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Introduction

• Geneva region

• >~90 km circumference

• 4 collision points

• Double-ring configuration

• Collision energies between 90 and 365 GeV

Goals to extend current research at LHC:

• Precision measurements of the properties of the 
Higgs boson

• Z and W bosons

• Top quark

• Higgs coupling to Z
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FCC-ee layout
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FCC-ee layout
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FCC-ee Design 
Parameters
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FCC-ee Booster 
Beam Optics
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FCC-ee Booster - ARC FODO cell
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https://indico.cern.ch/event/1101643/contributions/4635249/attachments/2380938/4068188/Booster%20Design.pdf



FODO design: space for diagnostics

• “Your accelerator is only as good as its diagnostics” – Emmanuel Tsesmelis

Total length:
52.264m
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Key:

Dipole

Quadrupole

Sextupole



FODO design: space for diagnostics

• Ideally BPMs are situated next to dipole corrector (kicker) magnets

• Why?

• BPMs ~ 10cm long

• Dipole Kickers 20-30cm long

• ➔ estimate 35-45cm required for combined unit
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FODO design: space for diagnostics

0.150 m

Total length:
52.264m

➔ ‘Minimum’: 
51.832m
(for given dipoles)

➔ ‘Maximum’ 
Length left 
to remove:
~1270m

0.241m 0.650m

0.891 m

Total drift space:

1. 1.432m (SD,SF)
2. 1.932m (SD,D)
3. 2.432m    (D,D)
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Comparison of Sextupole Schemes
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Comparison of Dispersion Suppressor Schemes

Half Bend SchemeQuadrupole scheme

Introduce 6 flexible quadrupole magnets that correct for the six 
boundary conditions at the end:
-> DX=DDX=0 (no dispersion)
-> βx/y- & αx/y-functions must be continuous

Replace n/2 full arc cells with n arc cells with half the bending 
field, where n depends on the phase advance (for 90°/90° n=2) 
to naturally get to zero dispersion.

Note: If the cell length also changes, more
flexible quadrupoles are needed.
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https://indico.cern.ch/event/361988/contributions/177
5736/attachments/1151344/1679030/Insertions_p.pdf



Comparison of Dispersion Suppressor Schemes

Matching: 10 flexible quadrupoles needed

Matching: 8 flexible quadrupoles needed

Matching: 10 flexible quadrupoles needed

Matching: 8 flexible quadrupoles needed
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Quarter of FCC-ee booster ring
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Changes in Geometry by choice of 
Dispersion Suppressor scheme
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How to further improve Half-Bend scheme

Current improvements:

•
𝜀𝑥,𝐻𝐵

𝜀𝑥,𝑄
= 0.986

• 𝛽𝑥,max 31% smaller

• 𝐷𝑥,max 9% smaller

• 0.13% less energy loss per turn “for free”

• Can we do better?
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ARC FODO 
length [m]

STR short length [m] # STR short 
FODOs per section

Total length STR 
section [m]

# flexible 
quads needed

Status quo 51.7 50.0 28 1400 8

Half Bend Optimized 51.7 51.7 27 1395.9 0

Note: These design changes will keep the length of the arc sections and the total circumference of the FCCee booster ring constant.

S [m]



Lattice Future Work

• Our optics-matching methods have been shown to be adaptable

• We recommend more investigations into the half bend scheme

• Properly ascertain straight section constraints – potential for an even 
better lattice

• Tapering may be required – how would this affect optics?
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FCC-ee Magnet 
design
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Magnet design goals

Good field region (GFR) ≔
abs 𝐵𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑−𝐵

𝐵𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
< ൞

1 × 10−4 for dipole

2 × 10−4 for quadrupole

1 × 10−3 for sextupole
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All GFRs must have a 46.67mm diameter:

- At reference aperture diameter 70mm.

- At injection energies 45.6 GeV, 80 GeV, 120 GeV, 175 GeV, 182.5 GeV



Magnets introduction

Software & toolkits:

• FEMM: Program for designing and solving electromagnetic problems on 

two-dimensional planar or axisymmetric domains

• PyFEMM: Python interface to FEMM

Benefits of non-saturating fields:

• Well-defined linear relation between current & field – design easier.

• GFR does not change with field. Therefore, designs work for all FCC-ee

operational energies.
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Dipole Designs

Based on JAI 2021-22 
C-type example

Based on IHEP CAS 
designs
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Iron dominated O-type

120 mm
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Iron dominated C-type

140 mm
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Coil dominated type

120 mm

25



Dipole - Summary

• All designs are far from iron saturation for the full range of injection 
energies.

• O-type is more compact than the C-type, but the C-type is easier to 
build/maintain.

• Iron-dominated types are easy to optimize both in FEMM and for real by 
shimming.

• The coil-dominated type is much trickier to optimize in the vertical direction 
due to the coil geometry, but its real-life field quality would be less 
susceptible to imperfections in the iron as it is merely used to shield the 
dipole.
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Quadrupole design

Goals:

- 70 mm aperture

- Δ𝐵/𝐵 < 2 × 10−4 within 20 mm radius

- Work with low current → low power consumption

Varied:

- Pole size

- Current through the coils

- Number of turns

- Materials

- Iron thickness
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Final design
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Quadrupole field analysis
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Quadrupole - Summary

Final design:

• 70 mm aperture, as required

• Good Field Region: 42.42 mm, Target: 46.67 mm

• 1.47 Tesla maximum magnetic field → low current

• Works for all injection energies
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Sextupole - designs

Iranian Light 
Source Sextupole

Iranian design + 
Hyperbolic tip

Hyperbolic poles 
v1

Hyperbolic poles 
v2

Idealised poles
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Magnet design for Iranian Light Source Facility 
storage ring
M. Razazian, F. Saeidi, S. Yousefnejad, J. Rahighi
Aug 7, 2020
Published in: JINST 15 (2020) 08, P08002
Published: Aug 7, 2020
DOI: 10.1088/1748-0221/15/08/P08002



Best design
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Removing saturation: Not yet successful
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Sextupole - Summary

34

Target (mm) GFR diameter 
(mm)

Maximum field 
(T)

Saturation? Works for all 
injection 
energies

46.67 39.8 2.6 Yes No



Magnets Future Work

Further optimisation:

• Quadrupole & Sextupole need better GFR.

• Shimming

• Get ~+5mm to GFR diameter.

• Sextupole needs to become unsaturated

• Widen poles

3D work:

• Model magnets in 3D using Opera

• Compare FEMM and Opera designs
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FCC-ee RF 
Cavity design
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RF Cavity Design
Available for every operation 

energy

- Fixed synchrotron radiation power of 50 MW per beam

45 GeV 80 GeV 120 GeV 175 GeV 182.5 GeV

Voltage requirements

0.4 GV 0.8 GV 3 GV 10 GV >10 GV

3 types of cavity to cover different requirements
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Shape/ Material consideration?

Why elliptical?

Single cell vs multicell?

• Accounts for higher order modes

Why superconducting?

• lower surface resistances

• more efficient (greater portion of 

the RF energy to accelerate the 

beam rather than be dissipated as 

heat)

• Lower power consumption

• Larger acceleration gradients

• Low ratio of peak surface fields

• Easier to fabricate
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Electromagnetic Considerations

• Maximise Rs*Q Geometry factor 

• Maximise r/Q factor 

• Minimise peak fields

• Maximise Transit time
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Superfish Optimisations

How to fix a design 

like this?

Tuning.... to satisfy

L[m] =v/2f[Hz]

Diameter tuning to 

match desired frequency

SUPERFISH is a Finite Element solver

Utilises symmetries
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Maximising 
Electromagnetic
Parameters

• Optimisation for a single cell done in Superfish

• 5 MV/m

• 400MHz
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Mid cell + End cell Optimisation at 10MV/m

After Tuning Freq = 400.00541 MHz

Asymmetrical

After Tuning Freq = 400.13717 MHz

Symmetrical
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Final 4-cell design

SUPERFISH

Frequency (MHz) 400.13867

r/Q (Ω) 449.098

Rs*Q (Ω) 705.272

Emax/E0 1.4843

Bmax/Emax 
(mT/(MV/m))

2.0429

Voltage (MV/m) 20.75
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400MHZ 4-cell cavity CST

SUPERFISH CST

Frequency (MHz) 400.13867 400.0255

r/Q (ohm) 449.098 451.511

Voltage (MV/m) 20.75 22.24 44



800MHz 5-cell Superfish
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Parameter Value

Frequency (MHz)
799.99633

Q
0.184030E+11

Rs*Q (Ω)
301.085

r/q (Ω)
436.043

Ratio of peak fields (mT/(MV/m))
2.0156

Transit-time factor 0.7771197
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800MHz 5-cell cavity
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RF Cavities Future Work

• Improve field flatness

• Power demands
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Project Conclusions
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• Beam optics
• Adaptable MADX model for FCC-ee booster established

• Estimate for max. Quadrupole and Sextupole field strengths found

• Dispersion suppressor options evaluated

• Magnets
• Different magnets have been designed that will work for all operation energies.

• Designs need to be optimised to reach the required GFR.

• Performing full 3D studies using Opera is the next step

• Three RF cavity designs to produce required acceleration gradient 
and voltage requirements at all operating energies
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Questions?
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