

Particle tracking with scintillating fibres read out with Single-Photon Avalanche Diode (SPAD) array sensor

Matthew Franks^{1,*}, T. Dieminger¹, K. Kaneyasu², D. Sgalaberna¹, C. Bruschini², E. Charbon², U. Kose¹, B. Li¹, P. Mos², M. Wayne², T. Weber¹, J. Wu²

¹ETH Zürich, Institute of Particle Physics and Astrophysics (IPA), Otto-Stern-Weg 5, 8093, Zürich, Switzerland 2EPFL, Advanced Quantum Architecture Lab (AQUA), Rue de la Maladière 71b, 2000, Neuchâtel, Switzerland

*mfranks@ethz.ch

Motivation: High-granularity 3D particle tracking

Goal: Construct a high-granularity plastic scintillator (PS) detector for neutrino detection

Next generation of PS neutrino detectors need very precise position tracking to resolve neutrino—nuclear effects (e.g. protons with momentum down to 200 MeV/c)

> \rightarrow Small diameter (0.2 mm available) Scintillating Fibres (SciFis)

 \rightarrow "XY" configuration allows full 3D tracking reconstruction of sub-mm long tracks

- State-of-the-art SciFi detectors are read out with Silicon Photomultipliers (SiPMs)
- Neutrino detectors require large mass (≥ 1 tonne) ∴ very large number of SiPMs and readout channels
- Proposed solution: SPAD array sensors

Silicon Photomultipliers (SiPMs)

Above images from: https://www.hamamatsu.com

- SiPMs are arrays of Single-Photon Avalanche Diodes (SPADs), all connected in parallel \rightarrow capable of single photon sensitivity
- Size of sensitive area ≈ 10 mm² 1 mm² \rightarrow good for coupling to fibres
- Photon Detection Efficiency (PDE) $\approx 25 50$ %
- Output is an analogue signal whose height depends on the number of detected photons

For example, a 1 tonne (1 m3) XY SciFi configuration with 0.2 mm fibres, 25,000,000 SiPMs would be required

Single-Photon Avalanche Diode (SPAD) array sensors

- Consists of an array of "pixels" whose sensing element is a SPAD
- Pixels contain electronics (timestamping, addressing, readout, memory, etc.) at the expense of Fill-Factor (FF)

 \rightarrow Position and time of arrival of individual photons in single pixels can be recovered

- Typical size of pixels is 10 μ m²
- Typical size of sensors is 10 mm^2

A 1 m3 SciFi detector would require 10,000 10 mm2 sensors

dielectric residual

Introduction Conclusion **Measurements Measurements** Conclusion

SciFi + SPAD array sensor prototyping: SwissSPAD2

Designed by EPFL (A. Ulku et al. 2019)

- Exposure time 10 ns < t_{gate} < 10 µs
- 8.4×8.4 mm² active area
- 512×512 array, 16.38 μ m pitch pixels
- 10.5 % FF, 50% Photon Detection Probability (PDP) at 500 nm (at 7 V excess bias V_{ex})
- $PDF = PDP \times FF \approx 5\%$

For this study, we have two sensors:

- o With microlenses (improves PDE)
-

Experimental setup of proof-of-concept design

- 4×4 bundle of 1 mm diameter square SCSF-78 SciFis from Kuraray (450 nm emission wavelength)
- SciFi bundle pointed at SwissSPAD2 SPAD array sensor
- Radiation source can be positioned directly above SciFi bundle
- Particle tracks travel through SciFis, generating photons which propagate the length of the fibre material, are emitted, and detected by the SPADs

Number of counts

Number of counts

Image of fibre bundle on SwissSPAD2 using blue light source

Aim: Identify pixels coupled to each fibre for tracking of 90Sr electrons

- Fixed a collimated, blue (450 nm) light source above fibre bundle
- Positioned fibre bundle in the centre of SwissSPAD2 at < 1 mm distance (no optical grease or glue used)
- Captured and summed 25,600, 5 μs exposure frames

Number of counts

Number of counts

Image of fibre bundle on SwissSPAD2 using blue light source

Aim: Identify pixels coupled to each fibre for tracking of 90Sr electrons

- Fixed a collimated, blue (450 nm) light source above fibre bundle
- Positioned fibre bundle in the centre of SwissSPAD2 at < 1 mm distance (no optical grease or glue used)
- Captured and summed 25,600, 5 μ s exposure frames
- Determined fibre edges for track selection purposes

Introduction

Introduction **Conclusion Measurements Measurements Measurements Conclusion**

Measurements with and without ⁹⁰Sr electron source

- Running in continuous mode 5 M, 1 μs exposure frames captured:
	- \circ Without 90 Sr source (with microlenses)
	- o With 90 Sr source (T_{kin} ≈ 2.0 MeV e⁻) (with and without microlenses)
- Background (BG) data closely follows Poisson distribution with $\lambda = k$ as expected
- Excess of counts frame⁻¹ seen when 90 Sr source present clear signature of electrons traversing SciFi bundle
- **Increase of counts with microlenses thanks to increased PDE (6% at 450 nm)**

Track images from 90 Sr + BG data

- Searched for vertical tracks in BG & 90 Sr+BG datasets using 3 parameters: No. fibres, Min. counts per track, and Min. counts per fibre.
- No. of vertical tracks in both datasets compared to compute the probability to observe 'fake' tracks
- Coincidence of multiple pixels within 1 μs gate suppress number of fake tracks, even for just a few detected counts

ETH zürich

Towards a 3D SciFi detector

- Fibre "ribbons" from Luxium Solutions
- 10, 1 m long, 0.5 mm diameter, circular fibres (BCF-20) fixed side-byside
- Emit in green (492 nm) \rightarrow better matching with SwissSPAD2 peak PDE
- We have designed a module compatible with the above system to test these fibres

Preliminary measurements of XY fibre detector

- Collimated, blue light source fixed above the XY fibre bundle
- Positioned fibre bundle in the centre of SwissSPAD2 at < 1 mm distance
- Number of counts Number of • Captured and summed 5 μs exposure frames
	- Identified pixels coupled to each fibre

0

100

200

300

400

500

600

counts

700

800

900

1000

First track from an XY prototype

- Circular bins used to bin counts per fibre
	- o All other hits binned into overflow
- Track selection algorithm adjusted to search for diagonal tracks
- Example of electron track candidate found \rightarrow
- Lower counts due to smaller diameter and circular shape of fibres

Pixel column x

Simulations of SciFi detector read out with SPAD array sensor

- v_{μ} Charged Current Quasi Elastic (CCQE) events were simulated:
- \circ **SciFi:** 2,000 XY layers, each with 8,000, 250 μm × 2 m fibres (2 × 2 × 1 m³)
- o **SPAD:** Instrumented with SPAD array sensors with PDE = 6% and PDE = 20%

-
- (Reveals delta electron)

New SPAD array sensor design

Developing new SPAD array sensor with our colleagues at EPFL

- Increase PDE compared to SwissSPAD2 (PDE = FF × PDP)
	- 1. Increase pixel Fill-Factor (FF) (i.e. increase SPAD size or reduce area occupied by pixel electronics)
	- 2. Increase Photon Detection Probability (PDP) by experimenting with SPAD geometry
- Add ability to measure time-of-arrival of photons with O(100ps) time resolution
- Implementing multi-photon counting time coincidence circuit for noise rejection (noise-free with SciFis)
- First MPW (Multi-Project Wafer) has been submitted in a 110 nm CMOS Image Sensor (CIS) technology node

Introduction Measurements

Conclusion

- R&D towards an XY SciFi detector read out with SPAD array sen
	- \circ Goal is to track [low-momentum particles \(e](http://arxiv.org/abs/2309.03131).g. protons) pro
	- \circ Constructed proof-of-concept PS detector using SciFis read 90Sr electron tracks
- Simulated large XY SciFi detector read out by SPAD array sensor
	- o Excellent identification of short track (low-momentum) prot 6% PDE SPAD (SwissSPAD2 with microlenses)
	- \circ Dedicated sensor with improved PDE (~20%) is required for tracking efficiency
- Submitted to arXiv: http://arxiv.org/abs/2309.03131
- Work in progress on the design of a new SPAD array:
	- Sub-ns per-pixel time-of-arrival information for noise suppression
	- o Higher PDE

Backup slides

ETHzürich EPFL

Sum of frames containing ⁹⁰Sr e⁻ track candidates

ETH zürich $EPEL$ Particle tracking with SciFis read out with SPAD array sensor

Matthew Franks et al. | PSD13 | Thursday, 7th September 2023 | Slide 18/16

Determine fibre edges on SwissSPAD2 with blue light source

- Sum of images taken with blue light source positioned above fibre columns
- Extract horizontal and vertical projections
- Minima correspond to fibre-to-fibre interfaces
- Fitted error functions to determine bundle edges:

$$
k(x) = \frac{(-)a}{2} \operatorname{erf}\left(\frac{x-d}{b}\right) + \frac{a}{2}
$$

Sanity check: 62.5×16.38

 $μm = 1,023.75 μm ≈ 1 mm$

Determine and mask noisy pixels

Aim: Determine noisy pixels so that they can be masked in measurements

- Operated SPAD sensor at desired measurement conditions (V_{ex} = 7 V, $t_{gate} = 1 \mu s$
- Obtained 19581 files \times 256 frames = 5,012,736 frames
- Summed counts in each pixel in each frame & converted to counts s^{-1}
- For the measurement: noisiest top 5% of pixels were masked

Map of masked SwissSPAD2 pixels in measurements

Backup

Electron track candidate captured with XY SciFi detector

ETH zürich $EPEL$ Particle tracking with SciFis read out with SPAD array sensor

Number of photons per MIP expected with fibre ribbons

Stopping power for electron in polystyrene*

POLYSTYRENE

ETHzürich EPFL Particle tracking with SciFis read out with SPAD array sensor