The ATLAS ITk Strip Detector System for the Phase-II LHC Upgrade

Seth Zenz, on behalf of the ITk Strip Community 8 September 2023

Overview

- High Luminosity HLC (HL-LHC)
- ATLAS Inner Tracker Upgrade (ITk)
- Sensors, Modules, Detector Layout
- Services, Cooling, Readout
- System Tests and Integration
- Production Status

Last update: April 2023

The LHC Programme

Shutdown/Technical stop Protons physics Ions Commissioning with beam

High Luminosity LHC

- Instantaneous Lumi. up to 7.5x10³⁴ cm⁻² s⁻¹
- Integrated Lumi. up to 4000 fb⁻¹ (10x)
- Energy 13.6-14.0 TeV
- 200 collisions / bunch crossing

ΔΤΙ Δς

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/UpgradeEventDisplays

ATL-PHYS-PUB-2021-024

ATLAS ITk

- Full Silicon Detector
 - High radiation tolerance
 - Fine granularity
 - Faster response
 - More channels
 - Reduced tracking volume material

University of London

ATLAS ITk Pixel Overview, M Togawa, Mon 4 Sep

ATL-PHYS-PUB-2021-024

<u>Left</u>: Relative transverse momentum resolution as a function of η for 100 GeV muons without pileup, compared compared between the Run 2 detector the ITk <u>Right</u>: Tracking efficiency for tt events at $\langle \mu \rangle$ =200 with the ITk compared with the Run 2 detector at $\langle \mu \rangle$ =38.

S Zenz - PSD13 - Oxford, UK - 8 September 2023

r [mm]

Radiation lengths vs. pseudorapidity for current detector (left) and ITk (right). Note different y axis scales.

- Inner Detector SCT (Strips)
 - 4088 sensors
 - 61 m² of silicon
 - Strip length: 12.8 cm
 - 6 million strips

Queen Mary

University of London

Dose: up to 3.8 Mrad

- ITk Strips
 - 17,888 sensors
 - 165 m² of silicon
 - Strip length: 1.4 6 cm
 - 60 million strips
 - Dose: up to 50 Mrad

Sensors

- Barrel sensors square geometry
 - Single sided microstrips
 - Sensor pitch 75.5 μm
 - Short strips (SS) 24.1 mm long
 - Long strips (LS): 48.3 mm long
- Endcap sensors: trapezoidal
 - 6 sensor geometries
 - Pitch 70-80 μm
 - Strip length: 15-60 mm depending on radius

Modules

- ATLAS Binary Readout chips (ABCStar)
- Hybrid Controller Chips (HCCStar)
- Power Board:
 - Autonomous Monitor and Control Chip (AMAC)

Glue

Wire-bonds

Barrel Staves

- LS: Outer 2 Layers
- SS: Inner 2 Layers

Endcap Petals

Powering Scheme

CO₂ cooling setup for single stave in system tests

Queen Mary

University of London

- Dual-phase CO2 Cooling to -35°C
 - Each Stave: 88W
 - Each petal: 68W

Stave core thermal measurement setup

Stave core surface temperature

S Zenz - PSD13 – Oxford, UK - 8 September 2023

Petal core surface temperature

Readout

University of London

System Tests

- Validate production chain of full system
 - Powering
 - Cooling
 - Readout
 - Control
- Barrel: majority of infrastructure in place, 1st cold tests done
- Endcap: mechanical, power, and cooling are ready, 1st petal in progress

Stave Insertion Tooling

Petal Insertion Tooling

ITk integration area @ CERN

Construction of the 1st end-cap structure

S Zenz - PSD13 - Oxford, UK - 8 September 2023

Barrel service module mockup (Power, cooling, readout)

Barrel cylinder

Barrel Loading System

Production Status

- Sensors and Chips in Production
 - Over 50% of sensors received
 - Rate accelerating to catch up with schedule soon
 - Over 90% of ASICS received
- Modules Beginning Production
- Stave and Petal Loading: pre-production ongoing

Endcap Loading System

Cold Noise

- Recent challenge: increased noise observed during pre-production module QC at low temperatures ("Cold Noise")
- Year-long investigation revealed this is caused by mechanical vibrations in the powerboard
- Barrel LS modules: glue choice can prevent noise
- Barrel SS modules: under investigation
 - New powerboard? Thicker glue?
- Not present for endcaps

Conclusions

- ITk Strip Detector will provide excellent particle tracking in the extremely high density HL-LHC environment, maintaining or improving performance
- High granularity, radiation hardness, low material budget
- Many challenges overcome
- Production proceeding smoothly, on track for installation as part of the integrated ITk system in 2026-8

