

Imaging Earth's magnetosphere with the Soft X-ray Imager (SXI) on the SMILE mission

Authors: Steve Leach, Steve Sembay (PI) and the <u>SMILE SXI Instrument Team</u>

Solar wind Magnetosphere Ionosphere Link Explorer: SMILE

SMILE is a collaborative science mission between the European Space Agency (ESA) and the Chinese Academy of Sciences (CAS)

PSD13 Oxford – Sept 2023

UNIVERSITY OF LEICESTER The Sun-Earth interaction - Space Weather

- The solar wind and embedded interplanetary magnetic field (IMF) interacts with the Earth's magnetic field (magnetosphere)
- Dipolar terrestrial field –> direct entry of solar wind plasma into Earth ionosphere (ionised upper atmosphere)
- Several ground/space instruments have studied independently
- Simultaneous data required on multiple temporal and spatial scales (explore the link)

UNIVERSITY OF LEICESTER Solar wind Magnetosphere Ionosphere Link Explorer

SMILE is a collaborative science mission between the European Space Agency (ESA) and the Chinese Academy of Sciences (CAS)

Solar Wind

Credit: ESA/NASA

X-ray Imager

Orbit: Apogee ~120,000 km Perigee ~6, 000 km Inclination: ~73° Period: ~51 hours Launch Date: May 2025

UV Imager

Soft X-ray Imager (SXI) is led by the University of Leicester in collaboration with other UK and European Institutions

Dr Steve Leach - PSD13 Oxford

LEICESTER Global imaging using Solar Wind Charge Exchange (SWCX)

SWCX: High charge state solar wind ions in collision with hydrogen in the Earth's exosphere to produce photons at X-ray energies

Solar Wind: electrons & protons with some (~2%) heavy ions such as carbon, nitrogen and oxygen embedded in the Sun's magnetic field

ROSAT All-Sky Survey in 1990 (Scanning observations) SWCX Can be brighter than X-ray background

No Solar Wind in these regions therefore no SWCX X-rays

Solar Wind in these regions therefore SWVC X-rays

<u>Hence: magnetopause boundary can</u> <u>be detected using X-ray imaging</u>

Dr Steve Leach - PSD13 Oxford

SMILE

Solar wind Magnetosphere Ionosphere Link Explorer

- Soft X-ray Imager (SXI) is pointed at a constant angular distance (20.3°) from the Earth limb, and along the Earth-Sun line
- SXI footprint on cosmic X-ray sky is pre-determined known in advance, & SXI FOV is large
- All SXI background images/spectra have potential for secondary science

SMILE Orbit simulations Secondary/serendipity science observations and potential links with other operational space telescopes

- One typical SMILE orbit (~51.3hr, May 2025)
 - Apogee semi-towards Sun
- Large central rectangle: SXI FOV
 - Active FOVs of 2 CCDs
- Red/orange/yellow emission: Science Targets SWCX X-ray emission from Magnetosheath & bright Cusps (static MHD model shown)
- UVI (yellow circle) observes Earth
- Many bright cosmic X-ray sources pass through SXI FOV
- White circles: ROSAT Bright Source Catalogue [BSC] (size~brightness)
- Contributing to BG (need to model)

Sources used for dynamic calibration

Credit: Andy Read, Leicester

- Soft X-ray focusing using micropore optics (MPOs)
 - 100 nm Aluminum film (to block optical straylight)
- Optical Assembly holding 16 MPOs (x2)
- SXI wide-field imaging in the soft X-ray (~0.15 to 1.1 keV) band
- Qualification completed, FM calibration in progress at Leicester's facility

Degrees

UNIVERSITY OF SXI Detector Front-End Electronics (FEE)

- Two large format Te2v CCDs
- Passively cooled by radiator and heaters
- -95 C to -120 C (-117 C nominal)
- Back-side illuminated
- 4510 x 4510 native 18 µm pixels (FF)
- FT 6x6 binning, 719 frame store + shield

SXI Hardware Model Versions

Model	Description	Objective (Instrument level)	Objective (PLM level) (EID-1903/R- MIS-PROG- 9250 AD1)	Delivery
BB Electronics System BBV1 FEE BBV2 FEE BB EBOX BB Harness BBV1 RSM BBV2 RSM BBV1 RSE	Development models of electronic elements	 Development, function, performance, HW/SW interaction 	-	Internal only
STM Instrument • STM Telescope • STM FEE • STM EBOX • STM Harness	Represents structural and thermal system	 Structural qualification of the Telescope Thermal qualification 	STM S/C integration	PLM
EQM Instrument • EQM Telescope (partial) • EQM FEE • EQM EBOX • EQM Harness	Represents electronic system	 Functional verification EMC/EMI verification Grounding ESD 	Support the verification of key electrical I/Fs with the PLM	PLM (Loan of FEE, EBOX and Harness)
PFM SXI Instrument PFM Telescope FM FEE FM EBOX FM Harness	SXI Instrument for flight	Acceptance	Integration in FM S/C	PLM

• <u>Vibration</u>, Thermal and EMC

Subsystem level (DPU, FEE), then instrument level

Vibration

• Sine & random vibration in x-y-z axes

STM Telescope vibration test Setup, PFM scheduled at RAL for Sep-Oct 23

• Vibration, <u>Thermal</u> and EMC

Thermal balance

- Hardware in vacuum to simulate thermal conditions of space
- Instrument surrounded by thermally controlled plates
- Verify the thermal control subsystem
- Correlate with SXI thermal model

Now at instrument level

Thermal Balance

- Thermal test cycle
- Verify CCDs before/after

RAL Space TVAC Facility

29-day campaign, scheduled at RAL for Nov-Dec 23

UNIVERSITY OF SXI Space Environment Qualification

• Vibration, Thermal and <u>EMC</u>

EQM Instrument 'FlatSat' EMC testing completed Dec '22

Multiple failures. Most significant – Radiated Emissions (RE) in S-Band comms frequency

Unit level EMC tests show both EBox and FEE contribute to RE test failure

Investigation (at ESTEC July '23) making enclosures

'RF tight' via gaskets shows promise.

<u>EMC</u>

Unit level system retest of EQM FEE to assess impact of the design changes (in progress)

Unit level test of FM FEE with EMC modifications (in progress)

Unit level test of FM EBox with EMC modifications (TBD)

SXI Instrument FM test (~Jan '24)

Instrument level verification EMC planned at ESTEC ~Jan 24

LEICESTER SXI CCD Flex Cable Investigations

Electronics Box (DPU) (EQM)

Front-End Electronics (BBv2)

Baffle

Primary Structure

Radiation Shutter Mechanism

Detector Plane Assembly Dr Steve Leach - PSD13 Oxford

Radiator

Optic Assembly x2

16

- Reverse clocked CCDs -> noise analysis Assembly)
- Preparation -> EQM -> Flight Units
- <u>Strict</u> ESD precautions

G	M	LE	
Solar w		•/	Explorer
In A MARTINE CO	_	une	e link
	phere	lonost	×

Activity/Milestone	Date	
Vibration Test Slot @ RAL	Sept – Oct '23	
Thermal Test Slot @ RAL	Nov – Dec '23	
EMC Test Slot @ ESTEC	Q1 2024	
QAR	Oct through Dec '23	
Instrument Delivery to ESA	End Feb '24	
PLM and Platform Integration	June – July 2024	
Spacecraft AIT	July '24 – March '25	
Launch Campaign and Launch	April – May '25	
In-orbit Commissioning	Launch + 3 months	
Nominal Science	3 years	
Extended	2 years	
Decommission		

SMILE Instruments

SXI: Soft X-ray imager

- Wide field lobster-eye 0.2-2.5 keV X-ray
- Two large CCD detectors (8.12x8.12 cm).
- 15.5° x 26.5° FOV, Res.: 1-5 min., 0.25-1°, △E=50 eV.
- · PI: Steve Sembay, Leicester, UK

UVI: UV imager

- Four mirror imager, 10° FOV
- Wavelength:160-180 nm.
- Resolution: 60 s, 150 km at 19 R_E altitude
- CCD detector. Coated mirrors (dayglow rejection)
- PI: ZHANG Xiaoxin, NCSW, CMA, China

LIA: light ion analyser (2 sensors)

- Top-hat analyser for ions, 3D, density, velocity and temperature
- Energy range: 50 eV 20 keV
- FOV : 4 π (at up to 0.25s time resolution)
- PI: DAI Lei, NSSC, CAS, China

□ MAG: Magnetometer

- Fluxgate magnetometer for magnetic field strength and direction up to 40 Hz
- 3 m boom, 2 sensors separated by 0.8 m
- PI: LI Lei, NSSC, CAS, China

Credit: ESA

State to a super-

- 0 Pre-launch Phase (Launch Campaign)
- 1 Launch and Early Operations Phase (LEOP)
- 2 Transfer Phase to HEO
- 3 Commissioning Phase
- 4 Nominal Science Operations Phase
- 5 Extended Science Operations Phase (if any)
- 6 Decommissioning Phase

Imaging Earth's magnetosphere with the Soft X-ray Imager (SXI) on the SMILE mission

Authors:

Steve Leach, Steve Sembay (PI) and the SMILE SXI Instrument Team

THANK YOU

Solar wind Magnetosphere Ionosphere Link Explorer: SMILE

SMILE is a collaborative science mission between the European Space Agency (ESA) and the Chinese Academy of Sciences (CAS)

EXTRA slides

Dr Steve Leach - PSD13 Oxford

24

UNIVERSITY OF LEICESTER SMILE Complex Pointing Arrangement

Pointing design

Credit: ESA

- > **SXI pointing**: Driven by SXI pointing requirement.
- SXI avoid Sun Pointing: Based on SXI Pointing, S/C rotate to the earth around the body Y axis.
- > **UVI pointing**: Driven by UVI pointing requirement.
- Sun pointing: Solar array points to Sun.
- Ground station tracking Pointing: the X-band antenna points to the relevant Ground Station.

Bx: -0.00 nT By: -0.00 nT Bz: -5.00 nT

Dr Steve Leach - PSD13 Oxford

N...: 25.00 cm³ V...: 399.95 km s⁴ Flux: 1.00e+09 cm³ s⁴

SXI simulation run: Neutral density model: Nh=25*(10 RE/r)^3; alpha=10^-15

Position: 7.68 8.22 13.20 GSE Earth limb angle = 20.39 degrees

Aim Point: 6.90 0.00 0.00 GSE XPix equivalent size = 0.14 RE

25