

Development of self-calibration techniques for γ-ray energy-tracking arrays

<u>Sidong Chen</u>¹, Michael Bentley¹, Stefanos Paschalis¹, Marina Petri¹, Marc Labiche², Fraser Holloway³, and the **AGATA collaboration**

1. University of York, 2. STFC Daresbury Laboratory, 3. University of Liverpool

PSD13, 2023, Oxford

Ring

B4

F4

A4/

X

Result of *Grid Search* algorithm (10,25,46)

Current challenges

signal basis generation

Experimental (scanning)

- long acquisition times
- different conditions between scanning and experiment, e.g. noise, radiation damage
- mechanical alignment

Analytical (calculated)

- intrinsic space-charge density
- the electron/hole mobility
- crystal temperature and
- crystal orientation
- passivated and contact thickness
- shape of charge cloud

Simulation with Pulse Shape

- Geant4 simulate AGATA-1Pi array, save Compton scattering events
- Pulse shape basis linear interpolation \rightarrow simulation data
- Group pulse shape according to similarity

Simulation: Position fidelity

Self-calibration basis (simulation) Chi2 difference: self-calib pulse vs. real pulse

Large Chi2 observed around segment boundary

Simulate 2MeV gamma 2e10 events

PSA position resolution (simulation)

Using the calculated Basis on a 2mm grid

Using the self-calibrated basis

Experiment: source data

- ²²Na source at center of array
- Large signals, CoreE>200keV (small relative noise level)
- Compton scattering events (fold 2 trigger)

- Identify incoming gamma energy by OFTtracking
- consistent results between simulation and source calibration

- ADL (AGATA Detector Library): theoretical calculated basis on 2 mm grid
- Chi2: the difference between experimental signal and the signal basis fitting
- The PSA final chi2 with self-calibration basis is smaller than that with ADL basis ⇒ self-calibration basis better describe experimental signal

Compton Scattering Angle

Scattering angle vs. Scattering Energy

Angle_PSA - Angle_Compton

100

Summary

- Self-calibration is tested with AGATA simulation data with pulse shape yielding reasonable results
- Influences of statistics, noise levels are studied
- Experimental data is taken with ²²Na source at LNL, self-calibration with experimental data give results consistent with simulation data
- PSA with self-calibration basis and original basis are compared, yielding some improvements with self-calibration basis

Thank you for your attention

Backup

24

z = 46 mm

(10, 10)

0,46)

791 keV deposited in segment B4

791 keV deposited in segment B4

(10,15,46)

791 keV deposited in segment B4

791 keV deposited in segment B4

(10,25,46)

791 keV deposited in segment B4

(10,<mark>30</mark>,46)

Result of

Grid Search

algorithm

(10,<mark>25</mark>,46)

791 keV deposited in segment B4

Simulation with Pulse Shape

Geant4:

Signal Basis:

- AGATA-1Pi array: 45 detectors
- Geant4: Compton events information
- Linear interpolation ADL pulse shape basis

Group Pulse Shape

= 20 seq nhits1 = 1 : 1571.00nhits2 = 1 : 1590.26nfired = 36Eng1 = 1571 Eng2 = 1590.26chi2 = 7.29173dist = 9.98804rdifphi= 7.03852 diffr = 5.51792diffz = 4.50787 PhiRZ1 = -165.32 29.76 31.31 PhiRZ2 = -177.72 35.28 26.80 difphi = 12.4017 degree

Group Pulse Shape

Position optimization

- Initial HC position: segment center
- Compton scattering angle:

$$\cos\Theta = 1 + \frac{m_{\rm e}c^2}{E_{\rm inc}} - \frac{m_{\rm e}c^2}{E_{\rm inc} - E_{\rm dep}}$$

- Scattering angle from path Θ'
- Optimize HC position
 - \rightarrow reduce angle difference
- Loop HCs and iteration

Simulation: Position resolution

Simulate 2MeV gamma 1e11 events

UNIVERSITY

788710

137.7

6.316

376.8

5.183

10²

10

6000

787730

137.7

6.316

376.8

5.183

6000

Gamma source

Identify incoming energy according to figure of merit from OFT

427383

906.8

90.45

2200

2200

546919

1801

178.6

⁶⁰Co source

Identify incoming energy according to total energy deposit in array

⁶⁰Co source

Simulate ⁶⁰Co source 2e10 evts (energy gate ±10keV, ~2e8 good evts)

Calibration data

UNIVERSIT