An introduction to
 Magnets for Accelerators

Attilio Milanese

Attilio.Milanese@cern.ch

John Adams Institute
Accelerator Course

19 Jan. 2023

This is an introduction to magnets as building blocks of

 synchrotrons / transfer lines```
//
// MADX Example 2: FODO cell with dipoles
// Author: V. Ziemann, Uppsala University
// Date: 060911
TITLE,'Example 2: FODO2.MADX';
BEAM, PARTICLE=ELECTRON,PC=3.0;
DEGREE:=PI/180.0;
QF: QUADRUPOLE,L=0.5,K1=0.2;
QD: QUADRUPOLE,L=1.0,K1=-0.2;
B: SBEND,L=1.0,ANGLE=15.0*DEGREE;
FODO: SEQUENCE, REFER=ENTRY, L=12.0;
 QF1: QF, AT=0.0;
 B1: B, AT=2.5;
 QD1: QD, AT=5.5;
 B2: B, AT=8.5;
 QF2: QF, AT=11.5;
ENDSEQUENCE;
```


## If you want to know more...

1. N. Marks, Magnets for Accelerators, JAI (John Adams Institute) course, Jan. 2015
2. D. Tommasini, Practical Definitions \& Formulae for Normal Conducting Magnets
3. Lectures about magnets in CERN Accelerator Schools
4. Special CAS edition on magnets, Bruges, Jun. 2009
5. Superconducting magnets for particle accelerators in USPAS (U.S. Particle Accelerator Schools)
6. J. Tanabe, Iron Dominated Electromagnets
7. P. Campbell, Permanent Magnet Materials and their Application
8. K.-H. Mess, P. Schmüser, S. Wolff, Superconducting Accelerator Magnets
9. M. N. Wilson, Superconducting Magnets
10. A. Devred, Practical Low-Temperature Superconductors for Electromagnets
11. L. Rossi and E. Todesco, Electromagnetic design of superconducting dipoles based on sector coils

According to history, the first electromagnet (not for an accelerator) was built in England in 1824 by William Sturgeon


The working principle is the same as this large magnet, of the 184 " ( 4.7 m ) cyclotron at Berkeley (picture taken in 1942)


# This short course is organized in several blocks 

1. Introduction, jargon, general concepts and formulae
2. Resistive magnets
3. Superconducting magnets
4. Tutorial with FEMM

Magnets can be classified based on their geometry / what they do to the beam


## skew magnet

undulator / wiggler

This is a main dipole of the LHC at CERN: $8.3 \mathrm{~T} \times 14.3 \mathrm{~m}$


These are main dipoles of the SPS at CERN: $2.0 \mathrm{~T} \times 6.3 \mathrm{~m}$


This is a cross section of a main quadrupole of the LHC at CERN: $223 \mathrm{~T} / \mathrm{m} \times 3.2 \mathrm{~m}$


These are main quadrupoles of the SPS at CERN:
$22 \mathrm{~T} / \mathrm{m} \times 3.2 \mathrm{~m}$


This is a combined function bending magnet of the ELETTRA light source


## These are sextupoles (with embedded correctors) of the main

 ring of the SESAME light source

Magnets can be classified also differently, looking for example at their technology


## permanent

 magnetcoil dominated
superconducting
$\square$ cycled / ramped slow pulsed
> fast pulsed

## Nomenclature

B magnetic field
$B$ field
magnetic flux density
magnetic induction
H H field
magnetic field strength
magnetic field
$\mu_{0} \quad$ vacuum permeability
$1.25663706212(19) \cdot 10^{-6} \mathrm{H} / \mathrm{m}$ $4 \pi \cdot 10^{-7} \mathrm{H} / \mathrm{m}$ (Henry/m)
dimensionless
H/m

The polarity comes from the direction of the flux lines, that go from a North to a South pole

in Oxford, on 25/01/2017
$|\mathrm{B}|=48728 \mathrm{nT}=0.048728 \mathrm{mT}=0.000048728 \mathrm{~T}$

Magnetostatic fields are described by Maxwell's equations, coupled with a law describing the material

$$
\begin{aligned}
& \operatorname{div} \vec{B}=0 \\
& \oint_{S} \vec{B} \cdot \overrightarrow{d S}=0 \\
& \operatorname{rot} \vec{H}=\vec{J} \\
& \oint_{C} \vec{H} \cdot \overrightarrow{d l}=\int_{S} \vec{J} \cdot \overrightarrow{d S}=N I \\
& \vec{B}=\mu_{0} \mu_{r} \vec{H}
\end{aligned}
$$



James Clerk Maxwell

The Lorentz force is the link between electromagnetism and mechanics

$$
\begin{array}{ll}
\vec{F}=q[\vec{E}+(\vec{v} \times \vec{B})] & \vec{F}=I \vec{\ell} \times \vec{B} \\
\text { for charged beams } & \text { for conductors }
\end{array}
$$



Oliver Heaviside


Hendrik Lorentz
$\mathbb{I} \mathbb{A} \mathbb{P} \mathbb{A} \mathbb{C} \mathbb{E}$


Pierre-Simon, marquis de Laplace

In synchrotrons / transfer lines magnets, the B field seen from the beam is often expressed as a series of multipoles

$$
\begin{aligned}
& B_{r}=\sum_{n=1}^{\infty}\left(\frac{r}{R}\right)^{n-1}\left[B_{n} \sin (n \theta)+A_{n} \cos (n \theta)\right] \\
& B_{\theta}=\sum_{n=1}^{\infty}\left(\frac{r}{R}\right)^{n-1}\left[B_{n} \cos (n \theta)-A_{n} \sin (n \theta)\right]
\end{aligned}
$$


direction of the beam (orthogonal to plane)

$$
B_{y}(z)+i B_{x}(z)=\sum_{n=1}^{\infty}\left(B_{n}+i A_{n}\right)\left(\frac{z}{R}\right)^{n-1} \quad z=x+i y=r e^{i \theta}
$$

Each multipole term corresponds to a field distribution; they can be added up (exploiting linear superposition)

$$
\mathrm{B}_{1} \text { : normal dipole }
$$


$\mathrm{B}_{2}$ : normal quadrupole

$\mathrm{A}_{2}$ : skew quadrupole

$B_{3}$ : normal sextupole

$A_{3}$ : skew sextupole


The field profile in the horizontal plane follows a polynomial expansion

$$
B_{y}(x)=\sum_{n=1}^{\infty} B_{n}\left(\frac{x}{R}\right)^{n-1}=B_{1}+B_{2} \frac{x}{R}+B_{3} \frac{x^{2}}{R^{2}}+\cdots
$$


$\mathrm{B}_{1}$ : dipole

$\mathrm{B}_{2}$ : quadrupole

$$
G=\frac{B_{2}}{R}=\frac{\partial B_{y}}{\partial x}
$$


$B_{3}$ : sextupole

$$
B^{\prime \prime}=\frac{2 B_{3}}{R^{2}}
$$

For the optics, usually the field or multipole component is given, together with the (magnetic) length: ex. from MAD-X

Dipole
bend angle a [rad] \& length L [m]
$k_{0}[1 / m]$ \& length L [m]
obsolete

$$
\mathrm{k}_{0}=\mathrm{B} /(\mathrm{B} \rho)
$$

$$
B=B_{1}
$$

Quadrupole
quadrupole coefficient $k_{1}\left[1 / m^{2}\right] \times$ length $L[m]$

$$
\mathrm{k}_{1}=\left(\mathrm{dB} \mathrm{~B}_{\mathrm{y}} / \mathrm{dx}\right) /(\mathrm{B} \mathrm{\rho})
$$

$$
\mathrm{G}=\mathrm{d} \mathrm{~B}_{\mathrm{y}} / \mathrm{dx}=\mathrm{B}_{2} / \mathrm{R}
$$

Sextupole
sextupole coefficient $\mathrm{k}_{2}\left[1 / \mathrm{m}^{3}\right] \times$ length $\mathrm{L}[\mathrm{m}]$

$$
\mathrm{k}_{2}=\left(\mathrm{d}^{2} \mathrm{~B}_{\mathrm{y}} / \mathrm{dx} \mathrm{x}^{2}\right) /(\mathrm{B} \rho) \quad\left(\mathrm{d}^{2} \mathrm{~B}_{\mathrm{y}} / \mathrm{dx} \mathrm{x}^{2}\right) / 2!=\mathrm{B}_{3} / \mathrm{R}^{2}
$$

## Here is how to compute magnetic quantities from MAD-X

 entries, and vice versa```
BEAM, PARTICLE=ELECTRON,PC=3.0;
DEGREE:=PI/180.0;
QF: QUADRUPOLE,L=0.5,K1=0.2;
QD: QUADRUPOLE ,L=1.0,K1=-0.2;
B: SBEND,L=1.0,ANGLE=15.0*DEGREE ;
```

$$
(B \rho)=10^{9} / c^{*} P C=10^{\wedge} 9 / 299792485^{*} 3.0=10.01 \mathrm{Tm}
$$

dipole (SBEND)
$B=|A N G L E| / L^{*}(B \rho)=(15 * \mathrm{pi} / 180) / 1.0^{*} 10.01=2.62 \mathrm{~T}$
quadrupole

$$
\mathrm{G}=|\mathrm{K} 1|^{*}(\mathrm{~B} \rho)=0.2^{*} 10.01=2.00 \mathrm{~T} / \mathrm{m}
$$

The harmonic decomposition is used also to describe the field quality (or field homogeneity), that is, the deviations of the actual B with respect to the ideal one
(normal) dipole

$$
\vec{B}_{i d}(x, y)=B_{1} \vec{\jmath}
$$

$$
\begin{aligned}
& B_{y}(z)+i B_{x}(z)= \\
& =B_{1}+\frac{B_{1}}{10000}\left[i a_{1}+\left(b_{2}+i a_{2}\right)\left(\frac{Z}{R}\right)+\left(b_{3}+i a_{3}\right)\left(\frac{Z}{R}\right)^{2}+\left(b_{4}+i a_{4}\right)\left(\frac{Z}{R}\right)^{3}+\cdots\right]
\end{aligned}
$$

$$
b_{2}=10000 \frac{B_{2}}{B_{1}} \quad b_{3}=10000 \frac{B_{3}}{B_{1}} \quad a_{1}=10000 \frac{A_{1}}{B_{1}} \quad a_{2}=10000 \frac{A_{2}}{B_{1}} \quad \ldots
$$

The same expression can be written for a quadrupole

(normal) quadrupole

$$
\vec{B}_{i d}(x, y)=B_{2}[x \vec{\jmath}+y \vec{\imath}] \frac{1}{R}
$$

$$
\begin{aligned}
& B_{y}(z)+i B_{x}(z)= \\
& =B_{2} \frac{z}{R}+\frac{B_{2}}{10000}\left[i a_{2}\left(\frac{z}{R}\right)+\left(b_{3}+i a_{3}\right)\left(\frac{z}{R}\right)^{2}+\left(b_{4}+i a_{4}\right)\left(\frac{z}{R}\right)^{3}+\cdots\right] \\
& \quad b_{3}=10000 \frac{B_{3}}{B_{2}} \quad b_{4}=10000 \frac{B_{4}}{B_{2}} \quad a_{2}=10000 \frac{A_{2}}{B_{2}} \quad \cdots
\end{aligned}
$$

The allowed / not-allowed harmonics refer to some terms that shall / shall not cancel out thanks to design symmetries
fully symmetric dipoles
allowed: $B_{1}, b_{3}, b_{5}, b_{7}, b_{9}$, etc.
not-allowed: all the others

half symmetric dipoles
allowed: $B_{1}, b_{2}, b_{3}, b_{4}, b_{5}$, etc.
not-allowed: all the others
fully symmetric quadrupoles
allowed: $\mathrm{B}_{2}, \mathrm{~b}_{6}, \mathrm{~b}_{10}, \mathrm{~b}_{14}, \mathrm{~b}_{18}$, etc. not-allowed: all the others

fully symmetric sextupoles
allowed: $B_{3}, b_{9}, b_{15}, b_{21}$, etc.
not-allowed: all the others

The field quality is often also shown with a $\Delta B / B$ plot

$$
\frac{\Delta B}{B}=\frac{B(x, y)-B_{i d}(x, y)}{B_{i d}(x, y)}
$$

done on one component, usually B_{y} for a dipole

$\Delta B / B$ can (at least locally) be expressed from the harmonics: this is the expansion for a dipole

$$
\begin{aligned}
& B_{y, i d}(x)=B_{1} \\
& B_{y}(x)=B_{1}+\frac{B_{1}}{10000}\left[b_{2}\left(\frac{x}{R}\right)+b_{3}\left(\frac{x}{R}\right)^{2}+b_{4}\left(\frac{x}{R}\right)^{3}+\cdots\right] \\
& \frac{\Delta B}{B}(x)=\frac{1}{10000}\left[b_{2}\left(\frac{x}{R}\right)+b_{3}\left(\frac{x}{R}\right)^{2}+b_{4}\left(\frac{x}{R}\right)^{3}+\cdots\right]
\end{aligned}
$$

1. Introduction, jargon, general concepts and formulae
2. Resistive magnets
3. Superconducting magnets
4. Tutorial with FEMM

Resistive magnets are in most cases "iron-dominated": the BH response of the yoke material is important

curves for typical M1200-100 A electrical steel

These are typical fields for resistive dipoles and quadrupoles, taken from machines at CERN

PS @ 26 GeV
combined function bending $B=1.5 \mathrm{~T}$

SPS @ 450 GeV bending

$$
\begin{aligned}
& B=2.0 \mathrm{~T} \\
& B_{\text {pole }}=21.7 * 0.044=0.95 \mathrm{~T}
\end{aligned}
$$

TI2 / TI8 (transfer lines SPS to LHC, @ 450 GeV)
bending quadrupole

$$
\mathrm{B}=1.8 \mathrm{~T}
$$

$$
\mathrm{B}_{\text {pole }}=53.5 * 0.016=0.86 \mathrm{~T}
$$

This is the (average) transfer function field B vs. current I for the SPS main dipoles

If the magnet is not dc, then an rms power / current is taken, considering the duty cycle

$$
P_{r m s}=R I_{r m s}^{2}=\frac{1}{T} \int_{0}^{T} R[I(t)]^{2} d t
$$

for a pure sine wave

$$
I_{r m s}=\frac{I_{p e a k}}{\sqrt{2}}
$$

for a linear ramp from $0 \quad I_{r m s}=\frac{I_{\text {peak }}}{\sqrt{3}}$

This is a cycle to 2.0 GeV of the PSB at CERN

For resistive coils, the material is most often copper, sometimes aluminum

Cu
raw metal price $\quad \approx 8400 \$ /$ ton electrical resistivity $1.72 \cdot 10^{-8} \Omega / \mathrm{m}$ density $\quad 8.9 \mathrm{~kg} / \mathrm{dm}^{3}$

Al
≈ 2300 \$/ton
$2.65 \cdot 10^{-8} \Omega / \mathrm{m}$
$2.7 \mathrm{~kg} / \mathrm{dm}^{3}$

LHCb detector dipole Al coils coil mass $2 \times 25 \mathrm{t}$ power $2 \times 2.1 \mathrm{MW}$

These are the most common types of resistive dipoles

C

H

window frame (O)

with windings on both backlegs

The magnetic circuit is dimensioned so that the pole is wide enough for field quality, and there is enough room for the flux in the return legs

$$
w_{\text {pole }} \cong w_{G F R}+2.5 h
$$

$$
B_{l e g} \cong B_{g a p} \frac{w_{p o l e}+1.2 h}{w_{l e g}}
$$

The Ampere-turns are a linear function of the gap and of the B field (at least up to saturation)

$$
\begin{gathered}
N I=\oint \vec{H} \cdot \overrightarrow{d l}=\frac{B_{F e}}{\mu_{0} \mu_{r}} \cdot l_{F e}+\frac{B_{g a p}}{\mu_{0}} \cdot h \cong \frac{B_{g a p} h}{\mu_{0}} \\
N I=\frac{B h}{\eta \mu_{0}} \quad \eta=\frac{1}{1+\frac{1}{\mu_{r}} \frac{l_{F e}}{h}}
\end{gathered}
$$

The same can be solved using magnetic reluctances and Hopkinson's law, which is a parallel of Ohm's law

$$
\begin{array}{ll}
\mathcal{R}=\frac{\mathrm{NI}}{\Phi} & \mathrm{R}=\frac{V}{I} \\
\mathcal{R}=\frac{l}{\mu_{0} \mu_{r} A} & \mathrm{R}=\frac{l}{\sigma S} \\
\eta=\frac{1}{1+\frac{\mathcal{R}_{F e}}{\mathcal{R}_{g a p}}} &
\end{array}
$$

Example of computation of Ampere-turns and current

central field	$B=1.5 \mathrm{~T}$
total gap	80 mm
$\eta \cong 0.97$	

$\mathrm{NI}=\left(1.5^{*} 0.080\right) /\left(0.97^{*} 4^{*} \mathrm{pi}^{*} 10^{\wedge}-7\right)=98446 \mathrm{~A}$ total
low inductance option
64 turns, $\mathrm{I} \cong 98500 / 64=1540 \mathrm{~A}$
$\mathrm{L}=62.9 \mathrm{mH}, \mathrm{R}=15.0 \mathrm{~m} \Omega$
low current option
204 turns, I $\cong 98500 / 204=483 \mathrm{~A}$
$\mathrm{L}=639 \mathrm{mH}, \mathrm{R}=160 \mathrm{~m} \Omega$

Besides the number of turns, the overall size of the coil depends on the current density, which drives the resistive power consumption (linearly)

$$
\text { ex. } \mathrm{NI}=50000 \mathrm{~A}(\mathrm{rms})
$$

These are common formulae for the main electric parameters of a resistive dipole (1/2)

Ampere-turns (total) $\quad N I=\frac{B h}{\eta \mu_{0}}$
current

$$
I=\frac{(N I)}{N}
$$

resistance (total) $\quad R=\frac{\rho N L_{\text {turn }}}{A_{\text {cond }}}$
inductance

$$
\begin{aligned}
L \cong & \eta \mu_{0} N^{2} A / h \\
& A \cong\left(w_{p o l e}+1.2 h\right)\left(l_{F e}+h\right)
\end{aligned}
$$

These are common formulae for the main electric parameters

 of a resistive dipole (2/2)voltage

$$
V=R I+L \frac{d I}{d t}
$$

resistive power (rms)

$$
\begin{aligned}
P_{r m s} & =R I_{r m s}^{2} \\
& =\rho j_{r m s}^{2} V_{c o n d} \\
& =\frac{\rho L_{t u r n} B_{r m s} h}{\eta \mu_{0}} j_{r m s}
\end{aligned}
$$

magnetic stored energy $\quad E_{m}=\frac{1}{2} L I^{2}$

The table describes the field quality - in terms of allowed multipoles - for the different layouts of these examples

	C-shaped	H-shaped	O-shaped
b_{2}	1.4	0	0
$\mathrm{~b}_{3}$	-88.2	-87.0	0.2
$\mathrm{~b}_{4}$	0.7	0	0
$\mathrm{~b}_{5}$	-31.6	-31.4	-0.1
$\mathrm{~b}_{6}$	0.1	0	0
$\mathrm{~b}_{7}$	-3.8	-3.8	-0.1
$\mathrm{~b}_{8}$	0.0	0	0
$\mathrm{~b}_{9}$	0.0	0.0	0.0

$$
\begin{aligned}
& \mathrm{b}_{\mathrm{n}} \text { multipoles in units of } 10^{-4} \text { at } \mathrm{R}=17 \mathrm{~mm} \\
& \mathrm{NI}=20 \mathrm{kA}, \mathrm{~h}=50 \mathrm{~mm}, \mathrm{w}_{\text {pole }}=80 \mathrm{~mm}
\end{aligned}
$$

These are the most common types of resistive quadrupoles

These are useful formulae for standard resistive quadrupoles

pole tip field

$$
B_{p o l e}=G r
$$

Ampere-turns (per pole) $\quad N I=\frac{G r^{2}}{2 \eta \mu_{0}}$
current

$$
I=\frac{(N I)}{N}
$$

resistance (total)

$$
R=4 \frac{\rho N L_{\text {turn }}}{A_{\text {cond }}}
$$

These are useful formulae for the main cooling parameters of a water-cooled resistive magnet
cooling flow $\quad Q_{t o t} \cong 14.3 \frac{P}{\Delta T} \quad Q_{t o t} \cong N_{\text {hydr }} Q$
water velocity $\quad v=\frac{1000}{15 \pi d^{2}} Q$

Reynolds number $\quad R e \cong 1400 d v$
pressure drop

$$
\Delta p=60 L_{\text {hydr }} \frac{Q^{1.75}}{d^{4.75}}
$$

The ideal poles for dipole, quadrupole, sextupole, etc. are lines of constant scalar potential
dipole
$\rho \sin (\theta)= \pm h / 2 \quad y= \pm h / 2$
straight line
quadrupole
$\rho^{2} \sin (2 \theta)= \pm r^{2} \quad 2 x y= \pm r^{2} \quad$ hyperbola
sextupole
$\rho^{3} \sin (3 \theta)= \pm r^{3} \quad 3 x^{2} y-y^{3}= \pm r^{3}$

As an example, this is the pole tip used in the SESAME quadrupoles vs. the theoretical hyperbola

This is the lamination of the LEP main bending magnets, with the pole shims well visible

In 3D, the longitudinal dimension of the magnet is described by a magnetic length

$$
l_{m} B_{0}=\int_{-\infty}^{\infty} B(Z) d Z
$$

The magnetic length can be estimated at first order with simple formulae

$$
l_{m}>l_{F e}
$$

dipole

$$
l_{m} \cong l_{F e}+h
$$

quadrupole
$l_{m} \cong l_{F e}+0.80 r$

There are many different options to terminate the pole ends, depending on the type of magnet, its field level, etc.

DIAMOND dipole

Usually two dipole elements are found in lattice codes: the sector dipole (SBEND) and the parallel faces dipole (RBEND)

top views

The two types of dipoles are slightly different in terms of focusing, for a geometric effect

- and anything in between (playing with the edge angles) -

1. Introduction, jargon, general concepts and formulae
2. Resistive magnets
3. Superconducting magnets (thanks to Luca Bottura for the material of many slides)
4. Tutorial with FEMM

This is a history chart of superconductors, starting with Hg all the way to HTS (High Temperature Superconductors)

Superconductivity makes possible large accelerators with fields well above 2 T

This is a summary of (somehow) practical superconductors

	LTS			HTS		
material	$\mathrm{Nb}-\mathrm{Ti}$	$\mathrm{Nb}_{3} \mathrm{Sn}$	MgB_{2}	REBCO	BSCCO	Fe based
year of discovery	1961	1954	2001	1987	1988	2008
$\mathrm{~T}_{\mathrm{c}}[\mathrm{K}]$	9.2	18.2	39	≈ 93	$95 / 108$	up to 58
$\mathrm{B}_{\mathrm{c} 2}[\mathrm{~T}]$	≈ 14.5	≈ 30	>30	$120 \ldots 250$	≈ 200	>100

The field in the aperture of a superconducting dipole can be derived using Biot-Savart law (in 2D)

$$
B_{\theta}=\frac{\mu_{0} I}{2 \pi \rho} \quad \text { Biot-Savart law for an infinite wire }
$$

$$
\begin{gathered}
B=\frac{2 \mu_{0} \sin \varphi}{\pi} j w \\
\text { for a sector coil } \\
B=\frac{\sqrt{3} \mu_{0}}{\pi} j w
\end{gathered}
$$

for a 60 deg sector coil

This is how it would look like one aperture of the LHC dipoles at 8.3 T , with two different current densities (without iron)

$j=400 \mathrm{~A} / \mathrm{mm}^{2}$
$\mathrm{w}=30 \mathrm{~mm}$
$\mathrm{NI}=1.2 \mathrm{MA}$
$P=14.9 \mathrm{MW} / \mathrm{m}$ (if Cu at room temp.)

$$
\begin{aligned}
& \mathrm{j}=40 \mathrm{~A} / \mathrm{mm}^{2} \\
& \mathrm{w}=300 \mathrm{~mm} \\
& \mathrm{NI}=4.5 \mathrm{MA} \\
& \mathrm{P}=6.2 \mathrm{MW} / \mathrm{m} \text { (if } \mathrm{Cu} \text { at room temp.) }
\end{aligned}
$$

This is the actual coil of the LHC main dipoles (one aperture), showing the position of the superconducting cables

Around the coils, iron is used to close the magnetic circuit

The allowable current density is high - though finite - and it depends on the temperature and the field

The maximum achievable field (on paper) depends on the amount of conductor and on the superconductor's critical line

Nb -Ti critical surface $\longrightarrow \mathrm{I}_{\mathrm{C}}=\mathrm{J}_{\mathrm{C}} \times \mathrm{A}_{\mathrm{SC}} \longrightarrow \mathrm{Nb}$-Ti critical current $\mathrm{I}_{\mathrm{C}}(\mathrm{B})$

In practical operation, margins are needed with respect to this short sample limit

This is the best (Apr. 2018) critical current for several superconductors
 Applied Superconductivity Center at NHMFL

The overall current density is lower than the current density on the superconductor

insulation / void

$$
\begin{aligned}
& j_{\text {overall }}=\frac{I}{w_{\text {cable }} t_{\text {cable }}} \\
& j_{\text {cond }}=\frac{I}{N_{\text {strand }} \frac{\pi d_{\text {strand }}^{2}}{4}} \\
& j_{s c}=\left(1+v_{C u-s c}\right) j_{\text {cond }} \\
& v_{C u-s c}=\frac{A_{C u}}{A_{s c}}
\end{aligned}
$$

$w_{\text {cable }}$

The forces can be very large, so the mechanical design is important

Nb-Ti LHC MB @ 8.3 T
$F_{x} \approx 350$ t per meter
precision of coil positioning: 20-50 $\mu \mathrm{m}$

$F_{z} \approx 40 \mathrm{t}$

The coil cross sections of several superconducting dipoles show a certain evolution; all were (are) based on $\mathrm{Nb}-\mathrm{Ti}$

Tevatron

HERA

RHIC

LHC (one aperture)

Also the iron, the mechanical structure and the operating temperature can be quite diverse

Tevatron
76 mm bore
$\mathrm{B}=4.3 \mathrm{~T}$
$\mathrm{T}=4.2 \mathrm{~K}$
first beam 1983

RHIC

75 mm bore
$B=5.0 \mathrm{~T}$
80 mm bore
$\mathrm{B}=3.5 \mathrm{~T}$
$\mathrm{T}=4.3-4.6 \mathrm{~K}$
first beam 2000

LHC
56 mm bore
$\mathrm{B}=8.3 \mathrm{~T}$
$\mathrm{T}=1.9 \mathrm{~K}$
first beam 2008

This is how they look in their machines

1. Introduction, jargon, general concepts and formulae
2. Resistive magnets
3. Superconducting magnets
4. Tutorial with FEMM

As an example, we will do a 2D model of a resistive dipole for HIE-ISOLDE

There are different programs used for magnetic simulations

1. OPERA-2D and OPERA-3D, by Dassault Systèmes
2. ROXIE, by CERN
3. POISSON, by Los Alamos
4. FEMM
5. RADIA, by ESRF
6. ANSYS
7. Mermaid, by BINP
8. COMSOL

Here are a few extra references (for FEMM and the magnet of

 the tutorial)1. Finite Element Method Magnetics
www.femm.info
2. T. Zickler, Numerical design of a normal-conducting, iron-dominated electro-magnet using FEMM 4.2, JUAS2016 https://indico.cern.ch/event/471931/contributions/1149654 [though you need to ask for access now]
3. J. Bauche and A. Aloev, Design of the beam transfer line magnets for HIE-ISOLDE, IPAC2014 conference, Dresden https://accelconf.web.cern.ch/IPAC2014/papers/tupro104.pdf This describes the bending magnet of the tutorial
4. For questions specific to latest FCC-ee magnets development Jeremie.Bauche@cern.ch

Here is the geometry in the FEMM preprocessor and the

 solution in the postprocessor of the HIE-ISOLDE dipole (2D)

For convenience, here are a few details about the geometry of the HIE-ISOLDE dipole, for the tutorial

yoke		
	$\mathrm{x}[\mathrm{mm}]$	$\mathrm{y}[\mathrm{mm}]$
1	0	25
2	71	25
3	71	24.2
4	90	24.2
5	105	60
6	105	295
7	55	345
8	-409	345
9	-459	295
10	-459	0
11	-249	0
12	-249	127
13	-105	127

$$
\begin{aligned}
& \text { first corner at }(127,122) \mathrm{mm} \\
& \mathrm{w}_{\text {coil }}=99 \mathrm{~mm} \\
& \mathrm{~h}_{\text {coil }}=22 \mathrm{~mm} \\
& \mathrm{NI}=18 \times 450 \mathrm{~A}
\end{aligned}
$$

Overall, this is a short decalogue for a FEMM simulation

1. Create a new file, "magnetics" category
2. Set main problem parameters (ex. planar, $\mathrm{mm}, 0$ frequency)
3. Define the geometry (iron, coil, air, background)
4. Load and set material properties (on regions)
5. Set circuits properties
6. Set and apply boundary conditions on lines (see next slide)
7. Mesh and refine mesh if needed
8. Solve
9. Postprocess
10. Solve with a different mesh and postprocess to check

Here, as I often forget, the two boundary properties that we use in FEMM

B parallel

B perpendicular

(this is sort of implicit when using linear triangles, see FEMM documentation)

Here, as I often forget as well, some hot keys for the preprocessor (more in the FEMM manual)

	Point Mode
<SPACE>	Edit the properties of selected points
<TAB>	Display dialog for the numerical entry of coordinates for a new point
<ESC>	Unselect all points
	Delete selected points

	Line / Arc Segment Mode
<SPACE>	Edit the properties of selected segments
<ESC>	Unselect all segments and line starting points
	Delete selected segments

And here some mouse button actions for the preprocessor (more in the FEMM manual)

Point Mode	
L click	Create a new point at the current mouse pointer location
R click	Select the nearest point
R dbl-click	Display coordinates of the nearest point

| | Line / Arc Segment Mode |
| :---: | :---: | :---: |
| L click | Select a start / end point for a new segment |
| R click | Select the nearest line / arc segment |
| R dbl-click | Display length of the nearest arc / line segment |

I prepared a short script in LUA to estimate multipoles (beta version, no warranty...)

```
-- LUA script to compute multipoles in FEMM (beta version, 16/01/2021)
-- Few standard cases are considered:
-- * dipole 180 deg (ex. C shape)
-- * dipole 90 deg (ex. H shape)
_- * quadrupole 45 deg (ex. standard symmetric quadrupole)
-- In all cases, the center is 0,0 and the skew coefficients are 0
-- The script computes two sets of multipoles:
- * one from A (the vector potential)
-- * from a radial projection of B
- They should be the same, so the difference in a way shows
-- how much to trust these numbers; the ones from A should be better,
-- as this is the finite element solution without further manipulations
-- (derivation, radial projection) while B is rougher (linear elements,
-- so B is constant over each triangle), but then it's smoothed out in the postprocessor
--
case_index = 1
-- 1 ===> dipole 180 deg (ex. C shape)
-- 2 ===> dipole 90 deg (ex. H shape)
-- 3 ===> quadrupole 45 deg (ex. standard symmetric quadrupole)
nh = 15 -- number of harmonics
np = 100 -- number of samples points
R = 20 -- reference radius (assumed in mm)
Rs = R -- sampling radius, in most case ok to keep the same as R
if case_index == 1 then
    thmax = pi
    ihmin = 1
    ihstep = 1
    ihfund = 1
elseif case_index == 2 then
    thmax = pi/2
    ihmin = 1
    ihstep = 2
    ihfund = 1
elseif case_index == 3 then
    thmax = pi/4
    ihmin = 2
    ihstep = 4
    ihfund = 2
end
```

