PSD13

St. Catherine's College September 3-8, 2023

100μPET: Ultra-high-resolution PET imaging with MAPS

D. Ferrere, University of Geneva On behalf of 100µPET collaborators

UNIVERSITY OF OXFORD

The Project & Collaborators

The **100μPET** project: molecular imaging with ultra-high resolution

- **SNSF SINERGIA** grant among **UNIGE** (scanner construction) **EPFL** (imaging) and **UNILU** (medical application studying atherosclerosis in ApoE+/- mice)
- **Deliverable:** Small-animal PET scanner with monolithic silicon pixel detectors

Positron Emission Tomography (PET)

- \triangleright PET is a nuclear medicine method to study metabolic processes in the body
- \triangleright Radiotracer is injected in a body \rightarrow Positrons from the radionuclide annihilates with electrons of the nearby tissue → Two **back-to-back** 511 KeV photons are emitted and detected in **coincidence**
- ➢ **Lines-of-Response (LoR)** are defined by the volume between the **sensitive elements** detecting the two photons
	- Lines-of-response are processed to generate density maps of the detected annihilations
	- Today, due to the lack of spatial resolution, PET imaging must be done in hybrid mode (combining MRI or CT measurements)

Positron Emission Tomography (PET)

- \triangleright PET is a nuclear medicine method to study metabolic processes in the body
- \triangleright Radiotracer is injected in a body \rightarrow Positrons from the radionuclide annihilates with electrons of the nearby tissue → Two **back-to-back** 511 KeV photons are emitted and detected in **coincidence**
- ➢ **Lines-of-Response (LoR)** are defined by the volume between the **sensitive elements** detecting the two photons
	- Lines-of-response are processed to generate density maps of the detected annihilations
	- Today, due to the lack of spatial resolution, PET imaging must be done in hybrid mode (combining MRI or CT measurements)
	- \rightarrow Goal: improve the spatial resolution of PET scanner

Detector Granularity - DOI and LOR

 \rightarrow Ultra-high resolution is obtained by increasing the granularity inside a detection volume thanks to small silicon pixel size (~100 microns)

Scanner granularity: ~80'000 times finer with silicon pixel sensors **LOR volume: ~1'600 times** smaller **& DOI: 50 times** smaller

Detector Granularity - DOI and LOR

 \rightarrow Ultra-high resolution is obtained by increasing the granularity inside a detection volume thanks to small silicon pixel size (~100 microns)

Only a factor of 20

100µPET Layout using MAPS

- \triangleright The 100µPET Scanner consists of 4 towers with a total of 960 chips!
- \triangleright A tower is composed of 60 Si-detection layers
- ➢ Multi-layer stack of CMOS imaging sensors based on silicon pixel detectors used in HEP
	- Monolithic 100μPET ASIC: 130 nm SiGe BiCMOS* using high resitivity wafer (4 k Ω .cm)
	- Large size reticle sensor-asic: 30×22 mm²
	- Optional 50 μm thick Bismuth layer to increase the photon conversion efficiency (w.r.t. only silicon)

The Sensor-Asic Design - MAPS

- ➢ **SiGe technology** developed in the framework of monolithic timing pixel development profited from ~8 years of R&D development now used for FASER preshower upgrade and for 100µPET *(Monolith talk this afternoon)*
- ➢ **Asic design** largely inspired from the FASER chip *(tomorrow's talk*) In-house design and submission booked for October 24th

Chip size: ~ 30.2 x 22.8 mm²

16 Super columns of 11 Super pixels of 144 pixels

100µPET Module Construction

Baseline concept: Single module layer → Si to FCP interconnection

Interconnection Qualification

Several interconnections techniques were tested with the optimal method \rightarrow Gold **stud bumps with NCP**

Most reliable electrical contact and passed all the qualification tests including current stress test up to 300 mA

IR Inspection area (Interconnection pads underneath) During current stress tests \rightarrow IR image checked

100µPET – Performance Simulation (1/2)

Monte Carlo simulation with Geant4 and Allpix2 allows:

- Positron emission & photon conversion
- Detector performance with pixel asic
- Detector effects on sensitivity and resolution

Full scanner geometry (w/ or w/o Bi layers) + **water volume**

- Positron mean free path and annihilation from $[$ ¹⁸F]FDG with acolineaity effect
- Photon interactions (scattering and photoelectric effect)
- Sensor/ASIC response + pixel clustering

100µPET – Performance Simulation (2/2)

Monte Carlo simulation with Geant4 and Allpix2 allows:

- Positron emission & photon conversion
- Detector performance with pixel asic
- Detector effects on sensitivity and resolution

Single positron annihilation per event:

- Event filtering for **unambiguous** line-ofresponse acceptance
- Only events with two scanner towers having each a single cluster charge
- No energy window for discriminating signals form Compton or Photoelectric interactions

Resolution of the positron source:

- Single point \rightarrow Point Spread Function
- Derenzo phantom \rightarrow assess image reconstruction

Performance with Single Point Source

- **Sensitivity:** amount of unambiguous LoR measured as a function of the total number of positrons
	- ‐ **3.3%** and **4.8%** detection efficiency, without and with Bi respectively
- **Spatial resolution: Point Spread Function with FBP** (Filtered Back Projection)
	- ‐ **0.22 mm** at minimum and **0.25 mm with Bi**
	- Due to acolinearity of the 2 photons \rightarrow not a big change between 100 vs 150 µm pitch
	- ‐ **Negligible parallax distortion**

Point Spread Function from FBP

(values in mm)

NB: The mean-free path of the positron (100 µm FWHM and 1000 µm FWTM) is included in the simulation as well as the acolineraity → *Only unambiguous event were used*

Derenzo Phantom for Imaging Reconstruction

Digimouse: a 3D whole body mouse atlas from CT and

100µPET Artery Plaque

3D voxels from Digimouse PET scan (1 mm wide voxels)

Combined parts

A volumetric method for quantifying atherosclerosis in mice by using microCT doi: 10.1371/journal.pone.001880g_D voxels from plaque (50 µm wide voxels)

111111111

Plaqu e

Digimouse heart

100µPET Artery Plaque

Monte Carlo simulation of Mouse + Plaque within scanner detectors

Reconstructed volume (110 µm voxels)

Summary & Conclusions

- **PET scanners** are important diagnostic tools for metabolic process imaging
- **Potential ultra-high-resolution** molecular imaging **using MAPS**
	- ASIC designed within the UniGE DPNC group (together with the FASER and MONOLITH projects)
	- ‐ Development of module construction technique based on flip-chip bonding for compactness
	- ‐ Monte Carlo simulation and imaging reconstruction are showing very promising performance
- **4.8%** and **3.3% scanner sensitivity** (w/ or w/o Bismuth layer)
	- ‐ *0.22-0.28 mm PSF → 0.010 - 0.022 mm3* **volumetric spatial resolution**
- **Delivery of a proof-of-concept** scanner for small animals **in 2025**
	- Silicon-sensor technology, specially with MAPS, advances and its cost will go down while larger scanners can be envisaged in the future
	- In the whish-list \rightarrow additional feature: TOF \leq 10ps, when delivered by the MONOLITH project

100µPET Detection Efficiency

The scanner sensitivity is driven by the photon stopping power of silicon detectors across all the stack

- Gain of efficiency is optimal at \sim 60 silicon layers, with 60 mm width
- Efficiency can be further increased if heavy materials (high atomic number, as bismuth) are inserted between the silicon detection layers
- Holes in the scanner's acceptance have large impact in the sensitivity and Sinograms

Hit Rate with Layer Number

Empirical strategy to estimate the maximum Hit Rate that a chip will reach during operation.

- 1. Simulate Some Events
- 2. Check Layer with highest number of Clusters.
- 3. Obtain the map of the position of each cluster on that plane
- 4. Define Hit rate of the equivalent chip.

Cluster Size

Cluster size vs Row and Column

100µPET Human Brain Reconstruction

MC simulation with the

geometry of 100µPET

- 1.Original brain MRI image *[Source: Openneuro](https://openneuro.org/datasets/ds002179/versions/1.1.0) dataset*
- 2.Random brain slide with 68 mm disk diameter was selected
- 3. Image reduced to 34 mm with artificial 50 µm resolution
- 4.Conversion of the MRI grey scale to annihilation events
- 5. Each pair and reconstructed within the 100µPET MC simulation reconstruction
- 6. Image reconstruction algorithm used finally

Reconstruction if 1 mm resolution

100µPET Human Brain Reconstruction

MC simulation with the

geometry of 100µPET

- 1.Original brain MRI image *[Source: Openneuro](https://openneuro.org/datasets/ds002179/versions/1.1.0) dataset*
- 2.Random brain slide with 68 mm disk diameter was selected
- 3. Image reduced to 34 mm with artificial 50 µm resolution
- 4.Conversion of the MRI grey scale to annihilation events
- 5. Each pair and reconstructed within the 100µPET MC simulation reconstruction
- 6. Image reconstruction algorithm used finally

Image reconstruction algorithm with 100 µm pitch

2 billion annihilation events generated billion annihilation events generated

Thermal Management

~100 W heat dissipation expected in a tower FEA made with 250 W (below)

Assuming using water:

- Tcool: 12°C
- HTC: 8000 W/mK
- \rightarrow A max temperature of ~39°C with 250 W/ tower
- → **Extrapolating max temp of ~ 25°C for 100 W**

Like for FASER project the blocks can be manufactures **in 3D metal printing** in order to have an optimal heat exchange.

Silicon to Flex PCB Interconnection

Silicon to Flex PCB Interconnection – Cross Section

