

Bunch Compressors

John Byrd (based on a talk by P. Piot)

Why bunch compressors?

Light sources (single-pass FEL), linear colliders and advanced accelerator physics require high peak current

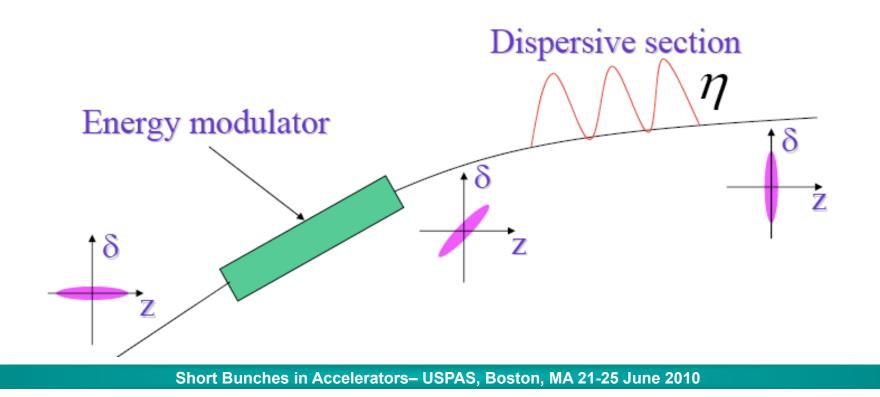
Generate short bunch directly at the e- source: - *pulse DC e- source*,

- X-band rf-gun,
- laser/plasma e- sources

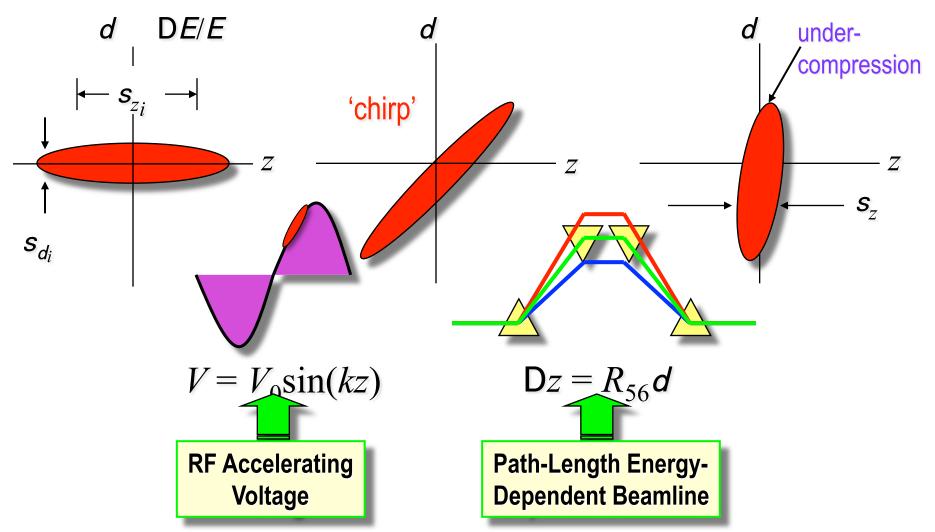
compression

Manipulate the bunch at a later stage during transport

Select part of the bunch during the transport: - *collimator, beam spoiling,*

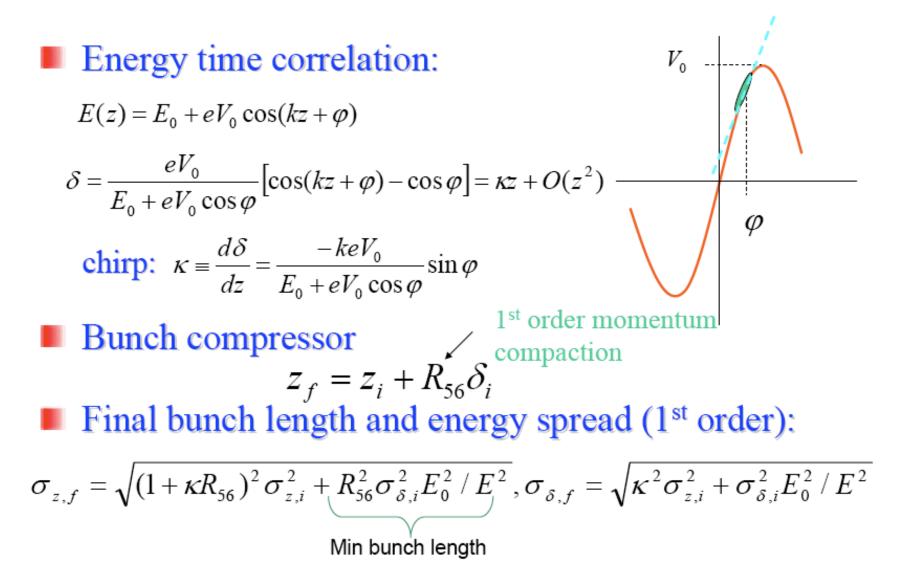

- Laser slicing, etc...

Magnetic bunch compression


Energy modulator: rf-structure, laser, wake-field
 Non-isochronous section

In practice: multi-stage compression

Chicane Bunch Compression



To compress a bunch longitudinally, trajectory in dispersive region must be

shorter for tail of the bunch than it is for the head.

Linear Effects

Nonlinear effects

 Energy time correlation: δ = κz + μz² + O(z³)

 Bunch compressor
 z_f = z_i + R₅₆δ_i + T₅₆₆δ_{i²}

 Final bunch length is minimized if

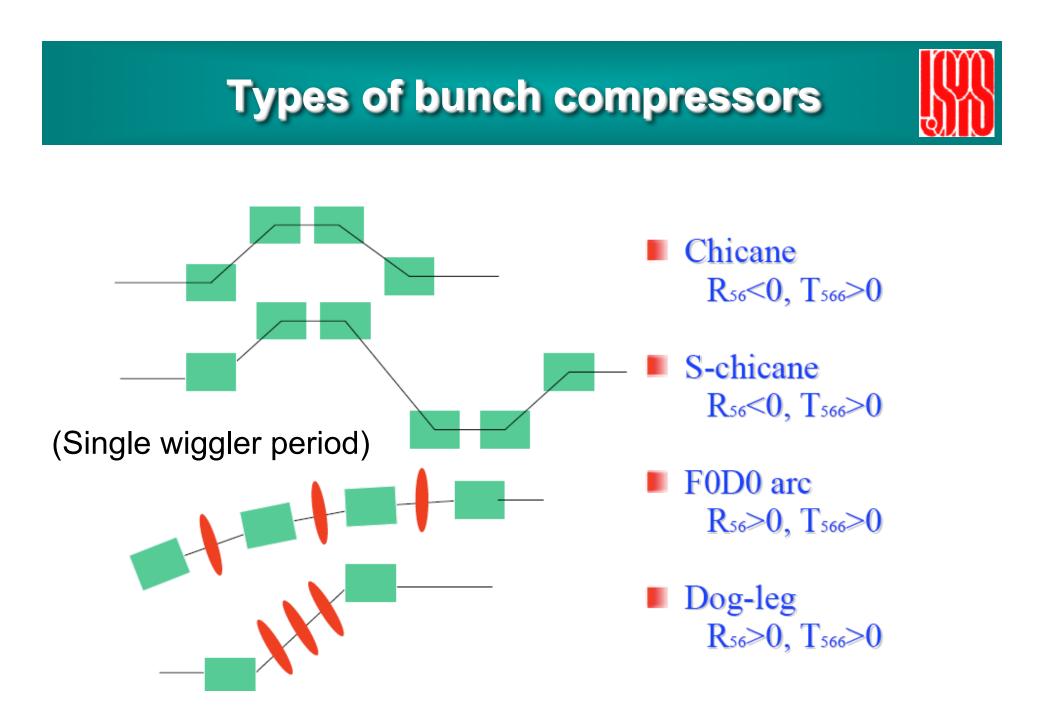
$$0 = z_i (1 + \kappa R_{56}) + z_i^2 (\mu R_{56} + \kappa^2 T_{566})$$

Limit achievable minimum
Bunch length

2nd order momentum compaction

 φ

 V_0



How short can the bunch be compressed?

Can low emittance be maintained?

How large are the effects of space charge and coherent synchrotron radiation in bunch compression?

Different types of bunch compressors

- Chicane : Simplest type with a 4-bending magnets for bunch compression
- Double chicane : R₅₆ is sum of the R₅₆ values for each chicane.
- Wiggler type : This type can be used when a large R₅₆ is required, It is also possible to locate quadrupole magnets between dipole magnets where dispersion passes through zero, allowing continuous focusing across these long systems.
- Arc type : R₅₆ can be conveniently adjusted by varying betatron phase advance per cell in the bend plane. The systems chromatic aberrations, introduce large beamline geometry excursions and produce many well aligned components.

Longitudinal particle motion in bunch compressor: matrix formalism

When beam passes a bunch through a RF cavity on the zero crossing of the voltage (i.e. without acceleration) $z_1 = z_0$

$$\delta_1 = \delta_0 + \frac{eV_{RF}}{E_0} \cos\left(\frac{\pi}{2} - k_{RF} z_0\right) \qquad \qquad \mathbf{k_{rf}} = 2\mathbf{pf_{rf}}/\mathbf{c}$$

In general, when reference particle crosses at some f_{rf} that is not be zero crossing. Then reference energy of the beam is changed from E_o to E_1 .

$$E_i = E_o(1 + \delta_0)$$

$$E_f = E_1(1 + \delta_1) = E_i + eV_{rf} \cos(\varphi_{rf} - k_{rf} z_o)$$

$$E_1 = E_o + eV_{rf} \cos(\varphi_{rf})$$

Then,

$$\delta_{1} = \frac{E_{o}(1+\delta_{0}) + eV_{RF}\cos(\phi_{rf} - k_{rf}z_{o})}{E_{0} + eV_{rf}\cos(\phi_{rf})} - 1$$

Longitudinal particle motion in bunch compressor: matrix formalism

To first order in $eV_{rf}/E_o \ll 1$,

$$z_{1} = z_{0}$$

$$\delta_{1} = \delta_{0} \left(1 - \frac{eV_{RF} \cos(\phi_{rf})}{E_{0}} \right) + \frac{eV_{RF}}{E_{0}} \left(\cos(\phi_{rf} - k_{rf} z_{o}) - \cos(\phi_{rf}) \right)$$

In a linear approximation for RF,

$$\begin{pmatrix} z_1 \\ \delta_1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 \\ R_{65} & R_{66} \end{pmatrix} \cdot \begin{pmatrix} z_0 \\ \delta_0 \end{pmatrix}$$

$$R_{65} = \frac{eV_{RF}}{E_0} \sin(\phi_{RF}) k_{RF}$$

$$R_{66} = 1 - \frac{eV_{RF}}{E_0} \cos(\phi_{RF})$$

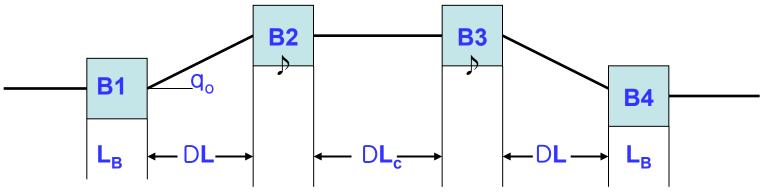
Longitudinal particle motion in bunch compressor: matrix formalism

In a wiggler (or chicane), $z_2 = z_1 + R_{56}\delta_1 + T_{566}\delta_1^2 + U_{5666}\delta_1^3 \dots$ $\delta_2 = \delta_1$

In a linear approximation $T_{566}d_1 << R_{56}$, $\begin{pmatrix} z_2 \\ \delta_2 \end{pmatrix} \approx \begin{pmatrix} 1 & R_{56} \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} z_1 \\ \delta_1 \end{pmatrix}$

Total transformation

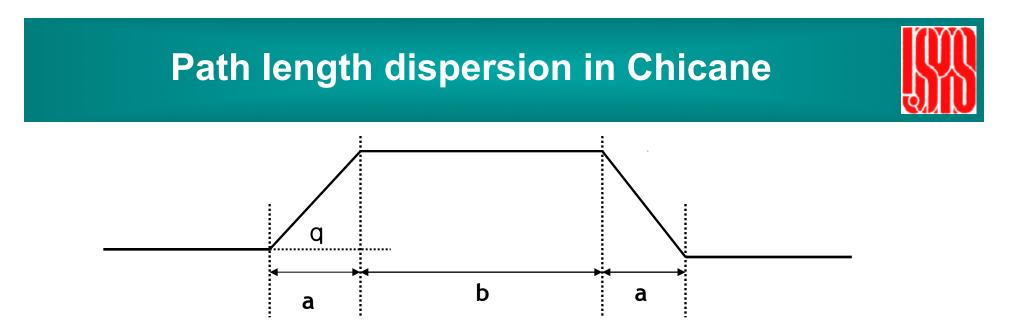
$$\begin{pmatrix} z_2 \\ \delta_2 \end{pmatrix} \approx \mathbf{M} \cdot \begin{pmatrix} z_0 \\ \delta_0 \end{pmatrix} \qquad \mathbf{M} = \begin{pmatrix} 1 + R_{65}R_{56} & R_{56}R_{66} \\ R_{65} & R_{66} \end{pmatrix}$$


For $f_{rf} = \mathbb{K} p/2$ (i.e. no acceleration), $R_{66}=1$, the transformation matrix is sympletic, which means that longitudinal emittance is a conserved quantitiy.

$$\varepsilon = \sqrt{\sigma_z^2 \sigma_{\delta}^2 - s_{z\delta}^2}, \sigma_z^2 = \langle z^2 \rangle = \beta \varepsilon, \sigma_{\delta}^2 = \langle \delta^2 \rangle = \gamma \varepsilon, \sigma_{z\delta} = \langle z\delta \rangle = \alpha \varepsilon$$

Zeuthen Chicane

• Zeuthen Chicane : a benchmark layout used for CSR calculation comparisons at 2002 ICFA beam dynamics workshop


- Bend magnet length : $L_B = 0.5m$
- Drift length B1-B2 and B3-B4(projected) : DL = 5m
- Drift length B2-B3 : $DL_c = 1m$
- Bend radius : r = 10.3m
- Effective total chicane length (L_T-DL_c) = 12m
- Bending angle : q_o = 2.77 deg
- Momentum compaction : R₅₆ = -25 mm
- 2nd order momentum compaction : T₅₆₆ = 38 mm Initial bunch length : 0.2 mm
- **EXAMPLE 1** Total projected length of chicane : $L_T = 13 \text{ m}$ Final bunch length : 0.02 mm

Bunch charge

Electron energy

: q = 1nC

: E = 5 GeV

If a particle at reference energy is bent by q_o , a particle with relative energy error d is bent by $q=q_o/(1+d)$.

Path length from first to final dipoles is

$$s = \frac{2a}{\cos(\theta)} + b = 2a \left[\cos\left(\frac{\theta_{o}}{1+\delta}\right) \right]^{-1} + b \approx 2a + a \left(\frac{\theta_{o}}{1+\delta}\right) + b$$

$$R_{56} = \frac{ds}{d\delta_{\delta=0}} = -2a\theta_{o}^{2}$$

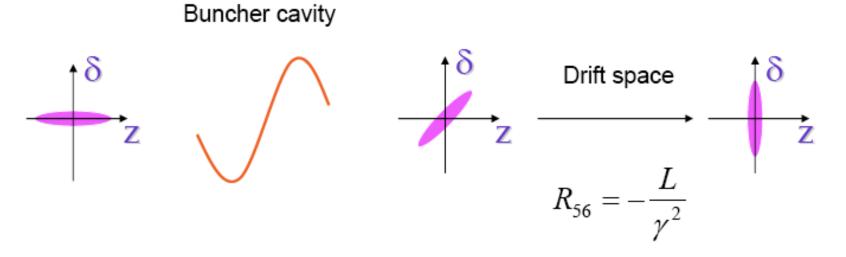
Path length dispersion in Chicane

Path length in a chicane is

$$\Delta s = s(\delta) - s(\delta = 0) \approx a \left(\frac{\theta_o}{1+\delta}\right)^2 - a \theta_o^2 = \frac{1}{2} R_{56} \left(1 - \frac{1}{(1+\delta)^2}\right)$$

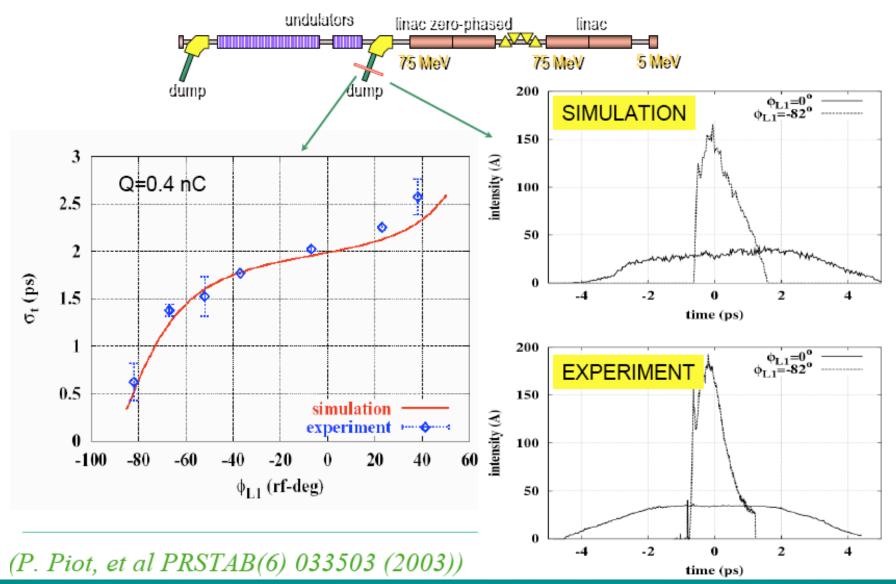
By performing a Taylor expansion about d=0

$$\Delta s \approx R_{56} \delta - \frac{3}{2} R_{56} \delta^2 + 2R_{56} \delta^3 - \dots$$

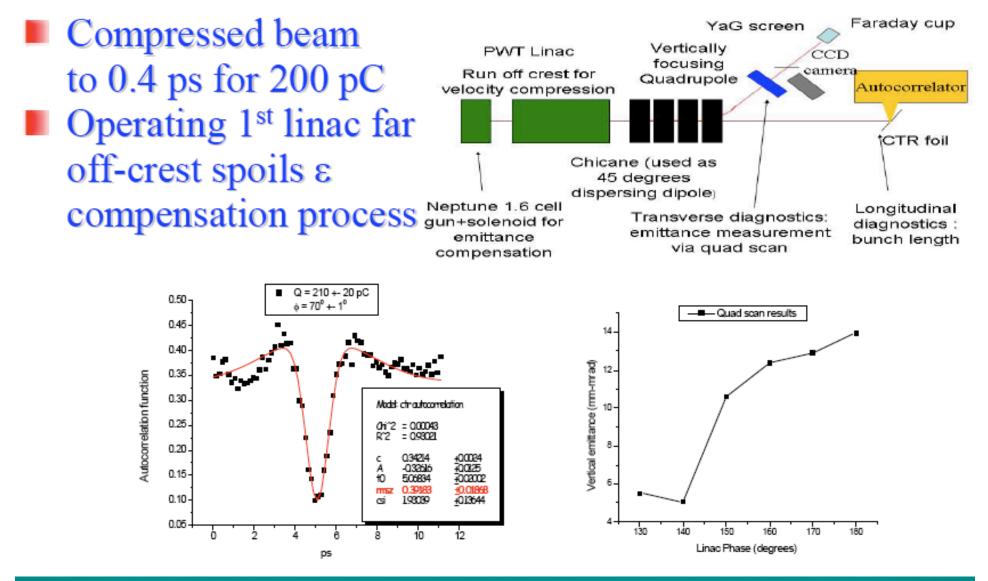

$$T_{566} \approx -\frac{3}{2}R_{56}$$
 $U_{5666} \approx 2R_{56}$

For large d, d² and d³ terms may cause non-linear deformations of the phase space during compression.

Ballistic bunch compression



- Usually used at very low energy, typically downstream of DC-gun
- Can be viewed as thin lens limit of velocity bunching
- Buncher imparts an energy chirp large enough to yield compression in a downstream drift


SDL Experiment

UCLA Experiment

Homework

- Calculate bunch compression for the Zeuthen Chicane
 - Calculate R56
 - Compute