

Expected performance of the High Energy Particle Detector (HEPD-02) tracking system on board of the second China Seismo-Electromagnetic Satellite

Applications in Planetary & Space Science Umberto Savino for LIMADOU collaboration

Outline

Τ.

- CSES-02 scientific mission objectives \Leftarrow
- HEPD-02 design and characteristics \Leftarrow
 - Space environment requirements \Leftarrow
 - strength (light and stiff) \Leftarrow
 - low power consumption \Leftarrow
 - cooling in vacuum \Leftarrow
 - MAPS in space ALTAI chips \Leftarrow
 - Ground test first results \Leftarrow
 - assembly \Leftarrow
- qualification/acceptance tests \Leftarrow
- first results on particle detection \Leftarrow
 - Next steps to the Space \Leftarrow

CSES-02 scientific mission objectives

- Monitoring of the electromagnetic near-Earth space environment ullet
- Analysis of the ionospheric and plasmaspheric fluctuations \bullet
- Measurements of iono-magnetospheric perturbations possibly due to seismo-electromagnetic phenomena \bullet
- Study of fluxes of high & low energy charged particles precipitating from the Inner Van Allen radiation belt \bullet Measurements of magnetospheric and solar activity \bullet
- Monitoring of the e.m. anthropic effects at low Earth orbit altitude
- Observations of e.m. transient phenomena caused by tropospheric activity \bullet

High Energy Particle Detector (HEPD-02)

HEPD-02 aim:

- detecting electrons (3MeV-100MeV)
- detecting protons (30MeV-200MeV)

Payload consists of:

- a particle tracker (DD) -- five standalone tracking modules
- a trigger system
 - TR1 (200×180 mm²) -- 5 plastic scintillator bars (2 mm thick)
 - TR2 (150 x 150 mm²) -- 4 plastic scintillator bars (8 mm thick)
- an energy detector (ED) composed of:
 - 12 plastic scintillator planes (150 x 150 x 10 mm_s);
 - 2 crystal (LYSO) scintillator planes (150 x 150 mm²) -- 3 x 2 bars (25 mm²) thick each)
- a containment detector CD made of plastic scintillator planes (8 mm thick)
 - -- 4 lateral and 1 bottom plane

Space environmental requirement

stiffness > 10g accelerations

thermal drain vacuum

Requirement:

minimization of

- multiple scattering
- energy loss

power budget (~13 W for DD)

Requirement: fasten

- event processing
- data transmission

HEPD-02 main requirements

Operating temperature Operating pressure Data budget Mass budget Power budget Electron kinetic energy range Proton kinetic energy range Angular resolution Energy resolution Pointing Scientific data bus Data handling bus Life cycle

263 to 308 K 6.65·10⁻³ Pa 100 Gb/day 50 kg 45 W 3 MeV ÷ 100 MeV 30 MeV ÷ 200 MeV ≤10° for e- with E > 3 MeV ≤10% for e- with E > 5 MeV Zenith RS-422 CAN 2.0 > 6 years

ssing ission

Savino

Umberto

Oxford

Detectors

Φ

Sensitiv

Position

UO

Conference

International

3th

Monolithic active pixel sensors

ALTAI sensors

The sensor and readout circuitry are implanted in the same silicon

- Sparsified readout
- Pixel pitch: 26.88 x 29.24 μ m²
- Columns x rows: 1024 x 512
- Electrode diameter: 2 µm
- Producer: Tower Semiconductors

Parameter	Values
Detector size [mm ²]	15 x 30
Detector thickness [µm]	50 - 100
Spatial resolution [µm]	4
Detection efficiency	>99%
Fake hit rate [evt ⁻¹ pixel ⁻¹]	<10-7
Integration time [µs]	~2
Power density [mW/cm ²]	<50 *

Advantages

reduces systematic uncertainties on tracking

Ultra low material budget (50 µm chip thickness, 180 um FPC readout)

Monolithic

Challanges

(digital readout)

Power consumption mitigation

• ALICE ITS OB Master-slave architecture (1 master out of 5 chips) with sequential slave read-out through master.

 Permanent switch-off of fast data transmission unit (DTU) and read-out through serial slow-control line.

• Acceptable increase of dead time, given the relatively low trigger rate sustainable by the HEPD-02 system (up to few kHz).

• **Clock gating:** ALTAI clock normally off, set on with trigger: trigger: clock on (17 mW/cm²);

• wait for signal digitization;

• transmit data to control/read-out electronics;

• clock off (7 mW/cm²): wait for new trigger.

DD realization

From ALTAI to tracker

- CMM to perform the ALTAI
 alignment
- 3 stages of functional test (2 on HICs and 1 con STAVEs) + test on turrets and traders

Total production:

- 68 bonded HICs
- 41 STAVES

10 ALTAI aligned glued on FPC

2 Trackers 5 towers each

Qualification model (QM) Flight model (FM) + spares modules

Production yeld

Quality TAG *	HIC assembly + bonding	HIC post Tab/Wings cut	Stav Assem
GOLD	40%	44%	56%
SILVER	15%	15%	5%
BRONZE	12%	23%	10%
NOT OK	34%	19%	29%
Total:	68	48	41

* quality categories based on functional performance

1st requirement: precision

HIC assembly under CMM required to guarantee alignment precision for wire bondings

Space requirement:

• redundancy \rightarrow 3 bonds per each pad

• Mitutoyo CMM measure the position of the ALTAI reference pads CMM resolution: $x = 7 \mu m$ | $y = 7 \mu m$ | $z = 20 \mu m$

Resuduals wrt nominal positions						
	mean [µm]	rms [µm]				
Δx	1.9	11.7				
Δy	0.2	12.4				
Δ7	-8.477	57				

T

 $\Delta \mathbf{x} \Delta \mathbf{y}$ Distribution

2nd requirement - power consumption

Test procedure to assess stave quality:

- check for hotspot with thermocam
- chip scan \rightarrow read/write procedure returning chip ID
- digital scan \rightarrow readout digital check
- threshold scan \rightarrow charge injection

Threshold tuning:

scan of chip biases to tune the threshold level

Staves power consumption

AVDD [mA] DVDD [mA]

BRONZE	SILVER	GOLD	GOLD spare
124 ± 1	124 ± 2	125 ± 5	112 ± 2
466 ± 6	460 ± 21	451 ± 11	421 ± 10

3rd requirement - heat dissipation

Light and stiff supports

Requirements:

- stiffness to withstand the vibrational stresses occurring during the launch phase
- efficient thermal properties, to dissipate the heat produced by the ALTAI sensors (0.8W/stave)

Winner: K13D2U with cyanate ester prepreg resin EX1515

- Vacuum environment of 6.65 10⁻³ Pa and in presence of repeated thermal cycles
- Cooling system operates from one side with a temperature gradient of 6 K

Threshold vs Temperature

CP with end blocks

- Climatic chamber and on FPC dallas sensors (DS18B20U)
- temperature variation [263 to 323] K (requested [303 to 313] K)
- Threshold variation of 60 e⁻ over Δ T of 60 K \rightarrow 1 e⁻/K
- Standard deviation of every-chip pixel threshold is 20 e-
- The higher the back bias the lower the temperature influence

Qualification/acceptance tests

In compliance with CSES-02 satellite requirements

Vibrational test

- resonance search scan along the axis
- apply Sine and Random vibration load levels
- visual inspection and verification of the insulation resistance
- Shock test (only QM)

Thermo vacuum test

- temperature cycles from 318 to 253 K
- pressure to nominal value $\leq 6.65 \times 10^{-3}$ Pa
- QM: 25.5 Thermal cycles, 6.5 Thermal Vacuum
- FM: 14.5 Thermal cycles, 3.5 Thermal Vacuum
- anomaly monitoring and performance test

Test result: passed

two half staves masked in DD

DD ground test - first results

- Cosmic rays data acquisition \bullet
- Test beam with: \bullet
 - ions (electrons, protons, carbon)
 - photons

Fake hits removal \bullet

dry run \rightarrow identification of firing pixels \rightarrow masking

Cluster definition \bullet

Fitting three planes \bullet plane 3 plane 2 plane 1

Beam (particles/photons) energies

	energy range
electrons	6 450 MeV
protons	10 230 MeV
carbon	115 400 MeV
photons	1 10 MeV

Reference system

DD performance - cosmic rays

- Cosmic rays \bullet
- before Thermo Vacuum and Thermal Cycles
- statistics: 117,3875 events in 14.69 h
- cluster size increasing with track inclination follows expectations from geometry

T

DD performance - particles

pairs of a m.i.p.

DD performance - gamma rays

Gamma **10 MeV** LINAC ev. n. 53,653

 10^{-1} **Preliminary** 10^{-2} **10**⁻² **10**⁻² **10**⁻² **10**⁻⁴ **0 10**⁻² **10**⁻² **10**⁻⁴ **0 10**⁻² **10**⁻² **10**⁻² **10**⁻² **10**⁻⁴ **10**

Gamma 6 MeV LINAC ev. n. 47,563

Gamma **4 MeV** LINAC ev. n. 21,961

Conclusions and next steps

- HEPD-02 DD will be the first ever use of MAPS in a space application
- Two HEPD-02 payloads produced and qualified (QM and FM)
- Several space compliance tests successfully performed on HEPD-02 paylod
- Analysis on test beam data currently ongoing
- Integration in CSES-02 satellite and launch scheduled in 2024

- STAVE assembly
- validation in the lab
- tracker assembly on QM and FM
- Shock and thermo vacuum tests for payload validation
- test beam and data acquisition

data analysis

- Umberto Savino Oxford 1 **Position Sensitive Detectors** 13th International Conference on

SPARE SLIDES

Wire bonding and gluing

Numbers:

• 74 pads/chip x 3 bonds/pad x 10 chips/STAVE \rightarrow 2220 bonds/STAVE

Materials:

- ENEPIG (electroless nickel electroless palladium immersion gold) for FPC bonding pads
- bonding wire in Al
- ARALDITE 2011 bi-component epoxy glue

Challenge:

 managing the uniformity of the glue and the planarity of chip-FPC to have automatic bonding

Space compliance

 space-compliance of materials and solutions of assembly (bonding, gluing, grounding) was validated during summer 2019, with 6.5 thermal cycles in the temperature range -30°/+50°C, imposed to the engineering model of a stave

(00)	2105.1	1842.	12 1842	.12	\sim									1842	2.12 1842	12 210	5.16
(0, 150	11	•00 <u>H</u>	•8	F01	• <u>5</u>	F02	602	F03	603	€ €	604 G04	€ F05	605 G05	• F06	e G06	€ F07	
		00 E00	•5	2 E01	33	04 E02	55	06 E03	12	98 E04	60	0 E05	•=	2 E06	• ^{co}	4 E07	
		D 00 00	Cot Do	C02 D0	00 003	C04	C05 DC	C06	C07 D0	C08	00 00	C10 D1	Ci1 Di	c12 D1	C13 D1	C14 D1	
		V															
		_	01	~ +			~	•		-		0, 00	+ "		N M		
(0.	B00	A05 400 400 400 400 400 400 400 400 400 4	A12 A14 A15 A15	• B03	BOF BOF	B07	B08	B00	A447 A447 A443 A550 A550 A550 A551	• B10	22222222222222222222222222222222222222	• B13	• B14		• B17	*** • B19	B2(

Pull test **Electrical test**

Pull test results

sample	25 HICs
force mean	11.9 g
force std	1.9 g
liftoff	226

Carbon fibers

- **Support:** C-shaped carbon fiber cold plate 400 µm thick with lateral ribs + aluminum end blocks \bullet
 - Simulated (Finite Element Model) optimal lay-up configuration \rightarrow oriented plies of unidirectional carbon fiber K13D2U \bullet with cyanate ester prepress resin EX1515
- **Cooling based on conductivity of material** standing between chips and the thermal plate
- Global thermal conductivity of CP: \bullet
 - longitudinal 343-367 W/m K \bullet
 - transversal 173-180 W/m K \bullet

- Thermo-mechanical design for ALPIDE pixel sensor chip in a high-energy particle detector space mo S. Coli et al., 2021, 22nd International Workshop on Radiation Imaging Detectors DOI: https://doi.org/10.1088/1748-0221/17/01/C01019
- Thermo/mechanical design for embedding ALPIDE pixel sensor chip in a High-Energy Particle Detected E. Serra et al., 2022, Journal of Physics Conference Series, 2374, 012049, IOP Publishing DOI: 10.1088/1742-6596/2374/1/012049
- Experimental investigation of new ultra-lightweight support and cooling structures for the new Inner the ALICE Detector V.I. Zherebchevsky et al 2018 JINST 13 T08003 DOI: 10.1088/1748-0221/13/08/T08003

Vibrational tests on the turret assembly to comply with standards EN ISO:9100 for Aerospace, Space, and Defence.

a de la dela dela dela dela dela dela de	Material budget of STAVEs							
	STAVE element	material	thick [µm]	rad.lengt [%]				
	FPC board	capton	135	0.048				
odule	FPC tracks	Cu	36	0.251				
	glue	ARALDITE 2011	130	0.029				
for space module	ALTAI	Si	50	0.053				
r Tracking System of	cold plate	Carbon fiber + epoxy resin	350	0.134				
	Total:			0.515				

- Fully customized for HEPD-02 space application.
 - Compactness: tracker control and read-out in a single board (T-DAQ).
 - Design driven by power consumption limits (3 W budget for T-DAQ).
 - Hot/cold redundancy to increase overall reliability during flight.
- Control logics and Microblaze soft processor implemented on Xilinx Artix 7 FPGA.
- 15 CTRL logic modules (one per stave) handle the full ALTAI housekeeping and data acquisition through serial bidirectional line.
 - Tracker segmentation (and superposition of an independent trigger bar to each turret in HEPD-02 layout) allow to read-out a subset of the 5 turrets (or 2 planes only), if required to reduce power or dead time.
- The soft processor implements calibration and service procedures (switched-off most of time to save power).
 - Threshold calibration procedure identifies and excludes dead/noisy pixels.

Average threshold for different parameter configurations

108° Congresso Nazionale - Umberto Savino / 2022-09-16

