

Study of radiation tolerance of Cu(In, Ga)Se₂ detector

<u>K. Itabashi¹, T. Ishobe², M. Miyahara¹, J. Nishinaga³, H. Okumura⁴, M. Togawa¹</u>

KEK¹, REKEN², AIST³, Univ. of Tsukuba⁴

PSD13 Conference

Contents

Introduction

- Study of radiation tolerance of CIGS
 - Heavy ion (¹³²Xe⁵⁴⁺) irradiation experiment
 - Proton irradiation experiment

Study of the radiation tolerant semiconductors

Hadron Collider Experiment

High energy experiment (LHC) plans to construct

- the higher energy and luminosity accelerator for the new particle search.
- \rightarrow Giving serious radiation damage to detectors.

Performance deterioration by radiation damage

- Increasing leakage current
- Increasing depletion voltage
- Decreasing in collected charge from signal

PSD13 Conference

Radiation hardness semiconductor (CIGS)

A CIGS is an alloy semiconductor of CuInSe₂ and CuGaSe₂

- Developed as a solar cells
- High radiation tolerance (recovered radiation damage by heat annealing)

Observed current recovery by thermal annealing (in CIGS solar cells)

Challenging in development of CIGS detector radiation hardness detector with CIGS

PSD13 Conference

Development of CIGS detector

Specifications of CIGS detectors

- p-type (CIGS), n-type (CdS) •
- thickness $2 \mu m$, $5 \mu m$ (10 μm developing)
- Active area : 5 mm²/channel
- Operation Voltage : -2 V

 α particle

5

PSD13 Conference

Contents

- Introduction
- Study of radiation tolerance of CIGS
 - Heavy ion (¹³²Xe⁵⁴⁺) irradiation experiment
 - Proton irradiation experiment

September 6th, 2023

Irradiation experiment at HIMAC

1. CIGS thickness dependence ($2 \mu m$ and $5 \mu m$ thick CIGS detectors) 2. Recovery mechanism of radiation damage ($2 \mu m$ thick CIGS detector)

PSD13 Conference

Thickness dependence of CIGS detector peformances

The collected charge is proportional to depletion width $(Q \propto W)$.

Both of depletion width (V=-2V) are about 2 μm , but collected charge of 5 μm CIGS detector was 2.5 times larger than one of 2 μm CIGS detector

Is it possible to collect charges in non-depletion region ??

September 6th, 2023

8

PSD13 Conference

Energy gradient of CIGS layer

CIGS is an alloy semiconductor $CuInSe_2$ and $CuGaSe_2$. Energy gap of CIGS changes with Ga composition ratio (GGI=[Ga]/[In]+[Ga]). $1.01 \text{ eV} [GGI = 0] < E_g < 1.64 \text{ eV} [GGI = 1]$

PSD13 Conference

September 6th, 2023

Study of the recovery mechanism by thermal annealing

PSD13 Conference

September 6th, 2023

Study of the recovery system by thermal annealing (2)

PSD13 Conference

Study of the recovery system by thermal annealing (2)

Contents

- Introduction
- Study of radiation tolerance of CIGS
 - Heavy ion (¹³²Xe⁵⁴⁺) irradiation experiment
 - Proton irradiation experiment

September 6th, 2023

Proton irradiation experiment at CYRIC

CYRIC experiment : Irradiated 70 MeV proton to CIGS solar cells ($7 \times 10^{15} n_{eq}$)

→ Study the heating time and temperature dependences of recovery mechanism

PSD13 Conference

September 6th, 2023

Current recovery dependence of annealing time

The measurement current with incident sunlight is including dark current. Excluded dark current : $J = J_{LIGHT} - J_{DARK}$

PSD13 Conference

September 6th, 2023

Heating temperature dependence of recovery speed

I annealed CIGS solar cells at three differential temperatures (90°C, 110°C, 130°C).

PSD13 Conference

September 6th, 2023

Conclusion

- CIGS semiconductor has been developed as a solar cells.
 - Observed recovery of radiation damage by thermal annealing
 - We developed plot type of CIGS detector (2 μm)
- Heavy ion irradiation experiment at HIMAC
 - Observed recovery of collected charge and leakage current by 130°C annealing (\rightarrow same level of before irradiation)
- Proton irradiation experiment at CYRIC
 - Observed strong annealing temperature dependence of recovery speed
 - \rightarrow Comparable with recovery speed of HIMAC experiment

PSD13 Conference

Thank you

PSD13 Conference

September 6th, 2023 18/17

PSD13 Conference

Results of heat treatment at 130°C in each parameter

Annealing results of three detector performances

1. Collected charge from Xe beam

2. Leakage current

20

By 130°C thermal annealing for few hours

Recovered collected charge and leakage current \rightarrow decreasing lattice defects Not recovered depletion width \rightarrow Not decreasing lon (accepter) concentration

PSD13 Conference

Depletion width at each annealing time

PSD13 Conference

September 6th, 2023

Current recovery dependence of annealing time

The measurement current with incident sunlight is including dark current. Excluded dark current : $J = J_{LIGHT} - J_{DARK}$

PSD13 Conference

September 6th, 2023

Heating temperature dependence of recovery speed

I annealed CIGS solar cells at three differential temperatures (90°C, 110°C, 130°C).

130°C annealing : $J_{2V} = 0.92 \rightarrow 1.04$ (1h)

90°C annealing : $J_{2V} = 0.89 \rightarrow 0.895$ (1h)

Comparable with recovery speed of HIMAC experiment

130°C annealing: $Q = 0.79 \rightarrow 0.94$ (1h)

90°C annealing: $Q = 0.79 \rightarrow 0.79$ (1h)

Recovery time is greatly depending on heating temperature

23

PSD13 Conference

<u>1. Study of Thickness dependence of CIGS</u> (Collected Charge from xenon signal)

Collected charge evaluation: Xe beams (p=400 MeV/u) were irradiated to 2 μ m and 5 μ m CIGS semiconductor detectors, respectively.

PSD13 Conference

September 6th, 2023

<u>1. Study of Thickness dependence of CIGS</u> (depletion width measuremnt)

Amount of charge collected is proportional to depletion layer thickness $Q_{det} \propto W$

Depletion width (W) can be obtained by capacitance (C_j) measurement $C_j \equiv dQ/dV = dQ/(WdQ/\varepsilon_s) = \varepsilon_s/W$ [W : depletion width, ε_s : permittivity (= 13.5 ε_0)]

PSD13 Conference

September 6th, 2023

Evaluation of depletion layer width after irradiation and thermal annealing

The depletion layer width can be obtained by capacitance measurement $C_j \equiv dQ/dV = dQ/(WdQ/\varepsilon_s) = \varepsilon_s/W$ $[W : \text{depletion width, } \varepsilon_s: \text{permittivity } (= 13.5\varepsilon_0)]$

1. C.		СН	Before irradiation	After irradiation (0.8 MGy)	After annealing 130°C, 2h
1311 15 1 10 10 10 10 10 10 10 10 10 10 10 10 1	Depletion width [um] at V=-2V	CH0	1.93 (1)	1.17 (0.61)	1.31 (0.68)
		CH1	1.93 (1)	1.11 (0.57)	1.20(0.62)

After irradiation : comparable with decreasing ratio of collected charge ~ 0.6 After annealing : Not sufficient of recovering

26

PSD13 Conference