

Recent results from the MIMOSIS-1 CMOS MAPS

M. Deveaux on behalf of the IPHC-IKF-GSI (CBM-MVD) Collaboration

his project has received funcing from the European Union's Horizon 2020 esearch and innovation programme under grant agreement No. 871072

The CBM Micro Vertex Detector (MVD)

Darmstadt, Germany

The (initial) mission: Reconstruct short - lived particles

High rate capability needed:

- 5µs time resolution.
- 20 MHz/cm² (peak 80 MHz/cm²).
- ~10¹⁴ n_{eq}/cm² radiation tolerance.
- Tolerance to heavy ion hits (direct beam impacts). (Find full list of requirements in the backup)

Conclusion (2003, still true today): Need specifically designed CMOS Monolithic Active Pixel Sensors.

Compute mother particle properties by:

• Adding energy + momentum of daughters (invariant mass).

Challenge:

► ~10 x ALPIDE

 Select good daughter particles by separating primary and secondary vertex.

 \Rightarrow Need 5µm spatial resolution,

⇒ Need 300 - 500 μ m Si equivalent material per station (0.3% X₀). ... like ALICE ITS-2...

CBM 8 AGeV: ~10% of all particles shown

MIMOSIS R&D plan

MIMOSIS-0 (2018)

- Demonstrate pixel concept.
- Demonstrate zero suppression.
- Demonstrate readout concept.

FAIR ESS i

- Full dimension sensor
- Add buffer structure.
- SEE hardening 1/2

Discussed today

MIMOSIS-2 (Q2/2023)

- On-chip pixel grouping.
- Final pixels.
- SEE hardening 2/2

MIMOSIS-3

 Final sensor for mass production

Fair GmbH|GSI GmbH - Dr. Michael Deveaux -

All submissions: Additional CE18 test structures to study specific design questions.

MIMOSIS-1

MIMOSIS-1

Size: 504 x 1024 pixels (27x30µm²)

FEE integrated.

Pixels types: 2x DC, 2x AC (>20V depletion voltage)

Standard

Fair GmbH|GSI GmbH - Dr. Michael Deveaux -

M. Deveaux

13th POS conference, Oxford, Sept 2023

MIMOSIS-1 beam telescope:

- ✓ 6 MIMOSIS-1 sensors
- ✓ 4 reference sensors (standard epi-layer).
- \checkmark 2 device under test
- preliminar ✓ Reference Track Uncertainty: 2.5 µm + 1.5 µm Mult. Scattering (DESY only)

Irradiation:

- ✓ 1 MeV reactor neutrons (TRIGA, Ljubjana).
- ✓ Few 10 keV X-rays (KIT)
- \checkmark Storage at room temperature.

Beam test:

- ✓ 5 GeV e- Beam @ DESY
- ✓ 120 GeV Pion Beam @SPS-CERN
- ✓ ~ 1 GeV d beam @ COSY
- ✓ Stabilized room temperature

Sensor performance: New and after 5 MRad + 10¹⁴n_{ed}/cm²

Best performing pixel: AC P-stop

Efficiency >99% (end of life-time).

Spatial resolution: ~6 µm

Dark rate (not shown, see backup):

- Marginal before irradiation.
- <10⁻⁶ after irradiation.

Conclusion on sensor performance:

- All pixels work excellent before irradiation.
- Standard pixels show best spatial resolution.
- P-stop AC pixel most radiation hard, matches requirements of CBM.

Immunity to heavy ions (Single Event Effects)

Beam halo

Origin:

- Limited focus few ions miss hole all the time.
- Beam impact.

~2x2 mm Heavy ion: ~200 fired pixels Beam hole: 11 mm MIP (proton) SPS Pb beam halo @ NA61/SHINE ~2 fired pixels as seen with MIMOSA-26

Thermal destruction

if ignored

1 cm

Minority charge carriers excited by ions may: Malfunction if ignored

- Switch digital electronics => Bit flip
- Open unwanted conduction paths => Latch-up (like short cut, extinguish by power cycle)

Macroscopic damage by individual ion: Single Event Effect.

Observation on Single Event Effects

Latch-up (Ion generated short circuit, recover by power cycle):

MIMOSIS-1 seems to tolerate up to 300 MHz/cm² lons at 20 MeV cm² / mg.

- \Rightarrow Latch-up cross-section orders of magnitude better than required (all structurs except DAC).
- \Rightarrow Protection of steering registers to be fixed.
- \Rightarrow Data registers not protected Expect occasional data corruption.

Response to different dE/dx

Known for elder sensors:

- Individual pixel is not energy sensitiv but:
- Pixel multiplicity scales with dE/dx [1,2].
- Does this hold for MIMOSIS (dependence on depletion)?

Experimental approach:

- Use deuterium beam of COSY to create dE/dx higher than m.i.p.
- Histogram multiplicity of hits associated to a identified track.

First observation:

- Fully depleted pixels (p-stop) show marginal sensitivity to dE/dx.
- Standard DC-pixel (lowest depletion) shows response. Significant?

Response to different dE/dx

Preliminary conclusion:

- Response to increasing dE/dx observed (usefulness for PID to be studied in detail).
- High rad. tolerance configuration with high depletion not compatible with good dE/dx response.

Next step: Reproduce findings in device simulation.

MIMOSIS-1 forms the first full size prototype of the MIMOSIS sensor for the CBM-MVD.

- ✓ $5 \mu s / 5 \mu m$ time/spatial resolution.
- ✓ 80 MHz/cm² peak rate.

MIMOSIS-1 irradiated with up to $3x10^{14}$ n_{eq}/cm² were tested in laboratory and in beam.

- >> 99% detection efficiency after $10^{14} n_{eq}/cm^2$, 5 MRad and a combination of both
- <10⁻⁶ fake hit rate (after $10^{14} n_{eq}/cm^2$, <0.05% of all pixels masked)
- $\sim 5 \,\mu m$ spatial resolution before and after irradiation => Matches requirement.
- Tolerates HI with up to LET=20 MeV cm² / mg without observed latch-up.
- Response of partially depleted MIMOSIS-1 to different dE/dx may add information to CBM-PID (to be followed up).

MIMOSIS-1 matches the requirements of the CBM-MVD... ... and forms a mile-stone toward a sensor for higgs-factories.

12

Julio Andary¹, Benedict Arnoldi-Meadows¹, Ole Artz¹, Jérôme Baudot², Grégory Bertolone², Auguste Besson², Norbert Bialas¹, Roma Bugiel², Gilles Claus², Claude Colledani², Hasan Darwish^{1,2,3}, Michael Deveaux^{1,3,6}, Andrei Dorokhov², Guy Dozière², Ziad El Bitar², Ingo Fröhlich^{1,3}, Mathieu Goffe², Benedict Gutsche¹, Fabian Hebermehl¹, Abdelkader Himmi², Christine Hu-Guo², Kimmo Jaaskelainen², Oliver Michael Keller⁶, Michal Koziel¹, Franz Matejcek¹, Jan Michel¹, Frédéric Morel², Christian Müntz¹, Hung Pham², Christian Joachim Schmidt³, Stefan Schreiber¹, Matthieu Specht², Dennis Spicker¹, Joachim Stroth^{1,3,4}, Isabelle Valin², Roland Weirich^{1,} Marc Winter⁵ and Yue Zhao² ¹Goethe-Universität Frankfurt, Germany ²Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France ³GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany ⁴Helmholtz Forschungsakademie Hessen für FAIR, Germany ⁵IJCLab, UMR9012 – CNRS / Université Paris-Saclay / Université de Paris, France ⁶Facility for Antiproton and Ion Research in Europe GmbH, Germany

Supported by:

Backup

Beam tests (MIMOSIS-1)

Date	Location	Beam	Goal
13. – 14. Mar 2021	GSI / mCBM	1 AGeV Pb	Single-Event-Effects (SEE)
23. – 24. May 2021	GSI / mCBM	1 AGeV Xe	SEE
07. – 13. Jun 2021	DESY	5 GeV e⁻	Performance
19. – 26. Sep 2021	DESY	5 GeV e-	Performance (X-ray irradiated)
05. – 12. Oct 2021	CERN	~100 GeV π^{\pm}	Performance (neutron irradiated)
14. – 20. Feb 2022	DESY	5 GeV e-	Performance (mixed irradiated) ++
21. – 28. Mar 2022	COSY	0.3 – 3 GeV p	Performance, dE/dx?
23. – 29. May 2022	GSI/UNILAC	~4 MeV Ca	SEE, slow fragments
0107. Sep 2022	CERN	~100 GeV π^{\pm}	Response to inclined tracks,

Irradiation campaigns:

Date	Location	Radiation
Jul – Aug 2021	Ljubjana (TRIGA)	~1 MeV reactor neutrons
Sep 2021	Karlsruhe (KIT)	~10 keV X-rays
Aug 2022	Karlsruhe (KIT)	~10 keV X-rays

Special thanks to IPHC for massive support in beam time preparation. Meanwhile: 14 IPHC people (9-10 FTE) involved in MIMOSIS.

Fair GmbH|GSI GmbH - Dr. Michael Deveaux -

M. Deveaux

Shielding for PCB-ICs

(X-rays @ KIT)

	Requirement	
Time resolution	~5 µs]
Spatial resolution	~5 µm	Mostly established by ALPIDE (Sensor of ALICE ITS2 upgrade)
Sensor thickness	~50 µm	
Power dissipation	≾200 mW/cm²	
Radiation doses (non-ionizing)	> 7x10 ¹³ n _{eq} /cm²	$\approx 10 \times \text{ALPIDE}$
Radiation doses (ionizing)	> 5 Mrad	no sale
Radiation gradient on chip	100%	
HI-tolerance	10 Hz/mm ²	
Rate (average/peak)	150/700 kHz/mm ²	<pre>> 20x internal bandwidth needed</pre>

How to arrive there (starting from ALPIDE) based on 180 nm technology?

MIMOSIS-1: Tolerance to non-ionizing radiation

Mimosis-1: In beam performance

FAIR **ES**

Before irradiation:

• All pixels show excellent performance.

After 10¹⁴n_{eq}/cm² (end-of-lifetime):

- Standard epi-layer reaches limits.
- Good performance for p-stop, n-gap.
- Best performance: p-stop AC pixel.
 - n-gap AC worse than n-gap DC => follow up.

M. Deveaux

MIMOSIS-1 spatial resolution

Observation:

- ✓ Best resolution for standard epi.
 - \Rightarrow Larger charge sharing (measured, not shown).
- ✓ Resolution mildly worse after irradiation.
 - \Rightarrow Bulk damage reduces cluster size.
- ✓ Plots hold for small dimensions of pixel
 - \Rightarrow ~10 % worse resolution for long dimension (not shown).
- ✓ Results for all pixels match CBM requirements at default 120 - 150 e threshold.

Note: Preliminary results

- Still preliminary alignment.
 - \Rightarrow Fixing this may or may not eliminate outlayers (work in progress).

M. Deveaux

MIMOSIS-1: Tolerance to ionizing radiation

Observation:

- Good detection efficiency also after ionizing doses.
- Radiation seems to improve performance sometimes
 ⇒ Radiation may modify pixel tuning (7 parameters)
 ⇒ Probably room for improvement.

Dark rate stays below 10⁻⁷

No impact on spatial resolution within uncertainties

Detection efficiency

M. Deveaux

