PSD13

St. Catherine's College September 3-8, 2023

100µPET: Ultra-high-resolution PET imaging with MAPS

D. Ferrere, University of Geneva On behalf of 100µPET collaborators

UNIVERSITY OF

The Project & Collaborators

The **100µPET** project: molecular imaging with ultra-high resolution

- SNSF SINERGIA grant among UNIGE (scanner construction) EPFL (imaging) and UNILU (medical application studying atherosclerosis in ApoE+/- mice)
- Deliverable: Small-animal PET scanner with monolithic silicon pixel detectors

Positron Emission Tomography (PET)

- > PET is a nuclear medicine method to study metabolic processes in the body
- ➤ Radiotracer is injected in a body → Positrons from the radionuclide annihilates with electrons of the nearby tissue → Two back-to-back 511 KeV photons are emitted and detected in coincidence
- Lines-of-Response (LoR) are defined by the volume between the sensitive elements detecting the two photons
 - Lines-of-response are processed to generate density maps of the detected annihilations
 - Today, due to the lack of spatial resolution, PET imaging must be done in hybrid mode (combining MRI or CT measurements)

Positron Emission Tomography (PET)

- > PET is a nuclear medicine method to study metabolic processes in the body
- ➤ Radiotracer is injected in a body → Positrons from the radionuclide annihilates with electrons of the nearby tissue → Two back-to-back 511 KeV photons are emitted and detected in coincidence
- Lines-of-Response (LoR) are defined by the volume between the sensitive elements detecting the two photons
 - Lines-of-response are processed to generate density maps of the detected annihilations
 - Today, due to the lack of spatial resolution, PET imaging must be done in hybrid mode (combining MRI or CT measurements)
 - \rightarrow <u>Goal</u>: improve the spatial resolution of PET scanner

Detector Granularity - DOI and LOR

→ Ultra-high resolution is obtained by increasing the granularity inside a detection volume thanks to small silicon pixel size (~100 microns)

Scanner granularity: ~80'000 times finer with silicon pixel sensors LOR volume: ~1'600 times smaller & DOI: 50 times smaller

Detector Granularity - DOI and LOR

 \rightarrow Ultra-high resolution is obtained by increasing the granularity inside a detection volume thanks to small silicon pixel size (~100 microns)

Only a factor of 20

100µPET Layout using MAPS

- The 100µPET Scanner consists of 4 towers with a total of 960 chips!
- > A tower is composed of 60 Si-detection layers
- Multi-layer stack of CMOS imaging sensors based on silicon pixel detectors used in HEP
 - Monolithic 100µPET ASIC: 130 nm SiGe BiCMOS* using high resitivity wafer (4 kΩ.cm)
 - Large size reticle sensor-asic: 30 x 22 mm²
 - Optional 50 µm thick Bismuth layer to increase the photon conversion efficiency (w.r.t. only silicon)

The Sensor-Asic Design - MAPS

- SiGe technology developed in the framework of monolithic timing pixel development profited from ~8 years of R&D development now used for FASER preshower upgrade and for 100µPET (Monolith talk this afternoon)
- Asic design largely inspired from the FASER chip (tomorrow's talk) In-house design and submission booked for October 24th

Main features	
Depletion depth	250 [μm]
Pixel (hexagonal) pitch	~ 160 [μm]
Nb of pixels	25344
Max cluster size	< 25 pixels (5x5)
Front end noise (ENC)	200 [electrons]
Operation Threshold	3000 [electrons]
Power consumption	70 [mW/cm²]
Time resolution RMS (Qin > 5 ke-)	200 [ps]
TOA and TOT	Per each super-pixel line
Readout speed	50 [Mb/s]
Event size	143 [bits]
Max expected data rate	40 kHit/s @ 20 MBq
Chip readout daisy chained	1 readout line / 4 chips

Chip size: ~ 30.2 x 22.8 mm²

16 Super columns of 11 Super pixels of 144 pixels

100µPET Module Construction

Baseline concept: Single module layer \rightarrow Si to FCP interconnection

Interconnection Qualification

 Several interconnections techniques were tested with the optimal method → Gold stud bumps with NCP

Most reliable electrical contact and passed all the qualification tests including current stress test up to 300 mA

During current stress tests \rightarrow IR image checked **IR Inspection area** (Interconnection pads underneath)

100µPET – Performance Simulation (1/2)

Monte Carlo simulation with Geant4 and Allpix2 allows:

- Positron emission & photon conversion
- Detector performance with pixel asic
- Detector effects on sensitivity and resolution

Full scanner geometry (w/ or w/o Bi layers) + water volume

- Positron mean free path and annihilation from [¹⁸F]FDG with acolineaity effect
- Photon interactions (scattering and photoelectric effect)
- Sensor/ASIC response + pixel clustering

100µPET – Performance Simulation (2/2)

Monte Carlo simulation with Geant4 and Allpix2 allows:

- Positron emission & photon conversion
- Detector performance with pixel asic
- Detector effects on sensitivity and resolution

Single positron annihilation per event:

- Event filtering for **unambiguous** line-ofresponse acceptance
- Only events with two scanner towers having each a single cluster charge
- No energy window for discriminating signals form Compton or Photoelectric interactions

Resolution of the positron source:

- Single point → Point Spread Function
- Derenzo phantom → assess image reconstruction

Performance with Single Point Source

- Sensitivity: amount of unambiguous LoR measured as a function of the total number of positrons
 - 3.3% and 4.8% detection efficiency, without and with Bi respectively
- Spatial resolution: Point Spread Function with FBP (Filtered Back Projection)
 - 0.22 mm at minimum and 0.25 mm with Bi
 - Due to acolinearity of the 2 photons → not a big change between 100 vs 150 µm pitch
 - Negligible parallax distortion

Point Spread Function from FBP

(values in mm)

off-axis (mm)	0	5	10	15
FWHM	No Bi	0.22	0.23	0.24	0.24
(100 µm)	Bi	0.25	0.26	0.27	0.28
FWHM	No Bi	0.24	0.25	0.26	0.25
(150 µm)	Bi	0.27	0.28	0.28	0.28

NB: The mean-free path of the positron (100 μm FWHM and 1000 μm FWTM) is included in the simulation as well as the acolineraity
→ Only unambiguous event were used

Derenzo Phantom for Imaging Reconstruction

Digimouse: a 3D whole body mouse atlas from CT and cryosection data. doi: 10.1088/0031-9155/52/3/003

100µPET Artery Plaque

3D voxels from Digimouse PET scan (1 mm wide voxels)

Combined parts

Plagu

е

A volumetric method for quantifying atherosclerosis in mice by using microCT doi: 10.1371/journal.pone.001880gD voxels from plaque (50 μm wide voxels)

1.....

Digimouse

heart

100µPET Artery Plaque

Monte Carlo simulation of Mouse + Plaque within scanner detectors

Reconstructed volume (110 µm voxels)

Summary & Conclusions

- **PET scanners** are important diagnostic tools for metabolic process imaging
- Potential ultra-high-resolution molecular imaging using MAPS
 - ASIC designed within the UniGE DPNC group (together with the FASER and MONOLITH projects)
 - Development of module construction technique based on flip-chip bonding for compactness
 - Monte Carlo simulation and imaging reconstruction are showing very promising performance
- 4.8% and 3.3% scanner sensitivity (w/ or w/o Bismuth layer)
 - 0.22-0.28 mm PSF \rightarrow 0.010 0.022 mm3 volumetric spatial resolution
- Delivery of a proof-of-concept scanner for small animals in 2025
 - Silicon-sensor technology, specially with MAPS, advances and its cost will go down while larger scanners can be envisaged in the future
 - In the whish-list \rightarrow additional feature: TOF \lesssim 10ps, when delivered by the MONOLITH project

100µPET Detection Efficiency

The scanner sensitivity is driven by the photon stopping power of silicon detectors across all the stack

- Gain of efficiency is optimal at ~60 silicon layers, with 60 mm width
- Efficiency can be further increased if heavy materials (high atomic number, as bismuth) are inserted between the silicon detection layers
- Holes in the scanner's acceptance have large impact in the sensitivity and Sinograms

Hit Rate with Layer Number

Empirical strategy to estimate the maximum Hit Rate that a chip will reach during operation.

- 1. Simulate Some Events
- 2. Check Layer with highest number of Clusters.
- 3. Obtain the map of the position of each cluster on that plane
- 4. Define Hit rate of the equivalent chip.

Cooling Wall Thickness						
Kapton	50 µm	ι	OR EFFICIENC	Υ		
Cooling wa	ll thickness	1 mm	2 mm	3 mm		
Different	10 keV	7.11%	6.51%	5.97%		
Different	0 keV	7.19%	6.61%	6.08%		
Opposite	10 keV	5.55%	5.21%	4.85%		
	0 keV	5.53%	5.20%	4.86%		

LOR Efficiency along the Scanner							
0	5	10	15				
4.81%	4.77%	4.81%	5.08%				
3.29%	3.29%	3.38%	3.65%				
	y along th 0 4.81% 3.29%	y along the Scanne 0 5 4.81% 4.77% 3.29% 3.29%	y along the Scanner 0 5 10 4.81% 4.77% 4.81% 3.29% 3.29% 3.38%				

Cluster Size

24

100µPET Human Brain Reconstruction

MC simulation with the

geometry of 100µPET

2 billion annihilation events generated

- 1. Original brain MRI image Source: Openneuro dataset
- 2. Random brain slide with 68 mm disk diameter was selected
- 3. Image reduced to 34 mm with artificial 50 $\,\mu\text{m}$ resolution
- 4. Conversion of the MRI grey scale to annihilation events
- 5. Each pair and reconstructed within the 100 μPET MC simulation reconstruction
- 6. Image reconstruction algorithm used finally

Reconstruction if 1 mm resolution

100µPET Human Brain Reconstruction

- 1. Original brain MRI image Source: Openneuro dataset
- 2. Random brain slide with 68 mm disk diameter was selected
- 3. Image reduced to 34 mm with artificial 50 $\,\mu\text{m}$ resolution
- 4. Conversion of the MRI grey scale to annihilation events
- 5. Each pair and reconstructed within the 100 μPET MC simulation reconstruction
- 6. Image reconstruction algorithm used finally

Image reconstruction algorithm with 100 μm pitch

MC simulation with the

geometry of 100µPET

Thermal Management

~100 W heat dissipation expected in a tower FEA made with 250 W (below)

Assuming using water:

- Tcool: 12°C
- HTC: 8000 W/mK
- → A max temperature of ~39°C with 250 W/ tower
- → Extrapolating max temp of ~ 25°C for 100 W

Like for FASER project the blocks can be manufactures **in 3D metal printing** in order to have an optimal heat exchange.

Abaqus Unified FEA

Silicon to Flex PCB Interconnection

Silicon to Flex PCB Interconnection – Cross Section

