

The monolithic ASIC for the high precision Preshower detector of the FASER experiment at the LHC

D. Ferrere, University of Geneva On behalf of the FASER collaboration

FASER - The ForwArd Search ExpeRiment

It is a new LHC experimented located 480 m downstream from the ATLAS IP

Aim to search for light and very weaklyinteracting new particles (LLP) produced in the LHC collisions in ATLAS IP:

ГДЭЕЛ

- → light and highly boosted particles (TeV scale) are extremely collimated, in the very forward direction (θ ~< 1mrad)
- Technical Proposal was approved in Dec 2018
- Refurbishment of TI12 completed in 2020 -
- Detector installation and commissioning completed early in 2022
- Started to take data at Run 3 (last year)

FASERnu in addition allow studying the huge neutrinos flux (e, μ and τ) with up to TeV scale \rightarrow 1st time in a collider experiment

 \rightarrow Preliminary results published this year: collider neutrino observations and dark photon

Motivations for a new Preshower Detector

Physics potential mainly driven by Axion-like particles (ALP):

 \rightarrow Identification with a decay in the final state of two photons very closely spaced (0.2 to 1 mm) not detectable with the current detector configuration

A new preshower detector with high granularity should allow:

- Tagging di-photons events and providing significant extension of FASER's sensitivity reach in the ALP phase-space
- Enhance detection capability and maximizing the sensitivity to new physics, for instance:
- LLPs that can decay into final states with photons involving neutral pions ($V \rightarrow \gamma \pi^0 \rightarrow 3\gamma$)
- Scalar particle that only couples to up quark with final decay either $\pi^0\pi^0 \rightarrow 4\gamma$ or $\pi^+\pi^-$

Technical proposal (CERN-LHCC-2022-006)

Very collimated photons which would be highly energetic (O(100GeV – 5TeV))

Expected Performances with the new Preshower

Simulation implemented in ALLPIX2

- > Up to 6 instrumented layers with up to 6 X0 of Tungsten
- Realistic hexagonal pixel matrix with \succ ~100 µm pitch
- \blacktriangleright MC simulations \rightarrow 60% of Tungsten absorber distributed in the 1st 2 layers.
- **Charge measurement simulation** \succ

Conversion probability

Conversion probability [%]

Sensor-Asic Features

FASER final chip features:

- Chip size of 2.2 x 1.5 cm2, with matrix size of 208 x 128 pixels (26'624 total pixels)
- 13 super-columns which consist of:
 - i. An active region
 - ii. A digital column in the middle (40 μ m width) which is inactive
 - iii. A super-column (SC) is composed of 8 super-pixels (SP) of 16x16 pixels
- The dead area in the periphery consists of:
 - 720 μ m on the readout side for the digital processing and I/Os
 - 270 μm on the guard ring sides
- Chip is backside metalized for the uniformity of the electric field

Pre-production and Final Asic

Pre-production \rightarrow Delivered in June 2022

- 6 wafers:
 - 3 Epi-layer + low resistivity
 - 3 standard wafer (50 Ω .cm)
 - Thickness: 300 µm
- Reticle size: $2.4 \times 1.5 \text{ cm}^2$
- Extensively tested in the lab and TB
 - Allowed improving features for final chip design

- •
- Bad features corrected were in analog memory drift, Retri Deliver in analog ٠ reset and low thresholds ...
- Improvement was made: Charge to TOT distribution, power distribution, ...
- Consolidation and improvement of the digital • architecture
- Complete verification was made before submission

First Results with Pre-production (1/4)

Tests performed so far:

- IV working perfectly ok for all types
- V1 analog circuit is not working → Powering line issue
- V2 and V3 are working ok in the lab and provide data stream and FAST_OR signals
- Chip configuration (via SPI) works ok
- Data decoding works ok
- Investigating features in the lab → Production chip design is in progress with few small fixes

Innermost guard-ring set to ground to **achieve** > 200V breakdown voltage (170 V otherwise)

First Results with Pre-production (2/4)

- Chips (all types) are assembled and wire bonded to a test board (SCC) → full characterization
- Checking pixel response by injection of test pulse in the 6144 pixels

Summary in a nutshell:

- V1 version analog circuit is not operating normally (Analog powering issue)
- V2 and V3 chips are working as expected
- V2 built on epitaxial layer are showing features:
 - Large region of pixels with defects
 - Yield issue
- V2 on standard wafer is showing the most uniform and highest quality

First Results with Pre-production (3/4)

Tests with Laser system:

- The chip is powered and configured: 1 pixel unmasked
- An IR laser (1060 nm) is shot at the chip back side
- The TOT information can be readout via the Fast_Or signal (monitored with a scope)
- Laser pulse intensity can be varied with attenuator
- Laser intensity to charge calibration thanks to a Cd¹⁰⁹ source

Combined Tests in H2 TB North Area (2/2)

After investigation with a Cd109 source the estimated threshold set during the TB was ~ 4 fC NB: Charge is only a 4 bit ADC with dynamic range of 65 fC

Module Design and Prototype

- Module consists of integrating 6 asics . Prototype: using v1 and v2 single dies on a base plate with the module flex glued on top and wire bonded to v1 for the electrical interface.
- Wire bond protection caps are added allowing services to run on top
- The base plate is made of aluminum with hard anodization treatment to allow an electrical insulation layer preventing an electrical breakdown of the sensor backplane
- Module prototype with flex PCB already made with two pigtails (power/data) → very close to final design

Module Prototype

- Module program is essential:
- For validation of the full chain with module flex with multi-chip readout
- Optimization of the FPGA and software codes
- Development of the calibration routing
- 6 prototypes made with v1 and v2 chips

1st step is to identify problematic channels for masking

Preshower Plane and Integration Layout

A plane is instrumented with 2 rows of 6 modules:

- Cooling plate made in DMLS (Direct Metal Laser Sintering) made in AlSiMg with high isotropic thermal conductivity when annealed (180 W/mK)
- The module will be interfaced with pigtails connecting to the active patch panel (APP) boards
- Integration and commissioning of the full preshower upgrade will be done in surface before its installation in Dec 24 in TI12.

Full preshower upgrade with 2 plastic scintilaltors

Last tracker plane

Summary & Outlook

- FASER preshower upgrade will be instrumented with the SiGe MAPS designed and developed at UniGe
- In the last year of Run-3 data taking FASER should have capability needed for two closely spaced photons detection and extend the sensitivity reach in the ALP phasespace
- The pre-production chips delivered in June are working fine but with undesired features that were corrected in the final chips:
 - Extensive lab characterization made
 - Tested in H2 bealine at CERN SPS with the calorimeter
- Final chip submission made end of May and delivery expected in Jan 24
- Prototypes modules are being made allowing:
 - Testing assembly and fine tuning the jigs
 - Multi-chip readout and design of the module flex and pigtails
 - Getting experience with the back-end readout for module calibration
- Production and integration are expected in 2024 for an installation in December

FASER

Acknowledgements:

- The development of the new pre-shower by the FASER collaboration is funded by a Swiss National Science Foundation (SNSF) grant at the University of Geneva, with financial contributions also from KEK, Kyushu University, Mainz University, Tsinghua University and the Heising-Simons Foundation.
- The FASER Collaboration would like to gratefully acknowledge support from the <u>Heising-Simons Foundation</u> (Grant Nos. 2018-1135 and 2019-1179) and <u>the Simons</u> <u>Foundation</u> (Grant No. 623683), as well as the support from <u>the European</u> <u>Organization for Nuclear Research (CERN)</u> that has made it possible to perform the experiment.
- The FASER collaboration thanks the ATLAS SCT Collaboration Board for donating spare SCT modules to FASER, and the LHC Collaboration for the use of their spare ECAL modules.
- **Preparation studies for FASER were made possible** with critical help from the CERN Physics Beyond Colliders study group, and in particular Mike Lamont.

Event Display of a Muon event in FASER

FASER

Why MAPS and SiGe?

- MAPS when a mature design and technology is reached → allows gaining significant cost and efforts for a detector construction
- UniGe is developing SiGe HBT technology since many years and the observed performances are indicating that the technology is mature and accessible.
- The backend readout is also an important ingredient for the deployment of the new readout chip → UniGe developed the readout and trigger logic boards for FASER TDAQ (2021 JINST 16 P12028) and also for many other projects.

G. lacobucci et al 2022 JINST 17 P02019

Performances obtained in TB with recent chip development \rightarrow Low preamp current ok for FASER

FASER Monolithic Pixel Asic (3/3)

Super-pixel structure:

- 16 pixel rows (of 2x8 pixels each)
- Pixels are digitized at the same time using a 256to-1 analog multiplexer and a 4-bit flash ADC
- 3 fast-OR lines per super-pixel to generate a readout trigger signal (arbitration logic)
- Local bias circuits

Digital periphery:

- **Times of arrival** (TOA) of fast-OR signals digitized at the base of the super-column with a 24-channel TDC
- The digital periphery will start the readout of the chip (super-column after supercolumn) after a programmable delay (up to 2.55 μs)
- During readout, the charge stored in the analogue memories are digitized at SP level
- Slow control via SPI commands (pixel masking, 8-bit bias DACs)
- Baseline readout mode: single data rate based upon a 200 MHz clock

4-bit

Flash ADC

Super-

Configuratic

(to rows)

Analog Memory x8

Pre-production and Final Asic

Pre-production submission:

- 6 wafers:
 - 3 Epi-layer + low resistivity
 - 3 standard wafer (50 Ω .cm)
 - Thickness: 300 μm
- Reticle size: 2.4 x 1.5 cm²
- Faser_Main (V1): 4 SPs (128x64 pixels)
 ✓ In-pixel pre-amp and driver
 - Discriminator outside
- FASER_V2 (V2): 3 SPs (128x48 pixels)
 - In-pixel pre-amp, driver, and discriminator
- FASER_Alt (V3): 3 SPs (128x48 pixels)
 - ✓ Same as FASER_Main
 - ✓ No analogue memories
 - ✓ Counter for charge information
- Test structures
 - ✓ TDC, sensor, ...
- All chips are diced individually except 1 wafer with V1, V2 & V3 diced together for module prototype

53 reticles / wafer

Probe Card Development for chip QC and Selection

FASER Preshower and Calorimeter

- Four scintillator stations are commissioned and installed
 - > 99.9% efficiency, enough to trigger LLP decay inside the FASER detector
 - Confirmed by in situ measurements in 2018.
- Calorimeter based on LHCb ECAL module is also installed. One module has:
 - 12 cm x 12 cm (25 X0)
 - 66 layers of (2mm lead and 4mm scintillator)
 - Resolution ~1% for 1 TeV electron energy deposits

Expected Energy Resolution in FASER

- Energy loss in calorimeter will be compensated with what is reconstructed in the Preshower
- Preliminary Geant4 simulations give good indication with and without information added from the preshower

→ Similar performances above 250 GeV

1 of the 4 calorimeter modules

6 X0

<u>F</u>2SER

FASER Powering and Monitoring

Detector interfaces:

- Active Patch Panel (APP): PPB + FPGA readout board
- Preshower Interlock and Monitoring (PIM) will monitor power and environmental DCS (through the APP) and steer the detector safety
- MPOD crate will contain all the LV and HV power supply

Single Chip Test Board

Single Chip Card (SCC):

- Compatible with the three chip layouts
- Several independent power supply domains
- Readout of output fast-OR signals (SMA)
- Interface to UniGe GPIO for SPI communication and 200 MHz readout

GPIO - FPGA readout board

SCC assembly with bonding

Amplification Stage and Analog Memory

Total charge stored \propto ToT

- Preamplifier designed to produce a signal proportional to the log of input charge
- Capacitor charged with a constant current during the ToT
- When signal goes below threshold again, the memory is disconnected and left floating until read by flash ADC:

- Low current leakage: error < 1 LSB (ADC) for readout time <= 200 μ s

Simulation data

FASER Monolithic Pixel Asic (3/4)

Pixel structure and row:

- 8 pixels at either side of the digital column
- Left and right rows are processed identically
- Charge (from signal or test pulse) per pixel
- If above threshold & unmasked:
 - Stored in an analog memory
 - Immediately sent to periphery via fast-OR

Calibration Features

Four types of scan for chip/module characterization:

- Minimum threshold search and check for noise response by scanning threshold
 → To be done once Threshold scan
- 2. Threshold scan for a targeted injection pulse Typically 100 pulses/threshold /pixel group \rightarrow Typically 1 min/chip while several chip can be done in parallel
- 3. Noise scan at the targeted threshold typically readout over 1 min \rightarrow can mask up to 1 ‰ of noisy pixel
- Charge calibration by injecting 16 charge levels and checking response → Typically 1 min/chip while several chip can be done in parallel

The pixels are pulsed in groups of 16, 4 pixels per row \rightarrow a rolling mask will be used

Readout and Interfaces

Readout integration to FASER:

- Trigger signal steered by TLB
- The 200 MHz clock sent to the chips are based upon the LHC clock
- Each chip has a data line and a reset
- Chip configuration thanks to SPI lines
- FPGA readout board:
- Steer trigger and digital signal from/to TLB
- Multiplex up to 18 chip data streams
 → 1 Gbps ethernet link
- In total, 12 FPGA boards are needed

• FPGA board:

- \circ $\,$ Cyclone V FPGA from Intel
- Gigabit Ethernet link
- Adapter board features:
- Two types (bottom and top)
- Adapt on the left-hand side 6 modules
- Adapt on the right-hand side the FPGA board
- Adapt with many connector on top to
 PS and to monitoring board

FASER

Thermal Mock-up

- Equipped a cooling plate made of AlSiMg in DMLS
- Mounted module baseplate with dummy heater (flexible kapton)
- Plane fully equipped 6 module on each side
- Testing condition:
 - Up to 4 W per module (including some contingency)
 - Cooling flow up to 2 l/min
- A maximum ΔT of 3K is observed even in worst condition
- Heat transfer coefficient calculated: $\sim 15500 \text{ W/m}^2\text{K}$

ightarrow System very safe and stable even with very low cooling flow

FASER

Thermal IR images

Complementary tool for diagnosis in case of local defect search

Prototype module 2