Silicon Photomultipliers for the SST Camera of Cherenkov Telescope Array (CTA)

Davide Depaoli for the SST Camera Team

Max-Planck-Institut für Kernphysik

PSD13, Oxford, UK

05/09/2023

Gamma-ray astronomy

High-energy gamma rays

- Massless
- Neutral
 - \rightarrow not deflected by magnetic fields
 - \rightarrow point back to their sources

Physics with high energy gamma rays

- Origin and Role of Relativistic Cosmic Particles
- Extreme Environments (Neutron Stars, Black Holes, ...)
- New Physics (Dark Matter, Lorentz Invariance Violation, ...)

High Energy γ-ray Detection

SPACE - SATELLITES

(e.g. FERMI)

- Low shower containment in calorimeter
- Low collection area

γ-ray Energy

y-ray Flux

GROUND (e.g. IACTs) (e.g. CTA, MAGIC, H.E.S.S., VERITAS)

- Atmosphere as calorimeter
- Imaging Atmospheric Cherenkov Telescope (Technique)

Imaging Atmospheric Cherenkov Telescope

- γ -ray enters the atmosphere
- Electromagnetic shower
- Charged particles (e⁺, e⁻) emit Cherenkov light
- Sampled by the telescopes (trigger on event)
- Reconstruct
 - Direction
 - Energy
- Excellent γ-hadron separation
- High angular resolution
- Low duty cycle
- Limited field of view

Cherenkov Telescope Array (CTA)

- Next generation IACT observatory
- Sensible to γ -rays in energy range: $E_{\gamma} = 20 \text{ GeV} - 300 \text{ TeV}$
- Three types of telescopes, which cover increasing energies:
 - Large (LSTs)
 - Medium (MSTs)
 - Small (SSTs)
- Two sites \rightarrow full sky coverage
 - Roque de los Muchachos, la Palma, Canary Islands, Spain
 - Paranal, Chile

Small-Sized Telescopes (SSTs)

- Build only for the Southern Site
- 10 km southeast of the European Southern Observatory's (ESO's) Paranal Observatory, Atacama Desert, Chile
- 2200 m above sea level
- How many?
 - Alpha (approved): 37 SSTs
 - Omega: 70 SSTs

Small-Sized Telescopes (SSTs)

- Will focus on the higher-energy range $E_{\gamma} = 5 \text{ TeV} 300 \text{ TeV}$
- Three different SST structures were proposed (SST1-M, ASTRI-Horn, CHEC)
- Harmonization process: SST will be based on the ASTRI structure and CHEC camera
- Telescope structure
 - Dual mirror
 - Schwarzschild-Couder
 - Primary mirror 4.3 m
 - Secondary mirror 1.8 m
 - Focal length 2.15 m
 - Field of view 8.8°

SST Camera

- Dual mirror design results in a small and compact camera
- Diameter 50 cm
- Weight < 100 kg

SST Camera Module

- Modular design
- 32 module, 64 SiPMs each module
 → 2048 SiPMs

Why SiPMs?

- We need to detect Cherenkov light from showers
 - Signal \sim ns
 - Intensity 1 10k photons
 - Number of pixels in the camera: few thousands
- Two possible alternatives:
 - PMTs
 - SiPMs
- Advantages of SiPMs
 - Robust under high illumination conditions
 - Can increase duty cycle of the telescope
 - Low operating voltage
 - About 30 V 50 V (instead of $\sim kV$)
 - Cost effective for small pixels
 - SST pixel $6 \times 6 \text{ mm}^2$

SiPM selection

- Several SiPM candidates and pixel sizes were considered and tested
- Chosen SiPM: Hamamatsu S14521-1720
 - Low Reverse Voltage (LVR3) technology
 - No protective coating

First measurements on SST modules + SiPMs

- The first SST modules are currently under test
 - Leicester University, UK
 - ECAP, Erlangen, Germany
 - MPIK, Heidelberg, Germany
- Here report on first tests carried out at Leicester University
 - SST module with SiPM tile
 - Laser source
 - To simulate the Cherenkov signal
 - DC LED
 - To simulate the Night Sky Background
 - XY stage to align the laser spot (focused) to a single SiPM pixel

SiPM signals

- SiPM signals are long
- From SST simulations: 5 10 ns
 - < 5 ns: no pile-up for trigger
 - > 10 ns: too much integrated background noise

- Analysis of the SiPM signals
 - $FWHM = (8.3 \pm 0.2)$ ns
 - $t_{rise} = (4.2 \pm 0.1) \text{ ns}$

Cross Talk

- Firing only one pixel using focused laser light
- Crosstalk measured as the peak-to-peak (or charge) signal in any other pixel compared to that in the fired pixel

Davide Depaoli

Next steps

- Additional SST modules will undergo detailed testing in the coming weeks.
- Late 2023: QCAM (1/4 camera) ready for testing
- 2024: ECAM (full camera) ready for testing
- The mechanics of the camera are almost complete
- Mechanical interface with camera will be tested in Tenerife at end of October

Backup

Davide Depaoli

SiPM Power dissipation

- SiPMs
 - More power demanding than PMTs
 - Their gain depends on temperature (at fixed bias voltage)
- We need to remove excessive heat from the focal plane
 - Normal operation 120 W
 - Maximum 200 W
- Liquid-cooled Focal Plate + heatsink

Cherenkov signal and NSB

- Cherenkov light
 - Peaks in the UV band
- Night Sky Background
 - *airglow*: emission of atoms and molecules in the atmosphere
 - *zodiacal light*: sunlight scattered by interplanetary dust
 - Stars

Slow Signal

- Each channel has also a Slow Signal
 - $100 \ \mu s$ integrator
 - Used as current monitor
 - SiPM protected by bias resistor
 - $V_{SiPM} = V_{bias} R * I$
 - SiPM gain depends on current
 - Currently under calibration
- The SiPM gain is also monitored by a illumination system made by pulsed LED sources

We are currently converting this axis to photons rate

Slow Signal

- We can use this channels also for some checks on the SiPMs in the tile:
 - Breakdown voltage from I-V curve
 - SiPM self-heating
 - SiPM current would increase its internal temperature
 - SiPM gain drops as temperature increases (at same V_{bias})

86000