

Development of trigger-mode fine-pitch silicon hybrid detectors for electron tracking Compton camera

¹Kenji Shimazoe, ²Mizuki Uenomachi, ³Ayaki Takeda, ⁴Setsuo Sato, ⁵Daisuke Matsunaga, ⁵Yuji Okubo, ⁵Junichi Aoyama, ⁶Makoto Motoyoshi

¹The University of Tokyo, ²Kyoto University, ³Miyazaki University, ⁴KEK, ⁵HORIBA, ⁶T-micro

PSD13: The 13th International Conference on Position Sensitive Detectors, 3 - 8 September 2023, Oxford, UK

- 1. Introduction ~ Compton Imaging
- 2. Electron Tracking
- 3. Detector Configuration
- 4. Silicon detectors
- 5. ASIC & bump
- 6. Preliminary results
- 7. Summary

	Nuclida	Light life	Radiation		Clinical application	
	Nuclide	Hall life	α•β	<u>γ-ray Energy</u>	Clinical application	
PET	¹⁸ F	110 m	β+	511keV	Tumor/Brain imaging、Glucose imaging	
SPECT	^{99m} Tc	6 h		141 keV	Brain, blood flow, tumor, etc.	
	¹¹¹ In	2.8 d		171, 245 keV	bone marrow imaging, etc.	
Therapy	¹³¹ Ι (β)	8 d	606 kev	364 keV	thyroid cancer therapy, etc.	
	²²⁵ Αc (α)	10 d	6-8 MeV	218, 440 keV	prostate cancer therapy, etc.	

1. Compton+PET imaging

First Compton-PET Hybrid Imaging Demonstration

PET nuclides-> PET imaging SPECT / Therapy -> Compton Imaging

1. Compton-PET demonstrator

1. Compton-PET demonstrator

■ ¹⁸F-FDG(PET) and Na¹³¹I(Therapeutic) phantom Imaging

2. Electron Tracking in Silicon

Yoshihara, Y., et al. "Development of electron-tracking Compton imaging system with 30-µm SOI pixel sensor." JINST 12.01 (2017): C01045.

8

9

3. Detector Configuration

HR-GAGG \Rightarrow **Si** hybrid detectors

Compton-PET hybrid camera

4. Silicon pixel Detectors

HORIBA (HORIBA. JAPAN)

4. Silicon pixel Detectors

Measurement temperature : $24^{\circ}C$ p+ Si is grounded, n+ Si is changed from 0 V to 200V

5. ASIC design concept

> Asynchronous trigger and selective readout of electron track

5. ASIC prototype chip design

5.0 mm

Components

- Process: TSMC 0.25 µm
- Chip size: 5.0 mm \times 5.0 mm
- # of Pixel: 192 (V) \times 192 (H)
- Pixel size: 18 $\mu m \times$ 18 μm
- Sensitive area: 3.4 mm \times 3.4 mm

5. ASIC pixel design

✓ Charge sensitive amplifier (CSA)
 ✓ Correlated double sampling (CDS)

✓ Inverter chopper type comparator

35 e- rms

5. ASIC design simulation

Input NMOS transistor Flicker noise is dominant (75.2 %)

CSA output noise spectrum Input DC level: 0.525 V

(32_NG)(23072001)									
Element	Source	Output Noise		ENC					
		uVrms		le					
1 xpix.mn0	fn	1905.8	75.2	30.31					
2 xpix.mn0	id	848.8	14.9	13.50					
3 xpix.mp0	id	601.9	7.5	9.57					
4 xpix.mn2	id	227.8	1.1	3.62					
5 xbias_csa.mn3	fn	153.0	0.5	2.43					
6 xbias_csa.mn2	fn	132.5	0.4	2.11					
7 xpix.mp0	fn	127.5	0.3	2.03					
8 xbias_csa.mp0	fn	84.1	0.1	1.34					
9 r_shot	rs	24.8	0.0	0.39					
0 xpix.xc3.rp	rs	14.8	0.0	0.23					
1 xpix.xc3.rp	rs	14.8	0.0	0.23					
2 xbias_csa.mn3	id	10.7	0.0	0.17					
3 xpix.xc_cds.rs	rs	10.6	0.0	0.17					
4 xbias_csa.mn2	id	9.2	0.0	0.15					
5 xpix.mn2	rd	7.3	0.0	0.12					
6 xbias_csa.mp0	id	6.9	0.0	0.11					
7 xpix.mn0	rs	5.1	0.0	0.08					
8 xpix.mn2	rs	4.0	0.0	0.06					
9 xpix.mp0	rs	1.5	0.0	0.02					
0 xpix.mn4	rd	1.1	0.0	0.02					
1 xpix.mn4	rd	1.1	0.0	0.02					
2 xpix.mn0	rd	1.0	0.0	0.02					
3 xpix.mn1	rd	1.0	0.0	0.02					
4 xpix.mp2	rd	0.8	0.0	0.01					
5 xpix.mp2	rs	0.6	0.0	0.01					
6 xpix.mp0	rd	0.6	0.0	0.01					
7 xpix.mp7	rd	0.5	0.0	0.01					
8 xpix.mp7	rd	0.5	0.0	0.01					
9 xbias_csa.mn1	id	0.4	0.0	0.01					
0 xbias_csa.mn1	fn	0.4	0.0	0.01					
Total		2198.3	100.0	34.97					

※Noise[uVrms] : Integrated Noise

%Noise[%] : % of total noise power

36 µm sensor side

5. ASIC-Si Au bumps

T-Micro

(Tohoku MicroTec Co., Ltd. JAPAN)

ASIC side

micro bump size ~ ϕ 5 μ m

18 µm sensor side

green: ASIC metal, yellow: passivation opening, Red: sensor metal

T-Micro

5. UBM and Au micro bump

(Tohoku MicroTec Co., Ltd. JAPAN)

SEM picture from TOP (36 µm type)

SEM picture from SIDE

Connected ASIC and sensor

6. Preliminary results

Data Acquisition Setup

CHIP board

ASIC 2.5V operation

6. Preliminary results

Preliminary image..

7. Summary

We are developing fine-pitch silicon hybrid pixel sensor as scatterers in electron tracking Compton Imager with spectroscopy and coincidence detection capability

18 μm/36 μm pixel silicon sensor ~ 150 V, <1 nA
Trigger-mode 18 μm pixel ASIC ~ 35 e- rms (250 nm TSMC)
Au - micro bump bonding technology
3.4 mm sensitive area, 5 mm ASIC size in the first prototype preliminary image acquired

We are re-connecting ASIC/sensor for further experiment.. spectroscopic performance, trigger function etc..

Thank you for your kind attention!