#### SMA HEP REAL-TIME ANALYSIS FOR SCIENCE AND INDUSTRY

 $\langle \cdot \rangle i | i /$ 

# ESR12: Accelerated Anomaly Detection

Pratik Jawahar

Supervisors: Caterina Doglioni, Jiri Masik, Alex Oh, Maurizio Pierini









- Name: Pratik Jawahar; DOB: 24 Jan 1997 (India), Raised: NJ, USA
- Host: University of Manchester, CERN ATLAS Experiment; Start: Oct 2022
- Education
  - Undergraduate: National Institute of Technology Trichy, India (2015-2019)
    - Mechanical Engineering (Research Focus: Control Systems)
      - Minor: Humanitarian and Cognitive Science
    - Theses: •
      - Automated Control of Industrial Manipulators in Dynamic Environments
      - Reading as a Cognitive Learning Process [Minor]
  - Masters: Worcester Polytechnic institute, MA, USA (2019-2022)
    - Robotics Engineering (Research Focus: Deep Learning, Anomaly Detection)
      - Thesis: Fault Detection in Robot Swarms with Lying Agents using Unsupervised Deep Learning
  - PhD: Manchester, UK (Oct 2022-Present)
    - Particle Physics [ATLAS Experiment]
- **Relevant Experience** 
  - Summer Student at CERN (EP-CMX) [May-Aug 2018] •
    - Automation of QC testing for GEM Detectors
  - Technical Student/External at CERN (EP-CMG) [June 2020 Feb 2022]
    - Deep Learning algorithms as Trigger-Level Anomaly Detectors for New Physics Searches
- **Research Experience:** 
  - Control Algorithms, Micro-Robots, Swarm Robots, ML, CV, Audio Analytics



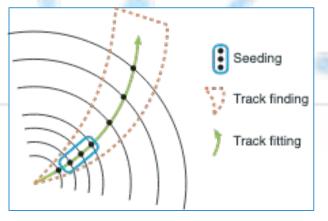






#### Project A: Heterogenous Architectures for improved Track Reconstruction








# **Tracking - ACTS**

#### • Track Reconstruction:

- Recover information about charged particles
  - how? study their interactions with highly sensitive detectors arranged in a defined detector geometry
- High pileup (planned future upgrades to the LHC) requires faster computation of tracks
- Potential solution: Heterogenous Architectures (CPU, GPU, FPGA etc.)
  - Study if a heterogenous solution is feasible
    - Measure current runtime overheads, latencies etc.
  - If feasible, prototype and test potential solutions and measure speedup vs costs incurred
  - Implementation in the context of ATLAS tracking SW



CPU: Intel i5-10600 @ 4.10Ghz, GPU: Nvidia RTX 3090 24GBs, CUDA 11.7, Nvidia driver: 515.43.04, CC. 8.6

|                        | 64 THD/BLK |          |            |            |            | 512 THD/BLK |          |          |          |            |
|------------------------|------------|----------|------------|------------|------------|-------------|----------|----------|----------|------------|
|                        |            |          |            |            | #          |             |          |          |          | #          |
|                        |            |          | Compute    | Memory     | Registers  |             |          | Compute  | Memory   | Registers  |
|                        | Cycles     | Duration | Throughput | Throughput | [register/ | Cycles      | Duration | Throughp | Throughp | [register/ |
| Function Name          | [cycle]    | [ms]     | [%]        | [%]        | thread]    | [cycle]     | [ms]     | ut [%]   | ut [%]   | thread]    |
| find_clusters          | 3,895,811  | 2.79     | 0.31       | 2.35       | 48         | 5,127,261   | 3.72     | 0.24     | 1.72     | 48         |
| count_cluster_cells    | 26,657     | 0.02     | 8.29       | 41.49      | 16         | 23,836      | 0.02     | 9.27     | 46.46    | 16         |
| connect_components     | 690,531    | 0.5      | 0.78       | 8.54       | 32         | 669,326     | 0.48     | 0.81     | 20.62    | 32         |
| create_measurements    | 752,744    | 0.54     | 2.76       | 19.11      | 70         | 675,834     | 0.51     | 3.08     | 15.95    | 70         |
| form_spacepoints       | 35,335     | 0.03     | 8.39       | 39.41      | 38         | 40,254      | 0.03     | 7.36     | 37.96    | 38         |
| count_grid_capacities  | 19,986     | 0.02     | 11.52      | 40.69      | 32         | 20,221      | 0.02     | 11.38    | 40.33    | 32         |
| populate_grid          | 30,586     | 0.02     | 8.48       | 39.53      | 34         | 30,812      | 0.02     | 8.42     | 39.25    | 34         |
| count_doublets         | 353,799    | 0.26     | 25         | 12.07      | 40         | 359,410     | 0.26     | 24.63    | 11.85    | 40         |
| find_doublets          | 1,488,936  | 1.07     | 11.82      | 27.7       | 104        | 1,491,983   | 1.07     | 11.8     | 27.66    | 104        |
| count_triplets         | 223,972    | 0.16     | 42.39      | 20.53      | 45         | 221,584     | 0.16     | 42.7     | 20.69    | 4          |
| find_triplets          | 124,189    | 0.09     | 6.29       | 6.84       | 82         | 126,959     | 0.09     | 6.13     | 6.72     | 82         |
| update_triplet_weights | 10,552     | 0.01     | 5.34       | 25.08      | 32         | 10,431      | 0.01     | 5.39     | 25.32    | 32         |
| select_seeds           | 142,334    | 0.1      | 14.14      | 14.14      | 74         | 142,188     | 0.1      | 14.24    | 14.24    | 74         |
| estimate_track_params  | 35,710     | 0.03     | 3.89       | 49.83      | 47         | 35,298      | 0.03     | 3.94     | 50.33    | 4          |
| Execution time         |            | 5.64     |            |            |            |             | 6.52     |          |          |            |

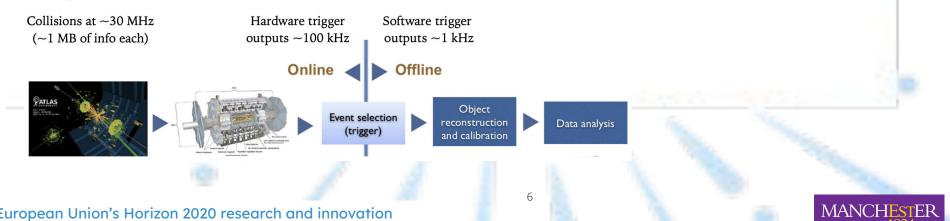
Results from Minsi Chen (University of Huddersfield)










#### Project B: Real-time Anomaly Detection at Trigger Level using Machine Learning



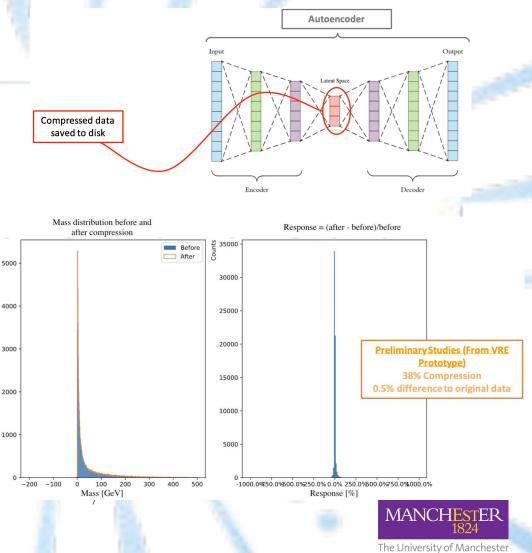


# **Anomaly Detection**

- Collisions at very high frequency
  - Not all events can be stored to later analyze
  - Trigger: Selects 'interesting' events
    - Selection:
      - Specific Model-based Searches
      - Anomaly Detection
    - Online trigger Real Time
- Experience
  - Darkmachines Anomaly Detection Challenge: <u>https://scipost.org/SciPostPhys.12.1.043</u>
  - Normalizing Flow to improve VAEs as Anomaly Detectors: <u>https://www.frontiersin.org/articles/10.3389/fdata.2022.803685/full</u>
- Data Storage Issues
  - Compressed data => More data can be stored
    - Autoencoders for Data Compression



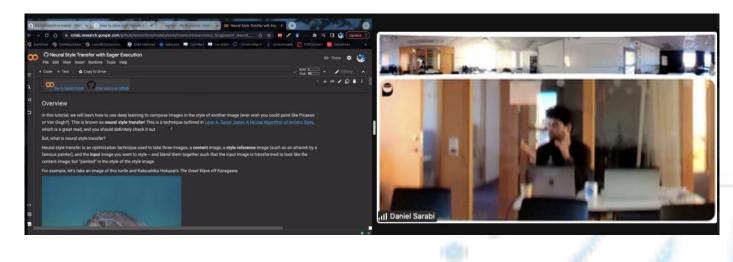
The University of Manchester






### Data Compression using Autoencoders

- Autoencoders (lossy compression):
  - Compression
    - Encoder Neural network that compresses input data to lower dimensional latent representation (abstract features)
  - Decompression
    - Decoder Neural network that decompresses latent data points back to the reconstructed input
- AE compression is useful to the scientific community beyond just particle physics
  - AE compression has existed for a while
    - However, no package/tool available tailored to scientific data
  - Currently collaborating with researchers from Lund University and University of Manchester to package this methodology into a plug-and-play software tool
  - Currently testing tool on
    - Particle Physics Data
    - Computational Fluid Dynamics Data
- Poster accepted at CHEP 2022








8

- Assisted in teaching the "Reproducible and Interactive Data Analysis and Modelling using • Jypyter Notebooks" course to graduate researchers as part of the COMPUTE school at Lund, Sweden (December 2022)
  - Demonstrated the uses of Jupyter notebooks for scientific presentations
  - Presenting a walkthrough of "Neural Style Transfer" in an interactive manner and provided a summary of techniques used
- Personal website: [https://www.pratikjawahar.com/]
  - Last 12 months:
    - </Research> Views: 753
    - Query forms answered: 319



SMARTHEP is funded by the European Union's Horizon 2020 research and innovation programme, call H2020-MSCA-ITN-2020, under Grant Agreement n. 956086

Where are your users? Sessions by country United States India United Kingdom Switzerland France 0% 10% 20% 30% 40% MANCHESTER

The University of Manchester



# **Career Expectations**

- Stay acquianted with state-of-art RTA and Machine Learning techniques
  - Continue research contributions preferably within the context of Particle Physics
- Get an idea of how different/similar research in academia and industry are
- Network with experts to identify gaps for potential contributions and for guidance to navigate the field









# **Thank You!**





