

Characterization of Ultra-Fast Silicon Detectors (UFSD) for High Energy Physics Application

F. Zareef^a, A. Obłąkowska-Mucha^a, N. Cooke^b, A. Docheva^b, N. Moffat^c, T. Szumlak^a, D. Maneuski^b, R. Bates^b, M. Bullough^d

^aDepartment of Particle Interaction and Detection, AGH University of Krakow, Poland ^bSchool of Physics and Astronomy, University of Glasgow, Scotland

^cCentro Nacional de Microelectrónica, Barcelona, Spain ^dMicron Semiconductors Ltd, Lancing, England

Introduction

Challenges

- Detectors for Phase II upgrades (HL-LHC) ~ 30ps resolution
- Greater pile-up ~ 200

Ultra-Fast Silicon Detectors

- Low Gain Avalanche Detector (LGAD) based technology.
- Thin-detectors (for fast signal processing
- Suitable candidate for 4D tracking
- CMS-ETL and ATLAS-HGTD will be using these detectors
- Applications in Particle Physics (particle identification), as well as in medical facilities (Positron Emission Tomography)

Figure 1: (a) Standard LGAD structure, (b) Device under

Devices Under Test (DUT)

- LGADs and PINs used in this worked are from 3331 wafer of MediPix3 mask, manufactured by Micron Semiconductors Ltd.
- Difference in LGAD as compared to PIN is the additional **p**+-implant (gain layer).
- Device parameters are given in Table 1.

Figure 2: 2D scan (xy) of the PIN confirming the dimensions of the device.

 0.3×0.3

---- PIN

15

Temperature (°C)

20

→ LGAD 19-4

25

Table 1: Details of the devices used in this work

Name	Туре	Thickness (µm)	Gain Doping (cm ⁻³)	Pixel Size (mm)
3331-16-30	PIN	50	-	1x1
3331-16-31	LGAD	50	1.2x10 ¹³	1x1
2221 10 04		ГО	1 2 1013	

quantified in Figure 4.

Electrical Characterizations: C-V

_aser Characterizations

- IR Laser (1064 nm) is used for the gain measurements. All measurement are carried out at same laser intensity, pulse width, and temperature
- Fig. 10 (a) shows the signal formation with bias voltage. After 40V, the signal is significantly faster i.e., charge carriers gets collected within 2 ns.
- The collected charge with in 2 ns is shown in Fig. 9 (c), for LGAD 16-31, 19-4 and PIN 16-30.

• Gain of the LGAD 19-4 is ~5.5, and for LGAD 16-31 is ~5 at 150 V. The difference is due to higher gain layer doping in 19-4.

Figure 9: (a) TCT setup at AGH University of Krakow, (b) Focusing of infrared laser (beam spot ~ 10µm), (c) Comparison of TCT waveforms illuminated by Red (658 nm) and IR (1064 nm) lasers, (d) Charge collection homogeneity in $50\mu m^2$.

- We are equipped with TCT system with Red and IR lasers, manufactured by Particulars. The system can be seen in Fig. 9(a). Focused IR laser shows the beam spot $\sim 10\mu m$ as seen in Fig. 9 (b).
- A comparison based on the different wavelengths of illumination is made to observe if there is change in the signal shape as seen in Fig. 9 (c). The signal is too fast to show any changes caused by difference in wavelength penetration depth.
- In Fig. 9 (d), charge collection homogeneity is observed in 50µm² area of the device. The charge collection shows uncertainty within $\pm 7\%$ of the mean value, referring to a homogenous charge collection.

Figure 10: (a) Signal formation as a function of bias voltage of LGAD 16-31, (b) TCT waveform comparison of LGADs and PIN using IR laser, (c) Comparison of charge collection with in 2 ns (d) Gain calculation as a function of bias voltage.

Summary

Conclusions

- Response of these LGADs are significantly fast (2 ns), which is why they are categorized as ultra-fast silicon detectors. • Higher gain layer doping leads to higher charge collection, hence higher gain.
- Leakage current decrease by 1 order magnitude and V_{BD} increase with the decrease in temperature.

No dependence of temperature is observed on V_{GI} .

Future goals:

- Temperature dependent gain measurements and time-resolution measurements with be carried out in near future.
- Irradiation studies on these sensors is planned in future.

We acknowledge the financial support of IDUB Excellence Initiative - University Research # 6275, AGH University of Krakow