Synchrotron light source X-ray detection with Low-Gain Avalanche Diodes

UNIVERS

13th International Conference on Position Sensitive Detectors

St. Catherine's College, Oxford 6 September 2023

UNIVERSITY OF CALIFORNIA SANTA CRUZ

In this Presentation

- → LGADs as detectors on Synchrotrons
- → Data taking setup
- → LGAD X-ray response
 - Energy Linearity
 - Energy Resolution
 - ♦ Time Resolution
- → Conclusions

LGADs as X-ray detectors

Low-Gain Avalanche Diodes - LGAD

State-of-the-art in time measurement for the LHC detectors

Originally intended for charged particles detection

A type of silicon PIN diode with a **moderate internal** gain:

- → Allows detection of low-energy X-rays
- → Good time resolution > very high repetition rate

Advanced techniques on X-ray imaging will feature **repetition rates of GHz** and **require µm resolution**

Devices Tested

Device	Active Thickness	Gain Layer	Breakdown	
HPK LGAD type 3.1	50 µm	shallow	~230 V	HP
HPK LGAD type 3.2	50 µm	deep	~130 V	devic
HPK PIN	50 µm	no gain layer	~400 V	
BNL LGAD 20um	20 µm	shallow	~100 V	

All devices are single pad 1.3 x 1.3 mm²

Shallow: ~1µm Deep: ~2µm PCB with LGAD and 1-channel amplifier

HPK: Hamamatsu Photonics BNL: Brookhaven National Laboratory

Stanford Synchrotron Radiation Lightsource SSRL 11-2 beamline

→ 25 mm x 1 mm

- → 5 to 70 keV
 - $\Delta E/E \approx 10^{-4}$
 - Monochromator to filter harmonics
- \rightarrow 4 groups of 70 bunches
 - 10 ps length (RMS)
 - Separated by 2.1 ns
- Room temperature

Data taking setup on SSRL

Signal Analysis

Non-negligible baseline shift:

• Corrected with asymmetrically re-weighted penalized least squares smoothing [2]

Peak Finding:

- -> Amplitude > 7σ (noise on empty interval)
- → At least 2.1 ns separation

Signal amplitude as energy estimator

Energy Estimation

For **each** energy, bias voltage and sensor:

- → Distribution of all signal amplitudes
- \rightarrow σ and μ from **Gaussian fit** on tallest peak
 - Energy: μ
 - Resolution: σ / μ

Harmonics:

Same procedure on distribution twice the voltage

Example of 30 keV X-rays on a HPK3.1 at 200V

Energy Linearity

(c) BNL 20um LGAD

(b) HPK type 3.2 LGAD

(a) HPK PIN and type 3.1 LGAD

Energy Resolution

(c) BNL 20um LGAD ⁹

(b) HPK type 3.2 LGAD

(a) HPK PIN and type 3.1 LGAD

Time Resolution

Major Timewalk effect

- Photon absorption can occur anywhere inside the sensor
- **Constant Fraction Discriminator**
- 20% fraction

- → Very precise 2.1ns bunch separation as fiducial time marking
- → Synchronization signal from SSRL as oscilloscope trigger

Resolution is σ (CFD % 2.1 ns)

Example of a 35 keV X-rays on a HPK3.1 at 230V

Time Resolution

Summary

For 35 keV X-ray:

	HPK PIN	HPK3.1		HPK3.2		BNL 20um	
Bias V	$200\mathrm{V}$	$150\mathrm{V}$	$230\mathrm{V}$	$80\mathrm{V}$	$130\mathrm{V}$	$50\mathrm{V}$	$100\mathrm{V}$
Energy Resolution	14%	6%	17%	10%	20%	6%	16%
Energy Response	$19\mathrm{mV}$	$75\mathrm{mV}$	$185\mathrm{mV}$	$68\mathrm{mV}$	$211\mathrm{mV}$	$66\mathrm{mV}$	$147\mathrm{mV}$
$\sigma_t \operatorname{CFD}$	$78\mathrm{ps}$	$141\mathrm{ps}$	$123\mathrm{ps}$	$371\mathrm{ps}$	$171\mathrm{ps}$	$69\mathrm{ps}$	$65\mathrm{ps}$

Lowest bias voltage

• Best energy resolution

Highest bias voltage

• Best time resolution

• BNL 20um

Same energy resolution as HPK3.1

Much better time resolution!

Final Remarks

- LGADs can resolve a beam with repetition rate >500 MHz
- 6% to 20% energy resolution
- Thinner detection volume helps with time resolution
 - $\circ~~\sim 65 ps$ for a 20 μm device at RT

THANKS!

But... to be more useful on X-ray applications LGADs should have better spatial resolution

- AC-LGAD and others

Results presented are available on arxiv.org/abs/2306.15798

Acknowledgements

This work was supported by the United States Department of Energy, grant DE-FG02-04ER41286. CACTUS DJ-LGAD SBIR.

Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.

The group from USP acknowledges support from FAPESP (grant 2020/04867-2) and CAPES.

References

[1] X. Shi. et al. Radiation campaign of HPK prototype LGAD sensors for the High-Granularity Timing Detector (HGTD). Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, v. 979, 164382, 11 2020. ISSN 01689002. https://doi.org/10.1016/j.nima.2020.164382

[2] S.-J. Baek, A. Park, Y.-J. Ahn and J. Choo, Baseline correction using asymmetrically reweighted penalized least squares smoothing, Analyst 140 (2015) 250–257.

More information on tested LGAD

Using a ⁹⁰Sr source

Device	Producer	BV	Thickness	Gain layer	Geometry
НРК 3.1	HPK	$230\mathrm{V}$	$50\mu{ m m}$	shallow	$1.3 \mathrm{x} 1.3 \mathrm{mm}^2$
HPK 3.2	HPK	$130\mathrm{V}$	$50\mu{ m m}$	deep	$1.3 \mathrm{x} 1.3 \mathrm{mm}^2$
HPK PiN	HPK	$400\mathrm{V}$	$50\mu{ m m}$	no gain	$1.3 \mathrm{x} 1.3 \mathrm{mm}^2$
BNL 20um	BNL	$100\mathrm{V}$	$20\mu{ m m}$	shallow	$1.3 \mathrm{x} 1.3 \mathrm{mm}^2$
BNL AC-LGAD 10mm	BNL	$250\mathrm{V}$	$50\mu{ m m}$	shallow	$5 \mathrm{x} 10 \mathrm{mm}^2$
BNL AC-LGAD 5mm	BNL	$250\mathrm{V}$	$50\mu{ m m}$	shallow	$5 \mathrm{x5} \mathrm{mm}^2$

Geant4 Simulations

TCAD Simulations

Convoluted voltage signal with TIA

Multiple photons conversion

HPK3.1

200 V

30 keV

21

Analysis with Signal Integral

Waveform Autocorrelation

	SSRL News	Photon Source Parameters				
	User Resources >>	Beam Line Map I Beam Lines by Techniques I Beam Lines by Number				
	Beam Lines >>					
Erom	Science at SSRL >>	Beam Energy	3 GeV			
	Publications >>	Injection Energy	3 GeV			
	SPEAR3 >>	Current	500 mA			
	Safety >		200 hunches distributed in 4 groups of 70 hunches each			
	Staff Resources	Fill Pattern	200 buildies distributed in 4 groups of 70 buildies each			
	Contact Us	Circumference	234.137			
		Radio Frequency	476.315 MHz			
SSRL		Bunch Spacing	2.1 n			
vebsite	Office of Science	Horizontal Emittance	10 nm*rad			
		Vertical Emittance	14 pm*rad			
		Critical Energy	7.6 keV			
		Energy Spread	0.097			

Waveform Autocorrelation Period

≈ Average t_{max} interval ≈ Bunch Spacing

2.100 ns +- 1.426 ps

Bunch Train

