

universitätfreiburg

Stitched Passive CMOS Strip Sensors

Albert-Ludwigs-Universität Freiburg

Jan-Hendrik Arling, Marta Baselga, **Naomi Davis**, Leena Diehl, Jochen Dingfelder, Ingrid-Maria Gregor, Marc Hauser, Fabian Hügging, Karl Jakobs, Michael Karagounis, Kevin Kröninger, **Fabian Lex, Sven Mägdefessel**, Ulrich Parzefall, **Surabhi Sharma**, Simon Spannagel, Dennis Sperlich, **Niels Sorgenfrei**, Jens Weingarten 1

군

Introduction

- Current experiments largely rely on silicon particle sensors from very small number of vendors
- CMOS widely seen as the new detector technology
	- Many vendors, monolithic sensors, small feature size, high resolution, cost savings….
- CMOS sensors are key R&D topic in RD50 and DRD3
- Vast majority of silicon area in LHC-Phase-II trackers covered by strip sensors
	- ATLAS ITK example: 13 m^2 pixels, 165 m^2 strips
- Strip sensors are 'large': typically one sensor per 6" wafer
	- Strip lengths around 2-5 cm, with sensors around 100cm²
- This project aims to develop CMOS strip sensors, i.e. sensors able to cover the large areas
- Today: simulations, and results from lab tests and test beam campaigns

The Sensors

Albert-Ludwigs-Universität Freiburg

- Typical CMOS reticle size adapted to industrial chips (1-2cm2), far too small for strip sensors
- Connect several reticles to obtain desired strip length: **stitching**
- LFoundry 150nm process, wafer thickness 150 µm, 75µm strip pitch. Passive sensors, backside treatment by IZM Berlin
- 3 different designs in each sensor: regular, low dose 33, low dose 55
- Strip lengths 2.1 cm and 4.2 cm (3 and 5 stitches)
- We simulate and characterise sensors, then turn sensors into test modules and evaluate their performance before and after irradiation
- Stitched regions in focus: look for stitching effects

Sensor Schematic Sensor with 4.2 cm length in reality

Electric Field Simulations

Abs(ElectricField-V) [V*cm^-1]

6.700e+04

Albert-Ludwigs-Universität Freiburg

- All 3 designs simulated in detail
- Regular design vaguely based on ATLAS ITk strip sensor layouts
- Example: Electric field near surface in unit cell around one strip
- Design differences visible in E-field
- Simulations show no design flaws
- Stitches not simulated

Stitched Passive CMOS Strip Sensors - PSD Oxford, 8 Sept 2023 Ulrich Parzefall Australian Multich Parzefall 4 Australian 4

 \blacksquare **6.700e+04**

BURG

Four-Strip Simulations

Albert-Ludwigs-Universität Freiburg

- CMOS sensors also simulated as four-strip structures
- Example: field and potential of low dose 30 at 100V
- Fields look reasonable
- We are also working on simulations of signal collection (using Allpix2) but not finalised yet

Stitched Passive CMOS Strip Sensors - PSD Oxford, 8 Sept 2023 Ulrich Parzefall Strip Parzefall 5

Lab Test Results with Particles

Albert-Ludwigs-Universität Freiburg

- Lab tests with Sr90-source based setup (ALiBaVa)
- Measuring collected charge as function of bias voltage for all designs and stitches
- Source is collimated to test only one reticle at a time
- **Results**:
- Designs perform slightly different
- No differences between the four stitches
- Neutron irradiation to $3x10^{14}$ n_{eq} reduces the charge for all designs, but for every design (and dose) stitches still behave the same

SURG

Results from 2D TCT Scans

2500

2450

Position [µm]
2400
2350

2300

 -40000

 -35000

Albert-Ludwigs-Universität Freiburg

- Transient current technique (TCT) scans with focussed IR laser spot. Measure collected charge at X,Y
- Top-TCT scan of stitch region near strip bond pads
- Edge-TCT of one entire 2.1cm long sensor with 3 stitches
- Charge collection always homogenous in stitch regions

[stichtes indicated as dashed lines]

 -30000

 -25000

Position[um]

 -20000

And Now for Something Completely different: **Testbeam** Albert-Ludwigs-Universität Freiburg

- CMOS strip modules also tested in two testbeam campaigns at DESY (3.4 and 4.2 GeV electrons)
- EUDET-Telescope with 6 ALPIDEbased planes
- Device Under Test (DUT) at centre of beam telescope
- Timing plane added in 2nd testbeam

Results from Testbeam I $\overline{}$

Albert-Ludwigs-Universität Freiburg

• DUT box cooled with dry ice which evaporates during run, reducing weight of box vitn ilgə IV Character istics

Introduction

- DUT moves by tens of µm as result $\ddot{}$
- Resolution needs timedependent correction Mean Cluster non,
- Once applied, CMOS sensors reach expected resolution \sim
- 2D resolution map of unit cell (entire sensor folded onto one strip) allows looking at stitching effects -> None found

Results from Testbeam I $\overline{}$

Albert-Ludwigs-Universität Freiburg

• DUT box cooled with dry ice which evaporates during run, reducing weight of box vitn ilgə IV Character istics

Introduction

Vlean Residual x [µm]

Events

- DUT moves by tens of µm as result \cdot
- Resolution needs timedependent correction Mean Cluster TO L
- Once applied, CMOS sensors reach expected resolution \sim
- 2D resolution map of unit cell (entire sensor folded onto one strip) allows looking at stitching effects -> None found

Results from Testbeam II

Albert-Ludwigs-Universität Freiburg

- **Efficiency of unirradiated long** sensor at 100V and S/N=5
	- Regular: 98.5% eff
	- LD 30: 96.0% eff
	- LD 55: 64.5% eff
	- Regular design performs best, LD55 is problematic
- Sensors irradiated to 3 fluences up to $10^{15}N_{eq}$
- Sensors still work after irradiation
- Radiation effects clearly visible
- Efficiency plateau disappears
- Likely caused by increased noise and reduced signal

1*.*0

Results from Testbeam III Preparatory

Albert-Ludwigs-Universität Freiburg

- **2D Efficiency Maps** (entire sensor folded onto one unit cell). ments IV CHARACTER
- Efficiency before irradiation is 99% and uniform. No change in efficiency along strip length.
- After $3x10^{14}N_{eq}$, overall efficiency drops. Inter-strip region less efficient than strip centre. Likely caused by charge sharing with one strip below threshold.

Measure-

• No change along strip length ⇒ Stitching does not influence efficiency.

m

- Signal distribution and efficiency as function of S/N value of hit
- Efficiency loss caused by reduced signal and increased noise after $\frac{1}{2}$ are small seed cuts part of signal distribution cuts part of signal distribution cuts part of $\frac{1}{2}$ irradiation
- Typical working point to separate signal and noise: S/N =5. Easy to
• pick before irradiation, but less obvious when irradiated pick before irradiation, but less obvious when irradiated

Summary and Outlook

Passive stitched CMOS strip sensors made by LFoundry and studied in detail

- Sensors perform well, resolution and efficiency as expected
- Stitching of multiple reticles fully successful, no drops of efficiency or resolution at stitches before or after irradiation
- Irradiation reduces the sensor performance (but does not kill them)
- ► 'Cost savings' arguments becoming less relevant (reducing feature size does not help to cover fixed area, rather than deliver ASIC)
- ► **Next steps:**
- Irradiation up to $3x10^{16}N_{eq}$
- Again lab characterization, then testbeam at DESY
- ► **Longer Term goals:**
- Next CMOS strip submission with strip front end
- MPW run without stitching (cost)
- Thanks to the students who (as usual) perform the bulk of the work!

BACKUP: 2D Resolution

Albert-Ludwigs-Universität Freiburg

20

SURG

40

30

 20

 Ω

 $[\mu m]$

BACKUP: 2D Efficiency

Albert-Ludwigs-Universität Freiburg

Albert-Ludwigs-Universität Freiburg