

Operational Experience and Performance with the ATLAS Pixel Detector at the Large Hadron Collider

PSD13: The 13th International Conference of Position Sensitive Detectors

Oxford, 08.09.2023

Tobias Bisanz (TU Dortmund), on behalf of the ATLAS Collaboration

- Four layers + three end caps (not shown) on either side
- Innermost layer: IBL only about 3 cm away from interaction point
 - 250 μm x 50 μm pixels, 200 μm thick sensor
 - FEI4 read-out chip
 - Installed during first long shut-down of LHC
- All other layers + disks: Pixels (closest is B-Layer at about 5 cm distance)
 - 400 μm x 50 μm pixels, 250 μm thick sensors
 - FEI3 read-out chip

- FEI3 Modules
 - 16 FEI3 per module, one module control chip (MCC)
 - DSM 0.25 μm CMOS technology
 - (up to) 2 x 80 Mbps output links
 - 8 bit ToT ADC (time-over-threshold digitisation)
 - 50 Mrad radiation hardness (EOL estimate for B-Layer 63 Mrad)
 - Designed for average pile-up (<µ>) of 23

10mm

- FEI4 Modules
 - Two FEI4 per module (and no MCC)
 - IBM 130 nm CMOS technology
 - Single 160 Mbps output per FE
 - 4 bit ToT ADC
 - 250 Mrad radiation hardness (EOL estimate 130 Mrad)
 - IBL introduced to compensate (efficiency) loss of B-Layer
- Both
 - Individual threshold and ToT response tuning per pixel
 - Single-Event-Upset resilience

LHC operations in Run 3

LHC and ATLAS conditions in Run 2

Run 2 operations

- IBL modules saw increase of LV currents after about 1 Mrad of irradiation
- Surface charges effect on transistor leakage current in IBM 130 nm process
- At high TID this effect is compensated
- Change of operational parameters to decrease leakage current and increase annealing

- The IBL off-detector read-out hardware was installed for the old Pixel system throughout Run 2
 - Benefits from new functionality developed for IBL
 - More homogeneous DAQ system
- For operators it is much easier to learn one set of tool
 - Also easier to maintain

read-out system upgrade

 \rightarrow in many parts FEI3/FEI4 differences are hidden from the user

HL-LHC Large Hadron Collider (LHC) LS1 152 Run 4 & beyond 13 TeV 13.6 Te 14 T 2013 2014 2015 2016 2017 2021 2028 2018 2019 2020 2027

Hit on track efficiency: Run 2

- Figure of merit for overall detector performance is tracking efficiency
 - For a given detector layer, look at hit-on-tracks or hit-on-track efficiency
- During Run 2: initially bandwidth limitations required to increase thresholds
- Later: radiation damage induced charge loss
- Operational parameters (tuning but also bias voltage set-points) should be known in advance since physics Monte Carlo are produced
- Ideally, good understanding on the impact of threshold on tracking performance and DAQ system performance

13 TeV

Large Hadron Collider (LHC)

LHC and ATLAS operations in Run 3

- Mean Number of Interactions per Crossing (avg. pile-up, <μ>) is pushing beyond 60 (target in 2023: 65) and the peak luminosity exceeds 2x10³⁴ cm⁻²s⁻¹
- Long periods of luminosity levelling
- Trigger rates of 90 kHz and above
- → overall challenging conditions with aim to maximise integrated luminosity
- → collect about 160 fb⁻¹ of more proton proton data in 2024 and 2025

Large Hadron Collider (LHC)

13 Te\

Hit on track efficiency: Run 3

- Anticipating charge loss due to radiation damage → investigation of lower threshold tuning, with cosmic data validation
 - B-Layer threshold of 3500 e (hybrid)
- In 2022 LHC operating at <μ> of 55

13 Te\

- Special run to explore regime for future running
 - In this high-<µ> fill observed loss of B-Layer hits on track with increasing <µ>
 - Under these conditions IBL was performing well and sustained good tracking performance
 - This is exactly what IBL was designed for
- It is very difficult to predict operational behaviour considering DAQ system, radiation damage, FE behaviour, ATLAS/LHC performance, ...
- After 10 years of operation still learning about the system!

Large Hadron Collider (LHC)

13.6 TeV

2028

→ c.f. talk from Wednesday: Including radiation damage effects in ATLAS Monte Carlo simulation: Status and perspectives

IBL SEU & SEU mitigation

- Already at end of Run 2, bit flips introduced by SEU in IBL caused modules or pixels to go upset
- Mechanism to reconfigure global registers in FE was introduced
 - No extra dead time by using the global ATLAS event counter reset dead-time
- Mechanism to reconfigure pixel level registers also implemented
 - Was unstable due to OS on read-out-driver (ROD)
- Migration to Linux kernel on ROD during LS2
- In Run 3 we can do a full IBL reconfiguration (also with pixel registers) and FEI3 reconfiguration (global registers and MCC)

"Smart" L1 firmware

technische universität dortmund

- The ROD propagates triggers to modules and receives data from modules for fragment building
- ROD knows if module has yet to send out data from previous triggers → can keep count of pending triggers
- The ROD can skip triggers if module is still processing (presumably large) events
 - ROD has to "smartly" resynchronise the data
- This has been deployed in the Pixel layers (not IBL) throughout 2023
- We operate with different FPGA firmwares on the fragment building FPGAs → hot-swapping of FW on-the-fly implemented at the end of LS2 in DAQ

Decrease of desynchronisation errors on the ROD due to usage of the new data taking firmware in 2023

12

Hit on track efficiency: Run 3 (2023 updates)

- Combination of FE reconfiguration to mitigate SEU, the novel data taking firmware and adjusting the tuning thresholds → recovery of B-Layer hit-on-track efficiency even at high <µ> and high trigger rate
- Excellent IBL performance
 - Global and pixel register reconfiguration
- B-Layer (and other Pixel layers) recovered for <μ> above 55
 - Global and MCC reconfiguration
 - Smart L1 firmware
 - Threshold adjustments

13 Te\

 <μ> of 65 and trigger rates of 90 kHz possible (ATLAS nominal target for future Run 3)

13.6 T

Large Hadron Collider (LHC)

• With even some safety margin

Conclusions

2018

2000e. ToT>0

300e(*), ToT>3

3500e, ToT>5

3500e, ToT>5

3500e. ToT>5

2018

400V

400V

2017

350V

- Under the challenging conditions of Run 3 the ATLAS Pixel Detector has resumed operation in 2022
- Large $\langle \mu \rangle$ and high trigger rates are pushing the limits of the FEI3 modules
- After ramp-up in 2022, many features developed during LS2 allow to operate the detector at a $\langle \mu \rangle$ of 65 and trigger rate of 90 kHz
- Ready for heavy ion data taking in the next weeks and more data in 2024 and 2025

detector monitoring and tuning and operational set points

2017 2500e, ToT>0 5000e, ToT>5 3500e, ToT>5 3500e, ToT>5 4500e, ToT>5 central Eta: 4300e high Eta: 5000e Run 2 Bias Voltage Evolution 2016 150V - 350V B-laver - ATEAS Pixel Preliminar Tune 30 Apr.
Tune 18 Max

read out hardware maintenance ... computers, opto-electrical components

technische universität dortmund

- B-Layer evolution of signal throughout Run 2
- Impacted by modification of thresholds
- Initial decrease (2015/16) of <dE/dx> attributed to increasing thresholds to cope with bandwidth
- Then loss of signal due to radiation damage → adjusted thresholds in 2018
- Impact also visible in cluster sizes

Conclusions

IBL SEU

T. Bisanz (ATLAS Collaboration) | PSD13 | 08.09.2023