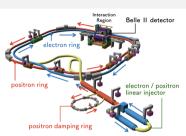
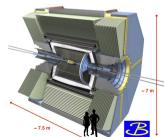
The DMAPS Upgrade of the Belle II Vertex Detector

Benjamin Schwenker (University of Göttingen) On Behalf of the Belle II VTX Upgrade Group

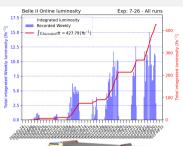
PSD13

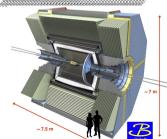
7 Sep. 2023





Belle II and SuperKEKB

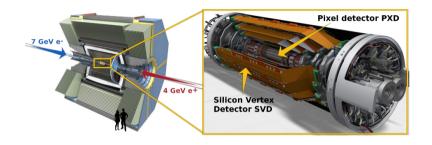

- Located at the SuperKEKB collider in Tsukuba/Japan
- Asymmetric e^+e^- collider at $\sqrt{s}=M_{\Upsilon(4S)}=10.58~{
 m GeV}$
- Luminosity frontier experiment
- Target $\mathcal{L}_{int} = 50 \text{ ab}^{-1}$
 - Current $\mathcal{L}_{int} = 428 \text{ fb}^{-1} \text{ since } 2019$
 - Long-shutdown since last June
 - Restart at beginning of 2024
- Record $\mathcal{L}_{max} = 0.47 \cdot 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$ in June 2022
- ullet Target peak $\mathcal{L}=6\cdot 10^{35}~\text{cm}^{-2}~\text{s}^{-1}$
 - → Upgrade ~2027 foreseen
 - High currents & nano-beam scheme
 - Challenging background conditions



Belle II and SuperKEKB

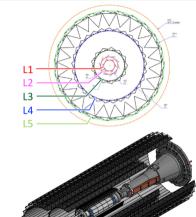
- Located at the SuperKEKB collider in Tsukuba/Japan
- Asymmetric e^+e^- collider at $\sqrt{s}=M_{\Upsilon(4S)}=10.58~{\rm GeV}$
- Luminosity frontier experiment
- Target $\mathcal{L}_{int} = 50 \text{ ab}^{-1}$
 - Current $\mathcal{L}_{int} = 428 \text{ fb}^{-1} \text{ since } 2019$
 - Long-shutdown since last June
 - Restart at beginning of 2024
- Record $\mathcal{L}_{max} = 0.47 \cdot 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$ in June 2022
- Target peak $\mathcal{L} = 6 \cdot 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$
 - \rightarrow Upgrade \sim 2027 foreseen
 - High currents & nano-beam scheme
 - Challenging background conditions

2/16


Belle II Vertex detector

- Current Vertex Detector (VXD):
 - 2 inner layers with DEPFET based pixel sensors
 - 4 layers double sided strip detector
- Low mass ladder design with total material budget of $3.8\%X_0$
- PXD:
 - Thin sensors (75μm) and small pixel pitch (50-75 μm)
 - Long integration time (20µs)
- SVD:
 - Very good cluster time resolution 3 ns , but long strips (6 cm)
 - Spatial resolution of 10 -25 μm

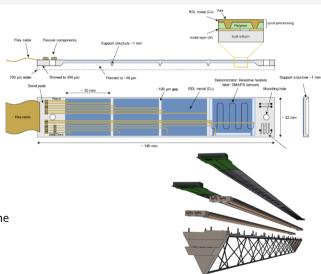
VXD in High Luminosity Environment



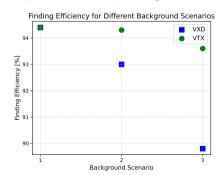
- Current PXD occupancy < 1%
- ullet Background extrapolation uncertain o 3 scenarios
- Performance degradation possible for higher occupancy
- ullet May reach limits of current detector for high lumi. environment occupancies $\gtrsim 3\%$

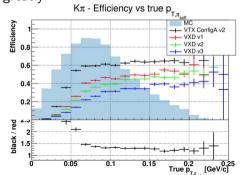
4/16

Vertex Detector Upgrade Proposal

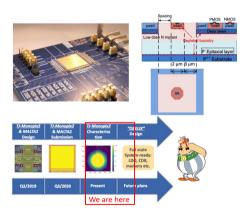

- SuperKEKB upgrade likely to change interaction region for high luminosity environment during LS2
- Opportunity to upgrade current vertex detector with 5 straight layers Depleted CMOS MAPS
- Reduced material budget $\sim 2.5\%X_0$
- Increase space-time granularity
- Requirements:
 - Robust against inner layer background
 - Hit-rate up to 120 MHz/cm²
 - Resolution <15 µm
 - High efficiency
 - NIEL $5 \cdot 10^{13} n_{eq}/cm^2/year$

VTX detector mechanics


- 5 straight DMAPS layers
- Radii at 14, 22, 39, 90, 140 mm
- Ladder/stave design
- iVTX:
 - L1 & L2
 - All silicon ladders
 - Air cooling
 - $\sim 0.1\% X_0$
- oVTX:
 - L3 & L4 & L5
 - Carbon-fibre structure support frame
 - Cooling plate with water cooling
 - $\sim 0.3 0.5\% X_0$ L3 & L4
 - $\sim 0.8\% X_0 \text{ L5}$

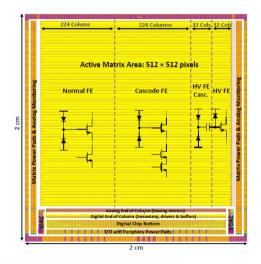


VTX Tracking Performance


- Based on simulations of 1000 $B\bar{B}$ events and respective overlay background files
- Background overlays range from best case scenario (1) to worst case (3)
- VTX gives better tracking efficiency than VXD for Full Tracking (vertex tracking combined with CDC)

• In particular soft pion signal efficiency effected greatly

TJ-Monopix2



Nucl. Instrum. Methods Phys. Res. A, 978 (2020) 164460

- Developed for ATLAS
- DMAPS in TowerJazz (TJ) 180 nm process
- Proposed as starting point for OBELIX design
- → Copy of pixel matrix + trigger adaptation in periphery
- $2 \times 2 \text{ cm}^2 \text{ chip, } 512 \times 512 \text{ pixels}$
- Pixel pitch: $33.04 \times 33.04 \ \mu m^2$
- Expected from design:
 - ullet $\sim 100~e^-$ min. threshold
 - 5-10 e⁻ threshold dispersion (tuned)
 - >97% efficiency at $10^{15} n_{eq}/cm^2$
 - $\sim 5 e^-$ noise
 - Fully efficient with hit rate 120 MHz/cm²
 - MIP $\sim 2500e^{-}$

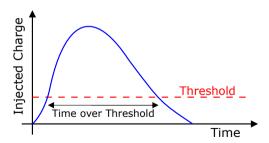
8/16

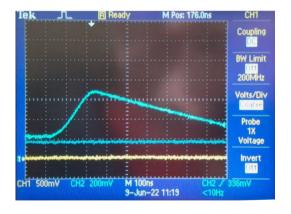
TJ-Monopix2

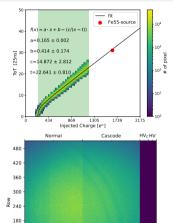
4 pixel Front-End (FE) flavours with differences in pre-amplifier, sensor coupling, biasing

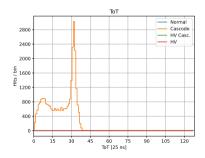
- Normal and Cascode FE:
 - DC coupled to charge collection electrode
- HV and HV Cascode FE:
 - AC coupled to charge collection electrode
 - Allows higher bias voltages
- Cascode and Non-Cascode versions:
 - Differ only by one transistor → designed to increase gain

Lab Set-up

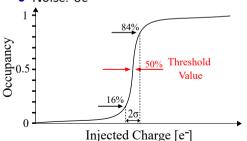

- Commercial 2 channel power supply
- 1.8 V supply voltage
- Up to 6/60 V bias voltage

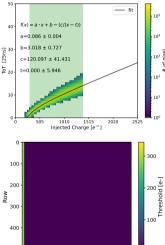

Simple and user-friendly set-up:


- Carrier PCB with FPGA readout
- Bdaq53 board with TJ-Monopix2 firmware based on Basil


- Internal injection tests
 → inject known charge in pre-amplifier
- Output: ToT (Time over Threshold)
- ToT in units of 25 ns 7-bit encoded

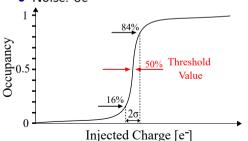
- Testing in Bonn, Pisa, HEPHY, CPPM, Göttingen
- Calibrate ToT responds with injection test
- Absolute calibration with Fe⁵⁵ agrees with design
- Measurements ranging 8.5 10 e-/DAC

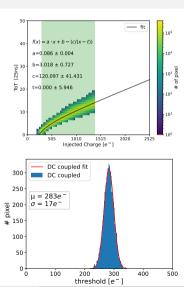

120 180 240 300 360 420 480

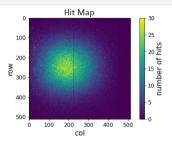

120

60

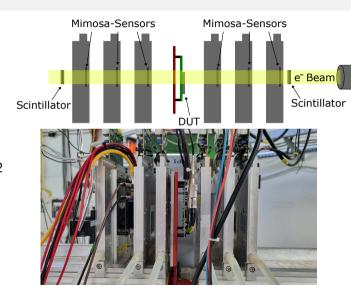
- S-curve tests with internal injection
- Determine threshold
- Tune sensor for low threshold and low dispersion
- Threshold: $280e^- \pm 17e^-$


● Noise: 8e⁻

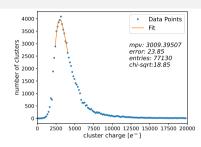


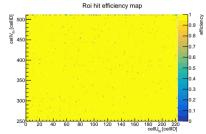

- S-curve tests with internal injection
- Determine threshold
- Tune sensor for low threshold and low dispersion
- Threshold: $280e^- \pm 17e^-$

● Noise: 8e⁻

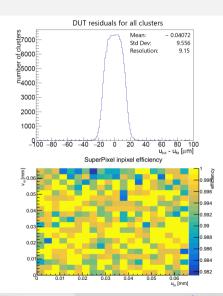


Beam Test Set-up




- 3-5 GeV e⁻ at DESY June 2022
- Mimosa EUDET-Telescope
- Unirradiated chips
- Preliminary settings used \rightarrow Very high thresholds $\sim 500~e^-$

Efficiency and Resolution

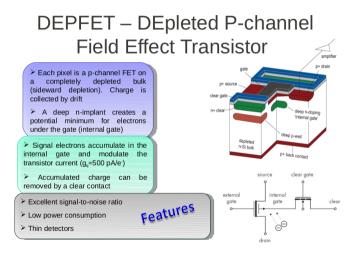

- 4 GeV, Perpendicular incidents
- Hit efficiency: $\epsilon = \frac{n_{matched}}{n_{tracks}}$
- \bullet ϵ at \sim 500 e^- threshold: 99.54 \pm 0.04 %
- \sim 9.15 µm cluster position resolution \rightarrow Better than pitch/ $\sqrt{12} \sim$ 9.5 µm
- \bullet Next: Irradiation to $10^{14}-10^{15}~\rm n_{eq}/cm^2$
- Test beam in July 2023

Efficiency and Resolution

- 4 GeV, Perpendicular incidents
- Hit efficiency: $\epsilon = \frac{n_{matched}}{n_{tracks}}$
- \bullet ϵ at $\sim 500e^-$ threshold: 99.54 \pm 0.04 %
- \sim 9.15 µm cluster position resolution \rightarrow Better than pitch/ $\sqrt{12} \sim$ 9.5 µm
- Next: Irradiation to $10^{14} 10^{15} \, n_{eq}/cm^2$
- Test beam in July 2023

Conclusion and Outlook

Conclusion:

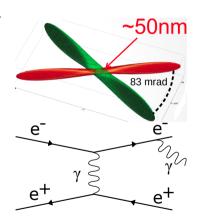

- Important to carefully characterise TJ-Monopix2, since sensor matrix design will be carried over to OBELIX
- Main performance figures of non-irradiated TJ-Monopix2 matching requirements
- Successful test beam with stable module operation over long times

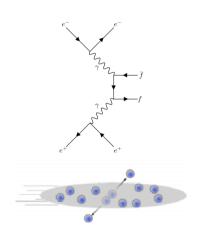
Outlook:

- Analysis of testbeam with irradiated sensors in July 2023 at DESY
- OBELIX design, targeting submission in autumn 2023
- Finalization of VTX conceptual design report

Back up

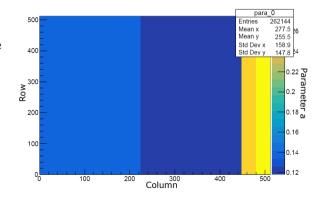
DEPFET concept


DEPFET readout concept


The PXD module: Readout electronics

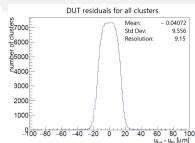
Nano-beam and beam background

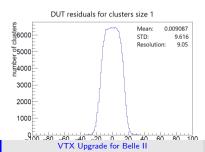

- Squeeze beam for smaller cross-section
- High Luminosity backgrounds
 - → scales with luminosity
 - \bullet 2 γ
 - radiative bhabha-scattering
 - elastic scattering of e⁻e⁺
- Storage background
- Injection backgrounds

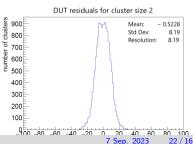


In-Pixel calibration

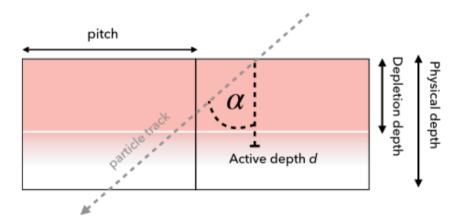
- Conversion of ToT to charge in electron, before clustering
- Inj. charge in DAC · 10.1= charge in e
- Calibration parameters from scans on the sensor


Injected Charge [DAC]




Residuals: epi module

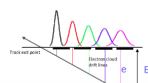
- Residuals at 3V PSUB/PWELL
- Uncertainty of telescope intersection at DUT plane ~3.5 μm
- Expected res. from pixel pitch: 9.54 μm
- Resolution of 9.14 μm



TJ-Monopix2

TJ-Monopix2

Register	Default Settings ("Göttingen ")	Improved Settings ("Patrick")	HV Settings	HV Settings W8R3 "HEPHY"
ITHR	64	50	30	30
IBIAS	50	100	60	60
VRESET	143	143	100	95
ICASN	0	0	8	8
VCASP	93	93	40	40

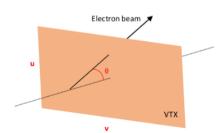

Digitizer

VTX Digitizer: from tracks to digits

Based on digitizer for PXD in the Belle II software. Rather simple and generic code.

- Start: List of Geant4 steps on sensitive (depleted) Si
- Check if the particle hit is inside the integration time window T_{int}
- Split the path of the particle in the VTX depleted Si into segments and drift the charges from the center of each segments.
 - The transverse diffusion (coefficient D) follows a Gaussian with a width defined as:
 sigmaDiffus = sqrt (D* e/2)
- Integrate smeared charge clouds per pixel area and add the noise to the charge
- Subtract hit threshold

- Check if Charge > 0
- Amplify and digitize charge ToT = F(Charge)

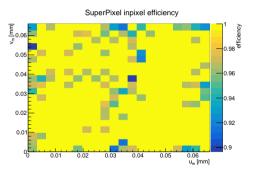


Test beam simulations

- Simplified simulation in basf2 software. No simulation of telescope and tracking is done, just using true hits instead.
- ParticleGun shooting electrons at 4.0 GeV perpendicular to 1 VTX sensor in +X

uPitch: 0.003304 cm vPitch: 0.003304 cm Active Thickness: 0.0025 cm

Charge Threshold: 500 e⁻
Electronic Noise: 20 e⁻
Max ToT: 127 (7 bits)
D: 8.5e-05 cm

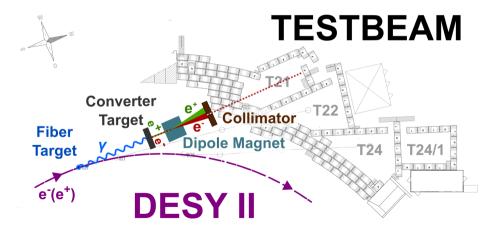


Efficiency

0°

SuperPixel inpixel efficiency 0.99 € 0.05 0.98 0.04 0.97 0.03 0.96 0.02 0.95 0.01 0.03 0.04 0.05 0.06 u_m [mm] 0.01 0.02

 10°

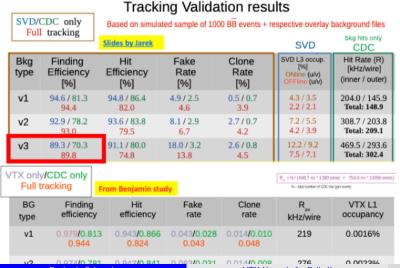


DESY Test Beam Facility

• Duration: 2022-06-27 to 2022-07-11

Beam line: TB22

• 2-5 GeV electron beam


test beam Set-up

- DESY test beam facility
- AIDA TLU v2
- Mimosa26-based DURANTA Telescope
- Upstream scintillator

VTX Tracking Performance

30 / 16