- Acceptor removal mechanism: N_A
	- Reduction of doping \rightarrow reduction
		- **C-factor (acceptor removal c** depending on detector type better)

Experimental techniques for LGADs

IV & CV setup (USTC for example)

β -scope setup (USTC for example)

C.H. Li, NIMA, 2022

- Tempareture: -30 °C
- **Trigger**
	- Sensor (HPK Type1.1, un-irradiated) & Pre-amplifier board
	- With the 2nd stage amplifier
	- Bias: -165.00 V
	- σ_t : 33.88 ps
- DUT (Device Under Test)
	- Sensor & Pre-amplifier board
	- With the 2nd stage amplifier
- Oscilloscope
	- Sampling rate: 20 Gs/s
	- Bandwidth: 1 GHz

Performance of IME-LGAD prototypes with ⁹⁰

Inter-pad (IP) gap measurements

- For IP3 and IP5, the effective IP gap is about 100 um. For IP7, the effective IP gap is about 13
- Effective IP gap is large than nominal IP gap from 50-75 um.

Uniformity of full-size (15×15) LGADs

Tested by single probe needle (neighbors and GR floating)

Tested by probe card (neighbors and GR are grounded)

- Very homogenous break down voltage (V_{BD} , I_{pad} < 500 nA)
- GR floating affects the outermost pads for IHEP-IME v2 LGADs