

HFIN High Field Magnets

Introduction to the Activities of WP1.1 at CERN

RD Line 1 Kickoff Forum Meeting: Nb₃Sn Conductors 16 February 2023

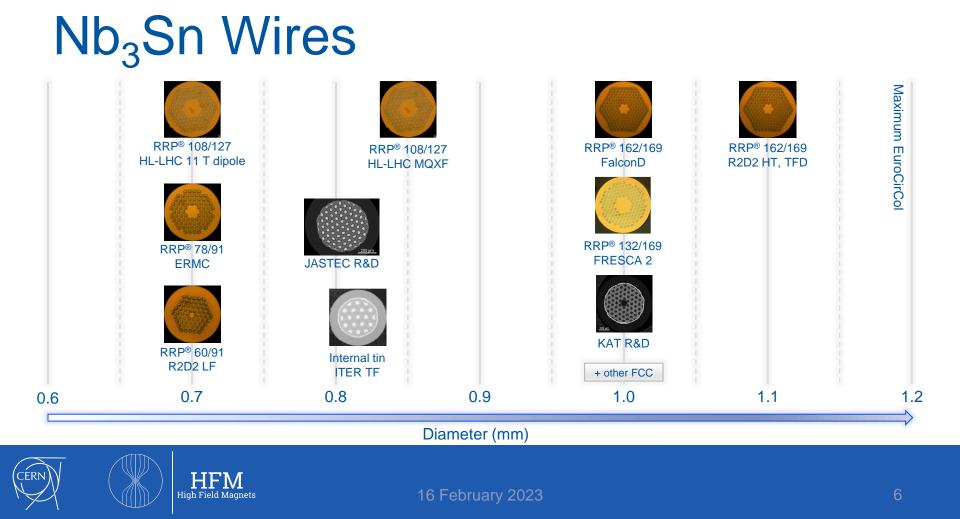
Simon C. Hopkins, Thierry Boutboul Bentejui Medina-Clavijo, Christian Barth, Jerome Fleiter, Kirtana Puthran, Amalia Ballarino

WP1.1: Aims and Challenges

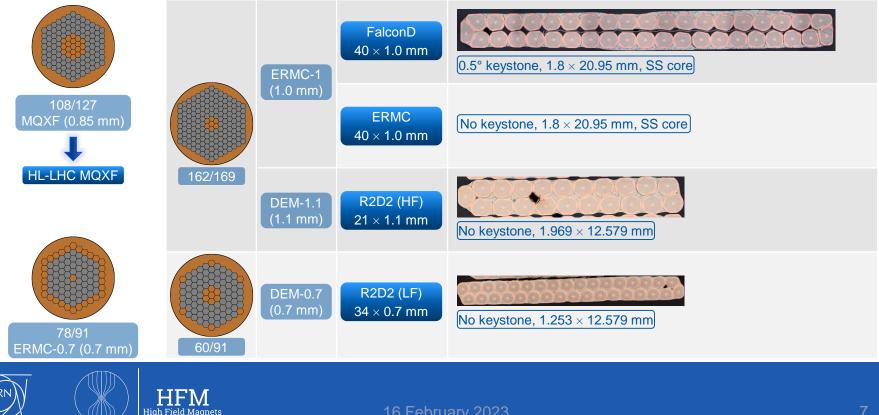
- WP1.1, Nb₃Sn Conductors for High Field Magnets, aims to:
 - Develop, characterise and qualify Nb₃Sn wire and Rutherford cables meeting the requirements for future accelerator magnets
 - To produce and qualify the Rutherford cables needed for the magnet WPs
- The pursuit of ultimate performance 14+ T dipoles invokes some key conductor challenges for example:
 - Increasing high-field J_c (target 1500 A/mm² at 4.2 K and 16 T) \rightarrow APCs, internal oxidation, etc.
 - Transverse stress → reinforcement, understanding crack behaviour, design optimisation
 - Preference for wide cables of large high- J_c strands \rightarrow magnetothermal stability

WP1.1 Activities (1)

- Conductor development, procurement, qualification and production for the magnets of RD3
 - Wire procurement
 - Industrialisation and qualification of R&D wires
 - Rutherford cable design, trials, qualification and production for CERN magnet programmes (12 T and 14+ T ultimate performance dipoles and technology development models) and collaborations (INFN FalconD, CEA R2D2)



WP1.1 Activities (2)


- Characterisation, analysis, modelling and optimisation of performance, processing and electro/thermal/mechanical characteristics
 - Heat treatment optimisation
 - Quantitative image analysis and machine learning
 - Magnetothermal stability

High Field Magnets

- Rolling and cabling deformation of strands
- Axial and transverse stress behaviour
- Mechanical properties and reinforcement
- Thermomechanical characteristics
- Modelling: mechanical, diffusion, magnetothermal
- Novel technologies for high- J_c wires
 - e.g. novel alloying, internal oxidation, APCs
 - Analysis of wire from collaborations and model samples

Nb₃Sn Wire and Cabling

Analysis of Cabling Degradation

- For the cable samples tested to date, degradation on cabling of ERMC-1 strands is:
 - Much higher than typical for HL-LHC MQXF cable

High Field Magnet

- Higher for the more compacted, keystoned FalconD trial cable than ERMC
 - Exceeds HL-LHC acceptance criterion of 5 % average I_c degradation
 - Substantial difference in RRR degradation (30 % cf. 20 %) likely to underestimate effects locally at thin edge
- The same sub-element distortion and (local) RRR degradation is likely to contribute to the degraded stability of FalconD extracted strands with the standard heat treatment

Cable	Keystone	Pitch	I_c degradation		RRR		RRR degradation	
type	(°)	(mm)	Mean	Range	Mean	Range	Mean	
FeleenD	0.426	110	5.5 %	2.2-8.6 %	202	175–232	30.9 %	4
FalconD	0.442	120	5.9 %	4.4–6.9 %	206	176–244	29.6 %	
ERMC	0	120	4.1 %	2.0-8.0 %	228	189–265	20.5 %	
MQXF	0.40	109	2.6 %				17 %	

Stability

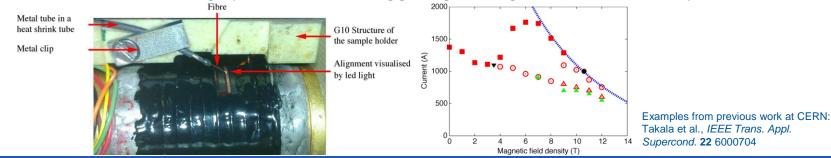
- Several causes of instability:
 - Self-field instability
 - Dominates at high field
 - Depends on J_c and strand diameter
 - Driven by uneven distribution of transport current in ramping
 - Magnetisation instability
 - Significant at low field for high magnetisation strand
 - Depends on J_c and d_{eff}


HFM

High Field Magnets

- Designing for stability includes:
 - Adiabatic stability: *d_{eff}* below threshold value
 - For RRP[®] wire: filaments merged and barrier partially reacted $\rightarrow d_{eff}$ almost fixed from geometry (wire diameter and geometrical sub-element size)
 - For distributed tin wires: depends on distribution of Nb filaments
 - Rolling or cabling deformation affects both (sub-element aspect ratio, displacement of Nb modules)
 - Dynamic stability: increasing RRR → increasing copper conductivity
 - Combination of design, materials and heat treatment optimisation

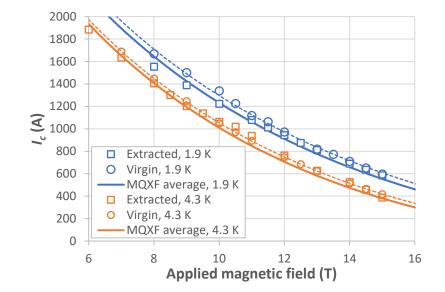
Bordini et al., IEEE Trans. Appl Supercond. 22 (3) 4705804


Evaluation of Stability

- Self-field stability assessed by *V-I* transport measurements:
 - Of most interest for medium/high field range (8–15 T); maximum current ~2000 A; both 1.9 and 4.3 K
 - Recent and continuing work at CERN: examples on next slides
- Further activities beginning:

ΗF

High Field Magnets

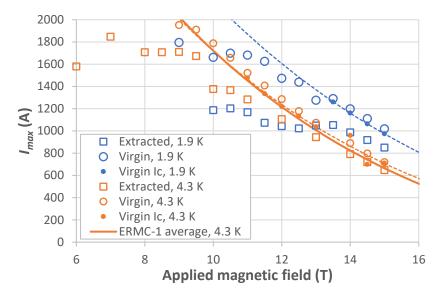

- PhD student (J. Kuczynska) at CERN and UNIGE
- V-H transport measurements and magnetisation measurements
- Recommissioning system for laser triggering of magnetothermal stability

Stability of MQXF Wire

- As a baseline reference, measurements were performed for extracted and virgin HL-LHC MQXF strands
- Over the tested range (6–15 T), no quenches occurred, and the *I_c* followed the expected field dependence both at 4.3 K and 1.9 K

High Field Magnets

Measured $I_c(B)$ for a virgin and an extracted strand from MQXFA cable production, with average MQXF virgin wire $I_c(B)$ for comparison (P43OL1123AE27, originating from spool PO08S00343A01U)

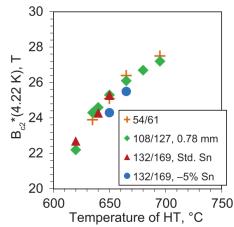

Stability of ERMC-1: Standard HT

- For ERMC-1 wire with the standard heat treatment cycle (final step 650 °C 50 h)
 - For virgin wire, at 1.9 K, quenches occur at currents less than the extrapolated *I_c* below 13 T
 - At ~10 T and below, the quench current at 1.9 K is less than that at 4.3 K
 - For an **extracted strand** from a FalconD trial cable, performance is limited by quenches below extrapolated I_c at 14 T and below

HFM

High Field Magnets

• At ~12.5 T and below, the quench current at 1.9 K is less than that at 4.3 K


Measured $I_{max}(B)$ for a virgin ERMC-1 wire (1.0 mm 162/169) and a strand extracted from a FalconD trial cable after the standard heat treatment (650 °C 50 h), with average virgin wire $I_c(B)$ for comparison

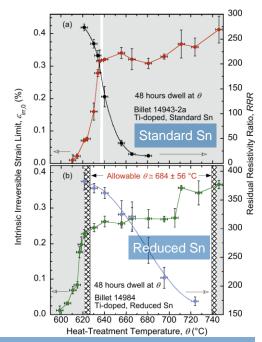
Heat Treatment Optimisation

- Optimisation of the final heat treatment step generally seeks a balance between *I_c(B)* and RRR
 - For ERMC-1, during production this was revised from 665 °C 50 h (cf. DEM-1.1) →
 650 °C 50 h to ensure the RRR spec could be met
 - Potential to further adjust that balance in exchange for improved stability and reduced cabling degradation
- Both time and temperature are already quite low literature suggests:

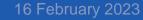
High Field Magnets

- Reducing temperature to 640 °C could reduce B_{c2} by ~1 T
- For 'standard Sn' wire, approach the 'strain irreversibility cliff' (next slide)
- Initial studies have been with reducing duration at 650 °C

Dependence of *B_{c2}* on heat treatment temperature Cooley et al. 2017, *IEEE Trans. Appl. Supercond.* **27** 6000505



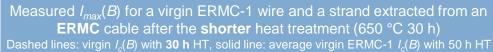
Strain Irreversibility Cliff

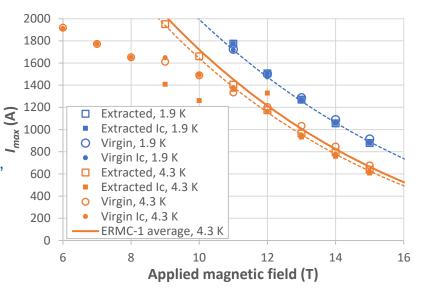

- 'Strain irreversibility cliff' (SIC, N. Cheggour): an abrupt reduction in the irreversible strain limit as a function of heat treatment temperature
 - Cliff temperature dependent on doping (Ti, Ta) and Sn stoichiometry
 - Heat treatment optimisation must *also* consider I_c and RRR
 - Much broader acceptable range for reduced Sn than standard Sn
 - First tests for standard Sn 162/169 RRP[®] suggest similar behaviour (N. Cheggour, ASC 2022)
- Provisionally associated with δ Cu-Sn:

High Field Magnets

 Collaborative heat treatment and microscopy investigation in progress at CERN and TU Freiberg

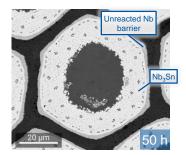
Dependence of irreversible strain limit and RRR on heat treatment temperature for Ti-doped 108/127 Cheggour et al. 2019, *Scientific Reports* **9** 5466

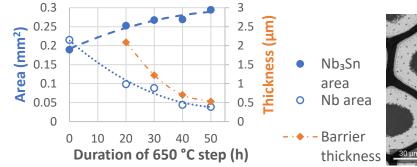



Stability of ERMC-1: Shorter HT

- With a shorter heat treatment cycle (final step 650 °C 30 h)
 - At **1.9 K**, **dramatic improvement** in stability: virgin and extracted strand follow the same $I_c(B)$ dependence, with no quenches
 - Note extracted strand is from ERMC cable, not FalconD
- The shorter 30 h step reduces *I_c* by
 9 % (no change in *B_{c2}*)
 - The stable I_c for a 30 h heat treatment exceeds the quench current for a 50 h heat treatment below ~12 T
- RRR increased ~50 %

HFN

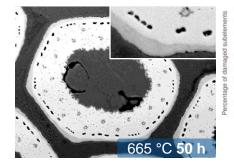

High Field Magnets

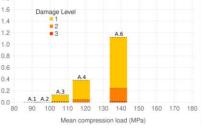


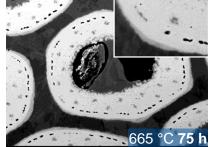
Shorter HT: Micrographs

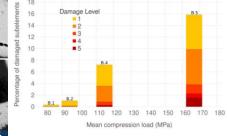
- Image analysis of electron micrographs shows:
 - The thickness of unreacted barrier decreases sharply from 20–40 h
 - Overall Nb and Nb₃Sn areas change relatively slowly from 30 h onwards
 - The optimum compromise between I_c and RRR is likely to lie in the 30–40 h range

Dependence of Nb₃Sn and Nb area, and average barrier thickness, on duration of 650 °C plateau

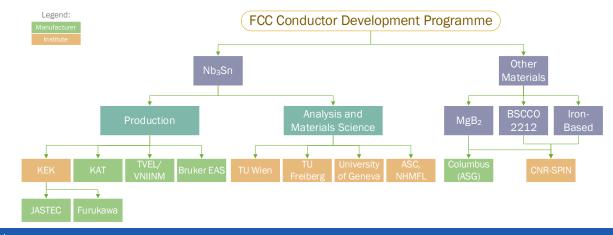

High Field Magnets


SEM micrographs of sub-elements after heat treatments with a final plateau of 30 h, 40 h and 50 h at 650 °C



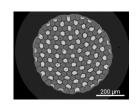

Effect of Transverse Stress

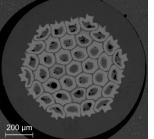
- Microscopy study of cracks induced by transverse compressive stress applied at room temperature to MQXF cables
 - Onset of cracking well below the stress at which I_c degradation is observed, ~110 MPa for standard heat treatment
 - Heat treatment dependent: onset stress significantly reduced, and damage level increased, on increasing the final plateau duration from 50 h to 75 h
 - Provisionally associated with reduced residual Nb barrier thickness

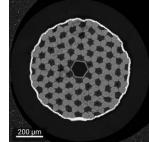


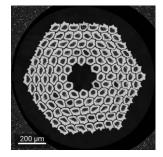
Conductor Development

- Conductor development activities for HFM have their origins in a development programme started in 2017 under the FCC study, which aimed to:
 - Advance the state of the art for Nb₃Sn wires to meet requirements for 16 T accelerator magnets
 - Foster industrial development of Nb₃Sn wires, supported by laboratory studies
 - Procure and cable Nb₃Sn wire for the magnet development programme
 - Investigate the potential of alternative superconducting materials


High Field Magnets




Conductor Development


Several iterations of JASTEC, KAT and TVEL wire validated in CERN rolling studies and/or cabling trials •

	2019	-2020	2021		
	JASTEC	TVEL	KAT	TVEL	
	Distributed tin	Distributed barrier	Distributed tin	Distributed barrier	
Diameter (mm)	0.8	1.0	1.0	1.0	
Cu/non-Cu ratio	1.0 ± 0.2	1.2 ± 0.2	1.0 ± 0.1	1.0 ± 0.1	
Nb modules (sub-els)	139	37	132	120	
d _{eff} (μm)	55	132 – 144	-	71 – 79	

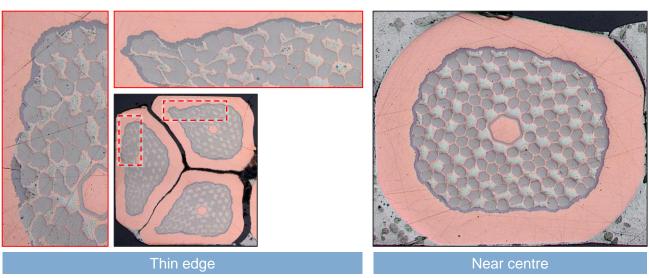
н

Distributed Tin Wire and Cabling Trials

- KAT:
 - CERN rolling studies and trial cabling of two iterations of distributed tin design developed at KAT
 - Pilot production: 20 km delivered in long piece lengths (mean 1432 m)
 - Electromechanical characterisation
 planned in UNIGE
- JASTEC:
 - Production currently being completed
 - CERN rolling and cabling trials expected in the coming months

HFM High Field Magnets

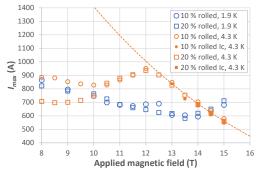
Eiswire KAT				
Quantity delivered (km)	5	20		
Mean piece length (m)	230	1432		
Diameter (mm)	1.0			
Layout	E199R192			
Modules	132 Nb + 60 Sn-Ti	138 Nb + 54 Sn-Ti		
<i>d</i> _s (μm)	45	44		
Cu/non-Cu	1.0 ± 0.1			


2020: Task 4

2021: Task 5

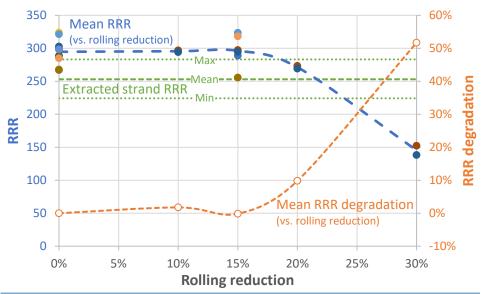
KAT Geometry After Cabling

- Near the centre of the cable width:
 - Close to uniaxial deformation, < 15 % reduction
 - Barrier intact
 - Nb modules are relatively undeformed but their separations vary
- At the edge, in the least favourable configurations:
 - Local barrier
 breaches
 - Nb modules are significantly distorted



Optical micrographs of a cross-section of the trial cable produced with KAT task 5 wire

KAT: RRR and I_c on Deformation


- Virgin wire RRR is very high (mean ~300)
- Degradation on rolling is negligible up to 15 % rolling reduction
 - increases rapidly for 20–30 % rolling
 - Extracted strand RRR remains high
- When measurable, *I_c* degradation on cabling is **low** (mean 1.3%, max 2.6%)
- But stability requires improvement

HFM

High Field Magnets

 $I_{max}(B)$ for rolled KAT 'task 5' wire

RRR for samples of KAT 'task 5' wire after rolling reductions of 0–30 %. The band of extracted strand RRR values is also marked for comparison.

16 February 2023

