Particle tracking with scintillating fibres read out with Single-Photon Avalanche Diode (SPAD) array sensor

Matthew Franks^{1,*}, T. Dieminger¹, K. Kaneyasu², D. Sgalaberna¹, C. Bruschini², E. Charbon², U. Kose¹, B. Li¹, P. Mos², M. Wayne², T. Weber¹, J. Wu²

¹ETH Zürich, Institute of Particle Physics and Astrophysics (IPA), Otto-Stern-Weg 5, 8093, Zürich, Switzerland ²EPFL, Advanced Quantum Architecture Lab (AQUA), Rue de la Maladière 71b, 2000, Neuchâtel, Switzerland

*mfranks@ethz.ch

Motivation: High-granularity 3D particle tracking

Goal: Construct a high-granularity plastic scintillator (PS) detector for neutrino detection

- Next generation of PS neutrino detectors need very precise position tracking to resolve neutrino—nuclear effects (e.g. protons with momentum down to 200 MeV/c)
 - → Small diameter (0.2 mm available) Scintillating Fibres (SciFis)
 - → "XY" configuration allows full 3D tracking reconstruction of sub-mm long tracks
- State-of-the-art SciFi detectors are read out with Silicon Photomultipliers (SiPMs)
- Neutrino detectors require large mass (≥ 1 tonne) ∴ very large number of SiPMs and readout channels
- Proposed solution: SPAD array sensors

Silicon Photomultipliers (SiPMs)

Above images from: https://www.hamamatsu.com

- SiPMs are arrays of Single-Photon Avalanche Diodes (SPADs), all connected in parallel \rightarrow capable of single photon sensitivity
- Size of sensitive area $\approx 10 \text{ mm}^2 1 \text{ mm}^2 \rightarrow \text{good}$ for coupling to fibres
- Photon Detection Efficiency (PDE) ≈ 25 50 %
- Output is an analogue signal whose height depends on the number of detected photons

For example, a 1 tonne (1 m³) XY SciFi configuration with 0.2 mm fibres, 25,000,000 SiPMs would be required

Single-Photon Avalanche Diode (SPAD) array sensors

- Consists of an array of "pixels" whose sensing element is a SPAD
- Pixels contain electronics (timestamping, addressing, readout, memory, etc.) at the expense of Fill-Factor (FF)
 - → Position and time of arrival of individual photons in single pixels can be recovered
- Typical size of pixels is 10 um²
- Typical size of sensors is 10 mm²

A 1 m³ SciFi detector would require 10,000 10 mm² sensors

SciFi + SPAD array sensor prototyping: SwissSPAD2

Designed by EPFL (A. Ulku et al. 2019)

- Exposure time 10 ns < t_{gate} < 10 μs
- $8.4 \times 8.4 \text{ mm}^2$ active area
- 512×512 array, 16.38 µm pitch pixels
- 10.5 % FF, 50% Photon Detection Probability (PDP) at 500 nm (at 7 V excess bias V_{ex})
- $PDE = PDP \times FF \approx 5\%$

For this study, we have two sensors:

- With microlenses (improves PDE)
- Without microlenses

SwissSPAD2 (A. Ulku, et al. 2019)

Experimental setup of proof-of-concept design

4 × 4 bundle of 1 mm diameter square SCSF-78 SciFis from Kuraray (450 nm emission wavelength)

Conclusion

- SciFi bundle pointed at SwissSPAD2 SPAD array sensor
- Radiation source can be positioned directly above SciFi bundle
- Particle tracks travel through SciFis, generating photons which propagate the length of the fibre material, are emitted, and detected by the SPADs

Image of fibre bundle on SwissSPAD2 using blue light source

Aim: Identify pixels coupled to each fibre for tracking of ⁹⁰Sr electrons

Conclusion

- Fixed a collimated, blue (450 nm) light source above fibre bundle
- Positioned fibre bundle in the centre of SwissSPAD2 at < 1 mm distance (no optical grease or glue used)
- Captured and summed 25,600, 5 μs exposure frames

Image of fibre bundle on SwissSPAD2 using blue light source

Aim: Identify pixels coupled to each fibre for tracking of ⁹⁰Sr electrons

Conclusion

- Fixed a collimated, blue (450 nm) light source above fibre bundle
- Positioned fibre bundle in the centre of SwissSPAD2 at < 1 mm distance (no optical grease or glue used)
- Captured and summed 25,600, 5 μs exposure frames
- Determined fibre edges for track selection purposes

Measurements with and without 90Sr electron source

- Running in continuous mode 5 M, 1 µs exposure frames captured:
 - Without ⁹⁰Sr source (with microlenses)
 - With 90 Sr source ($T_{kin} \approx 2.0 \text{ MeV e}^{-}$) (with and without microlenses)
- Background (BG) data closely follows Poisson distribution with $\lambda = k$ as expected
- Excess of counts frame⁻¹ seen when ⁹⁰Sr source present clear signature of electrons traversing SciFi bundle
- Increase of counts with microlenses thanks to increased PDE (6% at 450 nm)

Track images from ⁹⁰Sr + BG data

- Searched for vertical tracks in BG & 90Sr+BG datasets using 3 parameters: No. fibres, Min. counts per track, and Min. counts per fibre.
- No. of vertical tracks in both datasets compared to compute the probability to observe 'fake' tracks
- Coincidence of multiple pixels within 1 µs gate suppress number of fake tracks, even for just a few detected counts

No. fibres	Min. counts	Min. counts	No. of tracks		Misidentification
No. libres	per track	per fibre	$_{ m BG}$	·	probability
	3	1	3911	28108	13.9
	4	1	363	20808	1.7
3	5	1	23	19055	0.1
	6	1	0	17684	0
	6	2	0	8160	0
	4	1	231	8372	2.8
	5	1	31	7848	0.4
4	6	1	1	7607	> 0.1
	6	2	0	2338	0

Introduction Measurements Conclusion

Towards a 3D SciFi detector

SwissSPAD2

→ ← 0.5 mm

Fibre

Fibre

layers y

layers x

Fibre "ribbons" from **Luxium Solutions**

- 10, 1 m long, 0.5 mm diameter, circular fibres (BCF-20) fixed side-byside
- Emit in green (492 nm) → better matching with SwissSPAD2 peak PDE
- We have designed a module compatible with the above system to test these fibres

Particle track

Top view

Front view

Preliminary measurements of XY fibre detector

- Collimated, blue light source fixed above the XY fibre bundle
- Positioned fibre bundle in the centre of SwissSPAD2 at < 1 mm distance
- Captured and summed 5 μs exposure frames
- Identified pixels coupled to each fibre

First track from an XY prototype

- Circular bins used to bin counts per fibre
 - All other hits binned into overflow
- Track selection algorithm adjusted to search for diagonal tracks
- Example of electron track candidate found →
- Lower counts due to smaller diameter and circular shape of fibres

PSD13

Simulations of SciFi detector read out with SPAD array sensor

 v_{μ} Charged Current Quasi Elastic (CCQE) events were simulated:

- SciFi: 2,000 XY layers, each with 8,000, 250 μ m × 2 m fibres (2 × 2 × 1 m³)
- **SPAD:** Instrumented with SPAD array sensors with PDE = 6% and PDE = 20%

"Low" PDE is sufficient to track proton Bragg peak

- "High" PDE desirable for improved tracking
- (Reveals delta electron)

New SPAD array sensor design

Developing new SPAD array sensor with our colleagues at EPFL

- Increase PDE compared to SwissSPAD2 (PDE = $FF \times PDP$)
 - Increase pixel Fill-Factor (FF) (i.e. increase SPAD size or reduce area occupied by pixel electronics) 1.
 - Increase Photon Detection Probability (PDP) by experimenting with SPAD geometry
- Add ability to measure time-of-arrival of photons with O(100ps) time resolution
- Implementing multi-photon counting time coincidence circuit for noise rejection (noise-free with SciFis)
- First MPW (Multi-Project Wafer) has been submitted in a 110 nm CMOS Image Sensor (CIS) technology node

Parameter	Unit	Value	Note
Pixel pitch	μm	20	
Photon timestamp resolution	ps	200	
Target PDE	%	> 10	at ~ 500 nm
Exposure time (gate)	μs	5 – 20	Optimal for neutrino beam parameters

Conclusion

Introduction

- R&D towards an XY SciFi detector read out with SPAD array sensor
 - Goal is to track low-momentum particles (e.g. protons) produced in neutrino interactions
 - Constructed proof-of-concept PS detector using SciFis read out with SwissSPAD2 and imaged ⁹⁰Sr electron tracks
- Simulated large XY SciFi detector read out by SPAD array sensors
 - Excellent identification of short track (low-momentum) protons (≈ 150 MeV/c) is feasible with 6% PDE SPAD (SwissSPAD2 with microlenses)
 - Dedicated sensor with improved PDE (~20%) is required for improved particle ID and MIP tracking efficiency
- Submitted to arXiv: http://arxiv.org/abs/2309.03131
- Work in progress on the design of a new SPAD array:
 - Sub-ns per-pixel time-of-arrival information for noise suppression
 - Higher PDE

Backup slides

Sum of frames containing ⁹⁰Sr e⁻ track candidates

Determine fibre edges on SwissSPAD2 with blue light source

- Sum of images taken with blue light source positioned above fibre columns
- Extract horizontal and vertical projections
- Minima correspond to fibre-to-fibre interfaces
- Fitted error functions to determine bundle edges:

$$k(x) = \frac{(-)a}{2}\operatorname{erf}\left(\frac{x-d}{b}\right) + \frac{a}{2}$$

Sanity check: 62.5×16.38 $\mu m = 1,023.75 \ \mu m \approx 1 \ mm$

Determine and mask noisy pixels

Aim: Determine noisy pixels so that they can be masked in measurements

- Operated SPAD sensor at desired measurement conditions ($V_{ex} = 7 V$, $t_{gate} = 1 \mu s$
- Obtained 19581 files × 256 frames = 5,012,736 frames
- Summed counts in each pixel in each frame & converted to counts s⁻¹
- For the measurement: noisiest top 5% of pixels were masked

Map of masked SwissSPAD2 pixels in measurements

Electron track candidate captured with XY SciFi detector

Number of photons per MIP expected with fibre ribbons

PSD13

Stopping power for electron in polystyrene*

POLYSTYRENE

