

1

Characterization of monolithic CMOS pixel matrices with various pitch fabricated in a 65 nm process

PICSEL

Ziad EL BITAR

On behalf of ALICE ITS3

C4PI-Platform

Ziad EL BITAR, PSD13 Oxford

Outline

- Motivations for TPSCo 65 nm technology
- First submission in TPSCo 65 nm CIS process
- Doping variants and experimental set-up
- Impact of process modification on sensor performances
- Impact of pixel pitch on sensor performances
- Summary

Motivations for exploring the TPSCO 65 nm process

TPSCo 65 nm: benefits & specificities

- Benefits : 65 nm vs 180 nm
 - Better spatial resolution due to smaller feature size
 - Larger wafers : 300 mm vs 200 mm => final sensor : 27x9 cm²
 - Lower power supply : 1.2 V vs 1.8 V => Low power consumption
 - Lower material budget : thinner sensitive layer ($\sim 10 \mu m$)
- Provides 2D stitching
- 7 metal layers
- Process modifications for full depletion:
 - Standard (no modifications)
 - Modified (low dose n-type implant)
 - Modified with gap (low dose n-type implant with gaps)

https://doi.org/10.1016/j.nima.2017.07.046

https://iopscience.iop.org/article/10.1088/1748-0221/14/05/C05013

ALICE detector LS3 upgrade: ITS2 (180 nm) → ITS3 (65 nm)

R. Ricci, PSD 2023

ITS2:

(S.Beolé, iWoRiD 2022)

- 7 layers of MAPS
- TJ 180 nm CMOS
- 12.5 Giga pixels
- Pixel size: 27×29 μm²
- Water cooling
- 0.3 % X_0 / inner layer

ITS3

(M. Šuljić, iWoRiD 2023)

- 4 outer layers of ITS2
- 3 new fully cylindrical inner layers
 - Sensor size up to 27×9 cm
 - Thickness <= 50 μ m
 - No FPCs
 - Air cooling in active area
- + 0.05 % $X_{\rm 0}$ / inner layer

First Test Submission : MLR1

- Submitted in December 2020
- Main goals:
 - Learn technology features
 - Characterize charge collection
 - Validate radiation tolerance
- Each reticle (12×16 mm²):
 - -10 transistor test structures (3×1.5 mm²)
 - 60 chips (1.5×1.5 mm²)
 - Analogue blocks
 - Digital blocks
 - Pixel prototype chips: APTS, CE65, DPTS

CE65 : Circuit Exploratoire 65 nm

- 2 matrix sizes
 - 64×32 with 15 μm pitch
 - 48×32 matrix with 25 μm pitch
- Rolling shutter readout (50 µs integration time)
- 3 in-pixel architectures:
 - AC-coupled amplifier
 - DC-coupled amplifier
 - Source follower
- 4 chip variants:
 - Standard process 15 μm pitch
 - Modified process 15 μm pitch
 - Modified process with gaps 15 μm pitch
 - Standard process 25 μm pitch
- Fabrication in September 2021
- Presented results from CERN PS beam test : May 2022

1.5×1.5 mm² 7

CE65 variants

Variant	Process	Pitch	Matrix	Sub-matrix
CE65-A	std	$15 \mu m$	64×32	AC/21, DC/21, SF/22
CE65-B	mod_gap	$15 \mu m$	64×32	AC/21, DC/21, SF/22
CE65-C	mod	$15\mu m$	64×32	AC/21, DC/21, SF/22
CE65-D	std	$25 \mu \mathrm{m}$	48×32	AC/16, DC/16, SF/16

Pixel pitch impact was evaluated on standard process only

Experimental beam test setup

Telescope:

Reference Arms : 4 ALPIDE planes for track reconstruction DUT : CE65 TRG : DPTS

Test beam:

May 2022 at CERN-PS

Data acquisition: EUDAQ2 Event reconstruction algorithm and data analysis framework: Corryvreckan

Noise run-Beam run: correlated double sampling method (CDS)

Ziad EL BITAR, PSD13 Oxford

Corryvreckan analysis parameters (A & D, HV = 10)

- Tracking: spatial cut at $80 \mu m$ and $\chi^2/Ndf < 1$ and for DUT association
- Clustering: Set 2 Thresholds and calculate position by centre of gravity for 3x3 window around the seed
 - SF: seeding charge > 150 ADCu , SNR>3AC: seeding charge > 500 ADCu, SNR>3DC: seeding charge > 500 ADCu, SNR>3
- Prepared pedestal and noise maps
- Edge: only use cluster containing 3x3 pixels, and drop track with interception at 2 pixels to DUT edge.
- Seeding method: multi (probability of having multiple clusters per event)

Process modification impact

S. Senyukov, iWoRiD 2022

Standard

Modified with gap

Modified process effective for depletion

Pixel pitch impact

Α

D

Cluster charge

Pixel pitch evaluation for standard process only

Entries (normalised)

Seed charge

• Seed peaks

Ziad EL BITAR, PSD13 Oxford

15

Charge sharing

- 4 pixels contain all cluster charge for AC submatrix in A4-15um where it needs 5-6 pixels for D4-25um.
- Seed pixel contains: **more** then 60% in average for A4

a little bit less then 60% in average for D4

Detection efficiency

Residual

Summary

- Charge sharing is more significant in larger pitch pixel (standard process) : diffusion dominate depletion (D vs A)!
- As expected, better resolution is achieved for the pixel of 15 um (w.r.t. 25 um : ~1 um improvement).
- Ongoing work on efficiency evaluation confirms the trend of the charge sharing w.r.t pixel pitch.
- Approval of TPSCo 65 nm technology for HEP is on the rails !

On going and future work

• ER1:

- ✓ Submitted end 2022.
- ✓ Received last month (August 2023) and first tests on going.
- Various pitch sizes : 18 and 22 um.
- Diode arrangement and its impact on share sharing (AC pixel).

Acknowledgement

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under:

- GA no 101004761
- GA no 871072

- ALICE collaboration and ITS3 project
- CERN EP R&D on experimental technologies program and collaborators, WP 1.2
- IPHC : J. Baudot, G. Bertolone, A. Besson, S. Bugiel *(now CERN), G. Claus, C. Colledani, A. Dorokhov, Z. El Bitar, X. Fang, M. Goffe, Y. Hou *(also CCNU Wuhan), C. Hu-Guo, A. Kumar, K. Jasskelainen, F. Morel, H. Pham, S. Senyukov, H. Shamas, J. Soudier, I. Valin, Y. Wu **(also USTC)
- CTU: P. Staneck, L. Tomasek
- EZH: K. Gautam, A. Ilg, A. Macchiolo, G. Marchiori, E. Ploerer

