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SMILE Mission Overview
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• ESA mission with 4 instruments – 3 by China (CAS), and 1 ESA.

• Highly elliptical orbit will allow images of the entire Sun-Earth 
Magnetosphere interaction to be taken simultaneously, including in-
situ measurements of Solar Wind strength and local magnetic field 
strength

• The Soft X-ray Imager (SXI) will observe X-rays produced in the cusps 
and Magnetopause boundary



SMILE spacecraft and SXI
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Charge-coupled devices (CCDs)
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SMILE CCD370s
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• Key quantities:

– 18 µm square pixels

– 16 µm thick silicon

– 2 output nodes

– Frame transfer operation mode with 6x6 on-chip binning –
Excellent for energy resolution
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SMILE CCD370s – Modifications
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• Supplementary buried channel – Smaller signals are confined 
to a smaller volume of silicon -> Less radiation induced defects 
encountered 

Radiation hardness

S. Parsons et al., (2022) JINST 17 P10025.
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• Supplementary buried channel – Smaller signals are confined 
to a smaller volume of silicon -> Less radiation induced defects 
encountered 

Radiation hardness

S. Parsons et al., (2022) JINST 17 P10025.

X-ray performance

• Enhanced backside passivation process offered by 
Te2v – P+ implant at the back surface with a built-in 
potential is etched away

J. Heymes et al., (2020) SPIE



• Main experimental campaigns:

– 3 irradiation campaigns, 1 more incoming

– FM characterisation campaign

– BESSY Synchrotron soft X-ray QE/RMF campaign

SMILE CCD characterisation campaigns
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Iso class 4 clean room – FM 
characterisation 

Harwell irradiation setup

Birmingham irradiation setup



X-ray test campaign
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Chamber setup

Full-setup with beamline

Beamline-chamber interface



• Integral charge method used (Moody 2017) -> 
Assuming the pixel/ADC is not saturated the total 
charge deposited in an area/unit time can be 
compared to the reference flux level

• Detector readout in binned time-delay integration 
mode:

– 1 parallel shift 

– Serial register readout

– Repeat 8000 times

QE measurements

18

I. Moody et al., (2017)



• Integral charge method used (Moody 2017) -> 
Assuming the pixel/ADC is not saturated the total 
charge deposited in an area/unit time can be 
compared to the reference flux level

• Detector readout in binned time-delay integration 
mode:

– 1 parallel shift 

– Serial register readout

– Repeat 8000 times

• BESSY provide a calibrated photodiode for absolute 
charge measurement values 

Integral charge measurement method
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I. Moody et al., (2017)



QE data: 50 eV – 1900 eV
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• QE shown with error bars computed from the 
standard deviation of the signal deposited in each 
row

• QE at these energies has a distinct shape, with 2 
significant drops in QE at ~100 eV and 1800 eV 
attributed to the known absorption edges

• What should the theoretical QE be across these 
energies?

– Simple transmission QE model

– Model based upon the layers in the pixel



Transmission model
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𝐼 = 𝐼0𝑒
σ𝑖

−𝑡
λ(𝐸)

• Intensity equation – Based upon attenuation length in silicon 

– I0 = Initial intensity

– λ(E) = Attenuation length as a function of energy

– t = thickness, summed over layers i

• For a photon to be absorbed, it must transmit through the non-
sensitive layers

• Compute intensity through a given number of layers/materials, 
which make up the pixel architecture



QE data + model
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• Initial model is the active silicon (16 microns), and a 4 nm dead 
layer of oxide – Poor match at lower energies
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• Initial model is the active silicon (16 microns), and a 4 nm dead 
layer of oxide – Poor match at lower energies

• What is causing the extra charge losses?

– Try an extra Si layer which is not photosensitive?

• 3 thicknesses tried, 20 – 40 nm – A much improved match 
particularly at lower energies!

• But what physics does this represent, is it correct?



Back surface charge losses
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• Moody paper suggested that X-rays interacting close to 
the p+ implant could reduce the effectiveness of the back 
surface passivation.

– The mechanism would be the potential of the charge cloud 
being momentarily higher than the P+ built-in potential –
This would lead to some charge losses to the back surface

I. Moody et al., (2017)
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• Moody paper suggested that X-rays interacting close to 
the p+ implant could reduce the effectiveness of the back 
surface passivation.

– The mechanism would be the potential of the charge cloud 
being momentarily higher than the P+ built-in potential –
This would lead to some charge losses to the back surface

• This means the “dead” silicon layer implemented in the QE 
model, is more akin to a semi-active layer – A more 
physics-based model is required 

• PhD student working on X-ray physics in EMCCDs has been 
working on an analytical model for this – Results coming 
soon!

I. Moody et al., (2017)
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Conclusions

• A successful X-ray test campaign was carried out at the 
PTB beamline at BESSY

• The QE measured was close to the expected value and will 
be used as part of the SXI pipeline. This was also the first 
QE measurement on these devices so gives confidence to 
the manufacturing processes

• A transmission model was generated with an additional 
non-active Si layer, but some additional physics will be 
needed to improve the model-fit further
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