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2011       Cosmological constant → finiteness of the transition amplitudes 
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H� = L2[SU(2)L/SU(2)N ]
Hilbert Space:                                         

Operator Algebra:

Wv = (PSL(2,C) � Y� �v)(1I)
Transition Amplitude:
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GENERAL RELATIVITY

Reference frames  reference fields (tetrads) 

ADM formalism: select a foliation at a given time 

Hamiltonian formulation: (densitized) triads are conjugate to the Ashtekar connection 

Area units:    

Triads have a rotation symmetry:  

⟶

8πγℏG = 1

so(3) ⟶ su(2)
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GAUGES IN GENERAL RELATIVITY LOOP QUANTUM GRAVITY
- diffeos 
- Lorentz{ - graph/lattice 

- group variables{

➤  Abstract graphs:           

➤  Group variables:                                                                      

➤  Graph Hilbert space: 

➤ States:            

Γ = {N, L}

ψ(hl) → ψ(gs(l) hl g−1
t(l)) gn ∈ SU(2) ∀n

~Ll 2 su(2)

hl 2 SU(2){
H� = L2[SU(2)L/SU(2)N ]

ls(l)

t(l)
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GRAVITY AS A GAUGE THEORY

A new look at loop quantum gravity

Carlo Rovelli
Centre de Physique Théorique de Luminy⇤, Case 907, F-13288 Marseille, EU

(Dated: October 30, 2018)

I describe a possible perspective on the current state of loop quantum gravity, at the light of the
developments of the last years. I point out that a theory is now available, having a well-defined
background-independent kinematics and a dynamics allowing transition amplitudes to be computed
explicitly in di↵erent regimes. I emphasize the fact that the dynamics can be given in terms of a
simple vertex function, largely determined by locality, di↵eomorphism invariance and local Lorentz
invariance. I emphasize the importance of approximations. I list open problems.

I. INTRODUCTION

Significant developments in the last years have modi-
fied the state of the art in quantum gravity. The merge of
the canonical and the covariant frameworks has yielded
a rather well-developed background-independent theory,
with a reasonable kinematics and an intriguing dynam-
ics, where physical transition amplitudes can be explicitly
computed and compared with the classical theory. Here
is an account of the state of this theory, as I understand
it today.

I present the theory without “deriving it from classical
GR” or other “quantization procedures”.1 As empha-
sized by Vincent Rivasseau [1], a formulation of quantum
field theory that remains meaningful in the background-
independent context, is as a generating function for am-
plitudes associated to a combinatorial structure, as in the
definition of QED in terms of Feynman-graphs. The am-
plitudes define the dynamics by assigning probabilities
to processes described in terms of a Hilbert space. I use
this language here.

I emphasize in particular the fact –pointed out by Eu-
genio Bianchi [2]– that the dynamics of the theory has
a very simple and natural definition, largely determined
by general physical principles. It is given by a natural
immersion of SU(2) representations into SL(2,C) ones.
A simple group theoretical construction (Eq. (45) below)
appears to code the full Einstein equations.2

I mention below some possible alternatives in the

⇤Unité mixte de recherche (UMR 6207) du CNRS et des Universités
de Provence (Aix-Marseille I), de la Méditerranée (Aix-Marseille
II) et du Sud (Toulon-Var); laboratoire a�lié à la FRUMAM (FR
2291).
1 In my opinion, after many years of attempts to “quantize general
relativity”, it is time to leave the ladder behind, and start taking
seriously what the various “quantization procedures” have pro-
duced. It is especially so since large overlaps have appeared
between the results of the di↵erent quantizations techniques
(canonical, path integral and others; see Section II F, below).
I expect that it is now going to be more productive to study the
theory and its consequences, in order to asses its viability, rather
than keep trying to “derive” the theory.

2 Note added in proofs: For a much simpler and straightforward
presentation of the dynamics of the theory, which does not re-
quire the full intertwiner space machinery, see [3].

definition of the theory. These are written in smaller

characters.3

I take responsibility for the presentation, but the results reported
below are due to a number of people, including: Emanuele Alesci,
Abhay Ashtekar, John Barrett, Eugenio Bianchi, Florian Conrady,
You Ding, Bianca Dittrich, Richard Dowdall, Jonathan Engle,
Winston Fairbairn, Cecilia Flori, Laurent Freidel, Kristina Giesel,
Henrique Gomes, Frank Hellmann, Wojciech Kaminski, Marcin
Kisielowski, Kirill Krasnov, Etera Livine, Jurek Lewandowski,
Elena Magliaro, Leonardo Modesto, Daniele Oriti, Roberto Pereira,
Alejandro Perez, Claudio Perini, Lee Smolin, Simone Speziale,
Thomas Thiemann, and Francesca Vidotto.

I am particularly indebted with Daniele Oriti for a sharp critical
reading of these notes and numerous inputs.

II. HILBERT SPACE AND OPERATORS

The kinematics of a quantum theory is given by a
Hilbert space carrying an algebra of operators that have
a physical interpretation in terms of observables quanti-
ties of the system considered. These are defined in this
section.

A. Hilbert space

The Hilbert space H on which the theory is defined is
the direct sum of “graph spaces”

H̃ =
M

�

H� (1)

factored by an equivalence relation H = H̃/⇠. The sum

3 I do not view alternatives as problems, I view them as opportu-
nities. In quantum gravity we are not in the embarrassment of
riches: we do not have numerous complete and consistent theo-
ries. In fact, we haven’t any. The theory described here, too, in
spite of the various results it yields, is incomplete: a list of open
problems is in Section V. At the present state of our knowledge,
worries about under-determinacy of the theory are, in my opin-
ion, ill-judged. Rather than worrying whether this theory might
have alternatives, or continuing to sketch new very incomplete
models, we better ask if we have at least one complete consistent
theory. This is hard enough, and, in my opinion, is today the
relevant scientific question, and the one likely to be fruitful.
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Operator:                                                      where  

GRAVITATIONAL FIELD OPERATOR

The gauge invariant operator:                                satisfies   

Penrose metric operator on the graph 

State space:

Gll� = �Ll · �Ll�l

Gll�

l�

H� = L2[SU(2)L/SU(2)N ] X

l2n

�Ll = 0

X

l2n

Gll0 = 0

1971 Penrose spin-geometry theorem 
(1897 Minkowski theorem): 
semiclassical states have a  
geometrical interpretation as polyhedra.                     

→

Polyhedron   

Al



          “Holonomy of  the Ashtekar-Barbero connection along the link” 

                                                SU(2) generators 
            gravitational field operator (tetrad)             

QUANTUM GEOMETRY

4D

3D
2D

1D

Extrinsic Curvature 

Intrinsic Curvature

⌅Ll = {Li
l}, i = 1, 2, 3

hl

gab = eia eib e = eadx
a 2 R(1,3)
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GEOMETRIC 
OPERATORS                                       



REPRESENTING GEOMETRIES

    Composite operators:  

     Angle:      

     Area:                                     

     Volume:                                           

A� =
�

l��

⇥
Li

lL
i
l.

Li
lL

i
l0

2

(1) runs over the abstract graphs �. An abstract graph
� is defined by a set of L links l, a set of N nodes n,
together with two functions assigning a source node s(l)
and a target node t(l) to every link l. The graph Hilbert
space H� is defined to be

H� = L2[SU(2)L/SU(2)N ] (2)

where the L2 measure is the Haar measure and the action
of SU(2)N on the states  (Ul) 2 L2[SU(2)L] := H̃� is

 (Ul) !  (Vs(l)UlV
�1
t(l)), Vn 2 SU(2)N . (3)

These are the ‘local SU(2) gauge transformations’ of the
theory.

H is obtained by factoring H̃ by the equivalence rela-
tion ⇠, defined as follows. If � is a subgraph of �0 then
H� can be naturally identified with a subspace of H�0 .
Two states are equivalent if they can be related (possibly
indirectly) by this identification, or if they are mapped
into each other by the discrete group of the automor-
phisms of � (maps from links to links and from nodes to
nodes that preserve the source and target relations).

This completes the construction of the Hilbert space
of the theory.

Comments. This is the “combinatorial H”. An alternative stud-
ied in the literature is to consider embedded graphs in a fixed three-
manifold ⌃ –namely collections of lines l embedded in ⌃ that meet
only at their end points n– and to define � as an equivalence class
of such embedded graphs under di↵eomorphisms of ⌃. This choice
defines the “Di↵ H”. A further alternative is to do the same but
using extended di↵eomorphisms [4]. This choice defines the “Ex-
tended Di↵ H”. With these definitions a graph is characterized
also by its knotting and linking. (If ⌃ is chosen with non-trivial
topology, also by the homotopy class of the graph). In addition,
with the first of these alternatives graphs are characterized by mod-
uli parameters at the nodes as well (extended di↵eos factor away
these moduli [4]). Neither knotting or linking, nor these moduli,
have found a physical meaning so far, hence I tentatively prefer the
combinatorial definition.

The space Di↵ H is non-separable, leading to a number of com-
plications in the construction of the theory. The combinatorial H
considered here and the extended-Di↵ H are separable.

Another option is to restrict the theory to graphs � where all
nodes are four valent. (The valence of a node n is the number of
links for which n is the source plus the number of links for which
it is the target.) I do not take this option here, although several
of the results in the literature refer to the theory restricted in this
manner.

B. Gravitational field, area, volume and holonomy
operators

The gravitational field gµ⌫ has the dimensions of an
area.4 The dimension of the Ashtekar’s electric field E

4 This follows from ds
2 = gµ⌫dx

µ
dx

⌫ and the fact that it is rather
unreasonable to assign dimensions to the coordinates of a general
covariant theory: coordinates are functions on spacetime, that
can be arbitrarily nonlinearly transformed.

(the densitized inverse triad), is also an area. It is con-
venient to fix units where the area

8⇡� ~G = 1 (4)

where �, the Immirzi-Barbero parameter is a positive
real number, G is the Newton constant. The following
operators are defined on H�.

Notice that the operators are defined on the individual spaces
H�, not on H. This is a departure from textbook quantum theory.
Later I will explain how these operators can nevertheless be used
in the same manner as standard quantum operators.

First, the gravitational field operator ~Ll = {Li

l
}, i =

1, 2, 3 is the generator of the left SU(2) action in H�.5

As will become more clear later, ~Ll is interpreted as
the operator corresponding to the flux of Ashtekar’s
electric field, or the flux of the inverse triad, across “an
elementary surface cut by the link l”.

It is convenient to define also “links with reversed orientation”
l
�1. That is s(l�1) = t(l) and t(l�1) = s(l). The generator of the

right SU(2) action ~Rl ⌘ Ul
~LlU

�1
l is then associated to the link

with reversed orientation: ~Ll�1 = ~Rl. It follows then immediately
from (3) that X

l2n

~Ll = 0 (5)

where the notation l 2 n indicates all oriented links l such that
s(l) = n.

The area operator depends on a “surface” cutting the
links l1, ..., lS . In the combinatorial context, a “surface”
⌃ is a collection of (possibly repeated) links l of �. The
area operator is defined as

A⌃ =
X

l2⌃

q
Li

l
Li

l
. (6)

Its eigenvalues are (in units (4))

A⌃ =
X

l2⌃

p
jl(jl + 1), (7)

where jl are half integers. This expression gives the
“spectrum of the area” of the theory.

The operator can be generalized to surfaces “cutting a node”.
This is not strictly necessary in the combinatorial context, as far
as I can see.

The volume operator depends on a “region”. In the
combinatorial context, a “region” R is a collection of
nodes n. The volume operator is given by

VR =
X

n2R

Vn. (8)

5
L
i
l̂
 (Ul) ⌘ d (Ul(t))/dt where Ul̂(t) = e

t⌧iUl̂ and Ul(t) = Ul

8l 6= l̂. I use the notation Ll = L
i
l⌧i where ⌧i is a basis in su(2),

say ⌧i =
i
2�i, where �i are the Pauli matrices.

VR =
�

n�R

Vn, V 2
n =

2
9

|�ijkLi
lL

j
l�L

k
l”|.
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Minimal volume

Discrete spectra!

[Rovelli, Smolin ’93]
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3

For a trivalent node n, Vn = 0. For a four-valent node n,

V 2
n
=

2

9
|✏ijk Li

la
Lj

lb
Lk

lc
| (9)

where la, lb, lc are any three (distinct) of the four links
of n.6 The choice of the triple is irrelevant, as it follows
easily from (5).

As pointed out by Thomas Thiemann and Cecilia Flori [6], the
definition of the vertex operator for higher valent nodes given in
the literature, is unsatisfactory. It is not di�cult to define a volume
operator for general n-valent nodes, which reduces to the one on
(n � 1)-valent nodes when one of the links has zero spin; but this
can be done in numerous way, and a fully satisfactory choice is still
missing. On this, see [7]. This does not a↵ect what follows.

Finally, the holonomy operator is the multiplicative
operator Ul associated to each link l. The operators ~Ll

and Ul form a closed algebra.

C. Spin network basis

Spin networks states are a convenient basis in H. The
Peter Weyl theorem states that L2[SU(2)L] can be de-
composed into irreducible representations

H̃� = L2[SU(2)L] =
M

jl

O

l

(H⇤
jl
⌦Hjl). (10)

Here Hj is the Hilbert space of the spin-j representa-
tion of SU(2), namely a 2j + 1 dimensional space, with
a basis |j,mi,m = �j, ..., j that diagonalizes L3. The
star indicates the adjoint representation, but since the
representations of SU(2) are equivalent to their adjoint,
we can forget about the star.7 For each link l, the two
factors in the r.h.s. of (10) are naturally associated to
the two nodes s(l) and t(l) that bound l, because under
(3) they transform under the action of Vs(l) and Vt(l),
respectively. We can hence rewrite the last equation as

H̃� =
M

jl

O

n

H̃n (11)

where the node Hilbert space H̃n associated to a node
n includes all the irreducible Hj that transform with Vn

under (3), that is8

6 The factor 2/9 = 23/3!2 gives the volume of a tetrahedron with
faces having areas and normals determined by Ll; see Section
II F below. In [5], Kristina Giesel and Thomas Thiemann give
an argument for a di↵erent factor, corresponding to the volume
of a cube. I am still confused about this factor. This has no e↵ect
on what follows.

7 The star does not regard the Hilbert space itself: it specifies a
way it transforms under SU(2).

8 More precisely, H̃n = (
N

l2s(n) H
⇤
l )⌦ (

N
l2t(n)n Hl) where s(t)

and t(n) are the sets of the links for which n is, respectively, a
source or a target.

H̃n =
O

l2n

Hjl . (12)

The SU(2) invariant part of this space

Hn = InvSU(2)[H̃n]. (13)

under the diagonal action of SU(2) is called the “inter-
twiner space” of the node n. A moment of reflection
shows that

H� =
M

jl

O

n

Hn. (14)

Thus, a basis in H is labelled by three sets of “quantum
numbers”. An abstract graph � up to its automorphisms;
a coloring jl of the links of the graph with irreducible
representations of SU(2) di↵erent from the trivial one9

(j = 1/2, 1, 3/2, 2, ...); and a coloring of each node of
� with an element vn in an orthonormal basis10 in the
intertwiner space Hn. The states |�, jl, vni labelled by
these quantum numbers are called “spin network states”.

D. Physical picture

Spin network states are eigenstates of the area and
volume operators. A spin network state can be given
a simple geometrical interpretation. It represents a
“granular” space where each node n represents a “grain”
or “chunk” of space. The volume of each grain n is
vn. Two grains n and n0 are adjacent if there is a
link l connecting the two, and in this case the area
of the elementary surface separating the two grains is
8⇡�~G

p
jl(jl + 1).

|�, jl, vni

FIG. 1: “Granular” space. A node n determines a “grain” or
“chunk” of space.

9 Because states with j = 0 are already included in the Hilbert
spaces associated to subgraphs, thanks to the equivalence rela-
tion ⇠.

10 The operator Vn is well defined on the finite dimensional space
Hn because it is SU(2) invariant and commutes with the areas.
It is convenient to choose a basis in Hn that diagonalizes it, and
I do so here.

REPRESENTING GEOMETRIES

     Peter-Weyl Theorem:                                     

     Intertwiner Space:                                           

     Basis:                             ∈
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faces having areas and normals determined by Ll; see Section
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an argument for a di↵erent factor, corresponding to the volume
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definition of the vertex operator for higher valent nodes given in
the literature, is unsatisfactory. It is not di�cult to define a volume
operator for general n-valent nodes, which reduces to the one on
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can be done in numerous way, and a fully satisfactory choice is still
missing. On this, see [7]. This does not a↵ect what follows.

Finally, the holonomy operator is the multiplicative
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of n.6 The choice of the triple is irrelevant, as it follows
easily from (5).

As pointed out by Thomas Thiemann and Cecilia Flori [6], the
definition of the vertex operator for higher valent nodes given in
the literature, is unsatisfactory. It is not di�cult to define a volume
operator for general n-valent nodes, which reduces to the one on
(n � 1)-valent nodes when one of the links has zero spin; but this
can be done in numerous way, and a fully satisfactory choice is still
missing. On this, see [7]. This does not a↵ect what follows.

Finally, the holonomy operator is the multiplicative
operator Ul associated to each link l. The operators ~Ll
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star indicates the adjoint representation, but since the
representations of SU(2) are equivalent to their adjoint,
we can forget about the star.7 For each link l, the two
factors in the r.h.s. of (10) are naturally associated to
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(3) they transform under the action of Vs(l) and Vt(l),
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where the node Hilbert space H̃n associated to a node
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under (3), that is8

6 The factor 2/9 = 23/3!2 gives the volume of a tetrahedron with
faces having areas and normals determined by Ll; see Section
II F below. In [5], Kristina Giesel and Thomas Thiemann give
an argument for a di↵erent factor, corresponding to the volume
of a cube. I am still confused about this factor. This has no e↵ect
on what follows.

7 The star does not regard the Hilbert space itself: it specifies a
way it transforms under SU(2).

8 More precisely, H̃n = (
N

l2s(n) H
⇤
l )⌦ (

N
l2t(n)n Hl) where s(t)

and t(n) are the sets of the links for which n is, respectively, a
source or a target.

H̃n =
O

l2n

Hjl . (12)
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under the diagonal action of SU(2) is called the “inter-
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shows that
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Thus, a basis in H is labelled by three sets of “quantum
numbers”. An abstract graph � up to its automorphisms;
a coloring jl of the links of the graph with irreducible
representations of SU(2) di↵erent from the trivial one9

(j = 1/2, 1, 3/2, 2, ...); and a coloring of each node of
� with an element vn in an orthonormal basis10 in the
intertwiner space Hn. The states |�, jl, vni labelled by
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volume operators. A spin network state can be given
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“granular” space where each node n represents a “grain”
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easily from (5).

As pointed out by Thomas Thiemann and Cecilia Flori [6], the
definition of the vertex operator for higher valent nodes given in
the literature, is unsatisfactory. It is not di�cult to define a volume
operator for general n-valent nodes, which reduces to the one on
(n � 1)-valent nodes when one of the links has zero spin; but this
can be done in numerous way, and a fully satisfactory choice is still
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a basis |j,mi,m = �j, ..., j that diagonalizes L3. The
star indicates the adjoint representation, but since the
representations of SU(2) are equivalent to their adjoint,
we can forget about the star.7 For each link l, the two
factors in the r.h.s. of (10) are naturally associated to
the two nodes s(l) and t(l) that bound l, because under
(3) they transform under the action of Vs(l) and Vt(l),
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n includes all the irreducible Hj that transform with Vn

under (3), that is8

6 The factor 2/9 = 23/3!2 gives the volume of a tetrahedron with
faces having areas and normals determined by Ll; see Section
II F below. In [5], Kristina Giesel and Thomas Thiemann give
an argument for a di↵erent factor, corresponding to the volume
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way it transforms under SU(2).

8 More precisely, H̃n = (
N

l2s(n) H
⇤
l )⌦ (

N
l2t(n)n Hl) where s(t)

and t(n) are the sets of the links for which n is, respectively, a
source or a target.

H̃n =
O

l2n

Hjl . (12)
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under the diagonal action of SU(2) is called the “inter-
twiner space” of the node n. A moment of reflection
shows that
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Thus, a basis in H is labelled by three sets of “quantum
numbers”. An abstract graph � up to its automorphisms;
a coloring jl of the links of the graph with irreducible
representations of SU(2) di↵erent from the trivial one9

(j = 1/2, 1, 3/2, 2, ...); and a coloring of each node of
� with an element vn in an orthonormal basis10 in the
intertwiner space Hn. The states |�, jl, vni labelled by
these quantum numbers are called “spin network states”.
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volume operators. A spin network state can be given
a simple geometrical interpretation. It represents a
“granular” space where each node n represents a “grain”
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operator for general n-valent nodes, which reduces to the one on
(n � 1)-valent nodes when one of the links has zero spin; but this
can be done in numerous way, and a fully satisfactory choice is still
missing. On this, see [7]. This does not a↵ect what follows.

Finally, the holonomy operator is the multiplicative
operator Ul associated to each link l. The operators ~Ll

and Ul form a closed algebra.

C. Spin network basis

Spin networks states are a convenient basis in H. The
Peter Weyl theorem states that L2[SU(2)L] can be de-
composed into irreducible representations

H̃� = L2[SU(2)L] =
M

jl

O

l

(H⇤
jl
⌦Hjl). (10)

Here Hj is the Hilbert space of the spin-j representa-
tion of SU(2), namely a 2j + 1 dimensional space, with
a basis |j,mi,m = �j, ..., j that diagonalizes L3. The
star indicates the adjoint representation, but since the
representations of SU(2) are equivalent to their adjoint,
we can forget about the star.7 For each link l, the two
factors in the r.h.s. of (10) are naturally associated to
the two nodes s(l) and t(l) that bound l, because under
(3) they transform under the action of Vs(l) and Vt(l),
respectively. We can hence rewrite the last equation as

H̃� =
M

jl

O

n

H̃n (11)

where the node Hilbert space H̃n associated to a node
n includes all the irreducible Hj that transform with Vn

under (3), that is8

6 The factor 2/9 = 23/3!2 gives the volume of a tetrahedron with
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definition of the vertex operator for higher valent nodes given in
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operator for general n-valent nodes, which reduces to the one on
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or “chunk” of space. The volume of each grain n is
vn. Two grains n and n0 are adjacent if there is a
link l connecting the two, and in this case the area
of the elementary surface separating the two grains is
8⇡�~G

p
jl(jl + 1).

|�, jl, vni

FIG. 1: “Granular” space. A node n determines a “grain” or
“chunk” of space.

9 Because states with j = 0 are already included in the Hilbert
spaces associated to subgraphs, thanks to the equivalence rela-
tion ⇠.

10 The operator Vn is well defined on the finite dimensional space
Hn because it is SU(2) invariant and commutes with the areas.
It is convenient to choose a basis in Hn that diagonalizes it, and
I do so here.
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rather than states on space.
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INTRINSIC COHERENT STATES

 Spinnetwork states   ↔ Coherent states 

 has minimal spread  coherence 

   direction:  

       faces 

  intrinsic coherent states: equally spread on 3d geometry (intrinsic curvature) 
( extrinsic coherent states: also spread in j, i.e. area, so that 
                                    the extrinsic curvature is not spread ) 
   

|Γ, jl, vn >

| j, j > ⇒

∀ ⃗n | j, ⃗n > = h ⃗n | j, j >

|| ji, ⃗n i > = ∫SU(2)
dh ⨂

i
h ▹ | ji, ⃗n i > ∀i = 1,2,3,4

~n`

vn j`
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SPACETIME IS A PROCESS

Spacetime region

Boundary

A = W ( )

Boundary state

Amplitude of the process

 =  in ⌦  out

Spacetime is a process, a state is what happens at its boundary.

QUANTUM MECHANICS

Process 

State 

 
 

←  Locality  → 

GENERAL RELATIVITY 

Spacetime region 

Boundary, space region
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LORENTZIAN LATTICE GAUGE THEORY

6

normals ~Ll, l = 1, 2, 3, 4 to its faces, normalized so
that |~Ll| = al is the area of the face l. A nat-
ural SO(3) invariant symplectic structure on S̃ is
! =

P
l
✏ijk Li

l
dLj

l
^ dLk

l
, or, equivalently, by the

Poisson brackets

{Li

l
, Lj

l0} = �ll0 ✏
ij

k Lk. (26)

A quantum representation of this Poisson algebra
is precisely defined by the generators of SU(2) on
the space H̃n given in (12) (for a 4-valent node n).
The operator corresponding to the area al = |~Ll| is
the Casimir of the representation jl, therefore the
space “quantizes” the space of the shapes of the
tetrahedron with areas jl(jl+1). Furthermore, the
normals of a tetrahedron satisfy

~C :=
X

l

~Ll = 0. (27)

The Hamiltonian flow of ~C, generates the rotations
of the tetrahedron in R3. By imposing equation
(27) and factoring out the orbits of this flow, the
space S̃ reduces to a space S which is still symplec-
tic. In the same manner, imposing the operator
equation (27) strongly on H̃n gives the space Hn

given in (13).

The construction generalizes to polyhedra with
more than 4 faces. Then the shape of an ensem-
ble of such polyhedra, with the same area and op-
posite normals on the shared faces12, is quantized
precisely by the Hilbert space H defined above.

What is the relation with gravity? The central
physical idea of general relativity is of course the
identification of gravitational field and metric ge-
ometry. Consider a polyhedron given on a (say,
piecewise linear) manifold. A metric geometry is
assigned by giving the value of a metric, or a triad
field ei = ei

a
dxa, namely the gravitational field.

Consider the quantity

Ei

l
:= ✏ijk

Z

l

ej ^ ek. (28)

Observe that on the one hand this is precisely the
flux of the densitized inverse triad Eia across the
face l of the polyhedron:

Ei

l
=

Z

l

naE
ai , (29)

where na is the normal to the face; on the other
hand, in locally flat coordinates it is the normalized

12 The area and the normals match, but not the rest of the geometry
of the face, in general. Thus, we have “twisted geometries”, in
the sense of Freidel and Speziale.

normal ~nl to the face l, multiplied by the area:

Ei

l
=

Z

l

naE
ai =

Z

l

ni = ni

l
al = Li

l
. (30)

Therefore the quantized normals ~Ll of simplicial
quantum geometry can be interpreted as the quan-
tum operator giving the flux of the Ashtekar elec-
tric field, and we recover again the full kinematics
of the previous section.

3. Covariant lattice quantization. A third possibility
is to discretize general relativity on 4d lattice with
a boundary, and study the resulting Hilbert space
of the lattice theory. This is close in spirit to lat-
tice gauge theory. The di↵erence is di↵eomorphism
invariance: in general relativity the lattice is a “co-
ordinate” lattice, and coordinates are gauges. Thus
for instance there is no analog of the QCD lattice
spacing a. More precisely, the physical dimensions
(lengths, areas, volumes) of the cells of the lattice
are not fixed, as in lattice gauge theory, but are
determined by the discretized field variables them-
selves.

The (double covering of the) local gauge group of
the covariant theory is SL(2,C) and the boundary
space that one obtains on the boundary of the lat-
tice theory is

H
SL(2,C)
� = L2[SL(2,C)L/SL(2,C)N ]. (31)

where � is the two-skeleton of the boundary of the
lattice. The states in this Hilbert space  (Hl), Hl2

SL(2,C), can be seen as wave functions of the
holonomies Hl = P exp

R
l
! of the spin connection

!, along the links l. The corresponding generators
J of the Lorentz group must therefore represent the
conjugate momentum of !. Since the dynamics of
general relativity can be coded into the Holst action

S =

Z
[(e ^ e)⇤ +

1

�
(e ^ e)] ^ F [!] (32)

these momenta are (the projection on the boundary
of spacetime of)

J = e ^ e+
1

�
(e ^ e)⇤. (33)

It is easy to show that an SL(2,C) algebra element
J has the form (33) i↵ there is a gauge in which
its rotation and boost components13 ~L and ~K are
related by

~K = ��~L. (34)

13 That is L
i = 1

2 ✏
i
jkJ

jk and K
i = J

0i

GAUGES IN GENERAL RELATIVITY LOOP QUANTUM GRAVITY
- diffeos 
- Lorentz{ - graph/lattice 

- group variables{

➤ Γ is the two-skeleton of the boundary of the lattice                                 

➤  Graph Hilbert space:  

➤ States lives on the boundary of a 4D region 

➤ States: 

are wave functions of the holonomies

ls(l)

t(l)
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that |~Ll| = al is the area of the face l. A nat-
ural SO(3) invariant symplectic structure on S̃ is
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^ dLk
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, or, equivalently, by the
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k Lk. (26)
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is precisely defined by the generators of SU(2) on
the space H̃n given in (12) (for a 4-valent node n).
The operator corresponding to the area al = |~Ll| is
the Casimir of the representation jl, therefore the
space “quantizes” the space of the shapes of the
tetrahedron with areas jl(jl+1). Furthermore, the
normals of a tetrahedron satisfy

~C :=
X

l

~Ll = 0. (27)

The Hamiltonian flow of ~C, generates the rotations
of the tetrahedron in R3. By imposing equation
(27) and factoring out the orbits of this flow, the
space S̃ reduces to a space S which is still symplec-
tic. In the same manner, imposing the operator
equation (27) strongly on H̃n gives the space Hn

given in (13).

The construction generalizes to polyhedra with
more than 4 faces. Then the shape of an ensem-
ble of such polyhedra, with the same area and op-
posite normals on the shared faces12, is quantized
precisely by the Hilbert space H defined above.

What is the relation with gravity? The central
physical idea of general relativity is of course the
identification of gravitational field and metric ge-
ometry. Consider a polyhedron given on a (say,
piecewise linear) manifold. A metric geometry is
assigned by giving the value of a metric, or a triad
field ei = ei

a
dxa, namely the gravitational field.

Consider the quantity

Ei

l
:= ✏ijk

Z

l

ej ^ ek. (28)

Observe that on the one hand this is precisely the
flux of the densitized inverse triad Eia across the
face l of the polyhedron:

Ei

l
=

Z

l

naE
ai , (29)

where na is the normal to the face; on the other
hand, in locally flat coordinates it is the normalized

12 The area and the normals match, but not the rest of the geometry
of the face, in general. Thus, we have “twisted geometries”, in
the sense of Freidel and Speziale.

normal ~nl to the face l, multiplied by the area:

Ei

l
=

Z

l

naE
ai =
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ni = ni

l
al = Li

l
. (30)

Therefore the quantized normals ~Ll of simplicial
quantum geometry can be interpreted as the quan-
tum operator giving the flux of the Ashtekar elec-
tric field, and we recover again the full kinematics
of the previous section.

3. Covariant lattice quantization. A third possibility
is to discretize general relativity on 4d lattice with
a boundary, and study the resulting Hilbert space
of the lattice theory. This is close in spirit to lat-
tice gauge theory. The di↵erence is di↵eomorphism
invariance: in general relativity the lattice is a “co-
ordinate” lattice, and coordinates are gauges. Thus
for instance there is no analog of the QCD lattice
spacing a. More precisely, the physical dimensions
(lengths, areas, volumes) of the cells of the lattice
are not fixed, as in lattice gauge theory, but are
determined by the discretized field variables them-
selves.

The (double covering of the) local gauge group of
the covariant theory is SL(2,C) and the boundary
space that one obtains on the boundary of the lat-
tice theory is

H
SL(2,C)
� = L2[SL(2,C)L/SL(2,C)N ]. (31)

where � is the two-skeleton of the boundary of the
lattice. The states in this Hilbert space  (Hl), Hl2

SL(2,C), can be seen as wave functions of the
holonomies Hl = P exp

R
l
! of the spin connection

!, along the links l. The corresponding generators
J of the Lorentz group must therefore represent the
conjugate momentum of !. Since the dynamics of
general relativity can be coded into the Holst action

S =

Z
[(e ^ e)⇤ +

1

�
(e ^ e)] ^ F [!] (32)

these momenta are (the projection on the boundary
of spacetime of)

J = e ^ e+
1

�
(e ^ e)⇤. (33)

It is easy to show that an SL(2,C) algebra element
J has the form (33) i↵ there is a gauge in which
its rotation and boost components13 ~L and ~K are
related by

~K = ��~L. (34)

13 That is L
i = 1

2 ✏
i
jkJ

jk and K
i = J

0i
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is precisely defined by the generators of SU(2) on
the space H̃n given in (12) (for a 4-valent node n).
The operator corresponding to the area al = |~Ll| is
the Casimir of the representation jl, therefore the
space “quantizes” the space of the shapes of the
tetrahedron with areas jl(jl+1). Furthermore, the
normals of a tetrahedron satisfy

~C :=
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The Hamiltonian flow of ~C, generates the rotations
of the tetrahedron in R3. By imposing equation
(27) and factoring out the orbits of this flow, the
space S̃ reduces to a space S which is still symplec-
tic. In the same manner, imposing the operator
equation (27) strongly on H̃n gives the space Hn

given in (13).
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more than 4 faces. Then the shape of an ensem-
ble of such polyhedra, with the same area and op-
posite normals on the shared faces12, is quantized
precisely by the Hilbert space H defined above.

What is the relation with gravity? The central
physical idea of general relativity is of course the
identification of gravitational field and metric ge-
ometry. Consider a polyhedron given on a (say,
piecewise linear) manifold. A metric geometry is
assigned by giving the value of a metric, or a triad
field ei = ei
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dxa, namely the gravitational field.
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12 The area and the normals match, but not the rest of the geometry
of the face, in general. Thus, we have “twisted geometries”, in
the sense of Freidel and Speziale.

normal ~nl to the face l, multiplied by the area:

Ei

l
=

Z

l

naE
ai =

Z

l

ni = ni

l
al = Li

l
. (30)
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a boundary, and study the resulting Hilbert space
of the lattice theory. This is close in spirit to lat-
tice gauge theory. The di↵erence is di↵eomorphism
invariance: in general relativity the lattice is a “co-
ordinate” lattice, and coordinates are gauges. Thus
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MATHEMATICAL TOOLKIT FOR GENERAL RELATIVITY

Differential Geometry �  Pseudo-Riemannian Manifold �  Einstein-Cartan formalism

Tetrads

Spin connection

GR action

gab = eia eibgab ! eia

! = !adx
a 2 sl(2,C) !(e) : de+ ! ^ e = 0

S[e,!] =

Z
e ^ e ^ F ⇤[!] +

1

�

Z
e ^ e ^ F [!]

e = eadx
a 2 R(1,3)

 (Holst term)

gab = eia eibgab = eia eib

Conjugate momentum         J = e ∧ e + 1
γ

(e ∧ e)*
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SIMPLICITY CONSTRAINT

  J
 Li = 1

2 ϵi
jkJjk

Ki = J0i
{ ⃗K = − γ ⃗L

Classical theory:

Quantum  theory:        = generator of  J SL(2,ℂ)

ni = (1, 0, 0, 0)
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SPINFOAM DYNAMICS

|k, �; j,m⇥ � Hk,� =
M

j=k,1
Hj

k,�

~K + �~L = 0Main property:

Boost generator               Rotation generator

weakly on the image of         :              

γ-simple representations:                   ν = γ k

Y�

|j;mi 2 Hj2j 2 Z

2k 2 N, ⌫ 2 RSL(2,C) unitary representations:SL(2,C)

SU(2) unitary representations:SU(2)

SL(2,C)    Casimir’s:                                      K2 − L2 = ν2 − k2 + 1 ⃗K ⋅ ⃗L = νkSL(2,C)

SU(2) ➝ SL(2,C)   map:SL(2,C)SU(2)
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This relation is sometime denoted the “simplicity
constraint”.14 I will return to this important rela-
tion shortly.

The map f . The relation between the SU(2)
Hilbert spaceH� defined in (10) and the Lorentzian
Hilbert space (31) is important for what follows.
There exists a natural immersion of the first into
second. To see it, consider again the Peter-Weyl
decomposition to write

H̃
SL(2,C)
� = L2[SL(2,C)L] (35)

=
X

(pl,kl)

O

l

(H⇤
(pl,kl)

⌦H(pl,kl)).

Here (p 2 R, k 2 Z+) are the labels of the SL(2,C)
unitary irreducible representations. Now, fix an
SU(2) subgroup of SL(2,C). Then each Lorentz
irreducible decomposes into a sum of SU(2) irre-
ducibles

H(p,k) =
1M

j0=k

Hj0 (36)

The first term of this sum Hj0=k ⇢ H(p,k), namely
the lowest-spin irrep, plays a key role below. Con-
sider the map

Y� : H̃� ! H̃
SL(2,C)
� (37)

defined by sending each SU(2) irreducible of H̃�

to the j0 = k subspace of the Lorentz irreducible
(p = �j, j)

Y� : Hj 7�! Hj ⇢ H(p=�j, k=j). (38)

Y� : Hj 7�! Hj ⇢ H(k=j,⌫=�j)

-1em

|j,mi �! |j, �j; j,mi

The image of this linear map Y� is the subspace

of H̃SL(2,C)
� obtained by restricting the sum (35) to

the irreducibles where

pl = �jl, kl = jl, (39)

and restricting each SL(2, C) irreducible to its (fi-
nite dimensional) minimum weight subspace j0

l
=

kl = jl.

14 In general, the “simplicity constraints” are the relations J must
satisfy in order to have the form (33). Equation (34) is a version
of these.

Now, one can then show by explicit calculation [31,
32] that

h | ~K + �~L|�i = 0. (40)

for any  and � in the image of Y� . In other words,
the image of Y� is a subspace of L2[SL(2,C)L]
where the constraints (34) are implemented weakly.
But this is precisely the relation that constrains J
to be of the form (33)!

In other words: the image of the natural map (38)
is a subspace where the equation that constrains the
momentum J to the form it has in general relativity
holds weakly.

This image is the correct subspace for defining
the quantum theory corresponding to classical GR.
One can also verify [31–33] that the geometrical op-
erators defined in the covariant theory are sent to
the corresponding ones of the canonical theory by
Y� .

Restricting Y� to SU(2) invariant states (namely to
H�) and composing it with the projection PSL(2,C) :

H̃
SL(2,C)
� ! H

SL(2,C)
� on the SL(2,C) invariant

states, defines the map

f� = PSL(2,C) � Y� : H� ! H
SL(2,C)
� (41)

from SU(2) spin networks to SL(2,C) spin net-
works. The covariant theory lives on the image of
this map. Once again, therefore, we recover the
kinematics given in the previous section.15

This concludes the description of the kinematics of the
theory. It is time to move up to the dynamics.

III. TRANSITION AMPLITUDES

In a general covariant quantum theory, the dynamics
can be given by associating an amplitude to each bound-
ary state [35, 36]. Therefore, the dynamics is given by a
linear functional W on H. The modulus square

P ( ) = |hW | i|2 (42)

is the probability associated to the process defined by
the boundary state  . This is described in detail, for
instance, in the book [24].
How is W defined? As pointed out by Eugenio Bianchi

in his Nice lectures [2], the form of W is largely deter-
mined by general principles: Feynman’s superposition
principle, locality, di↵eomorphism invariance, crossing
symmetry, and local Lorentz invariance. Let us discuss
these principles and their consequences, one by one.

15
f� is injective [34].
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Define a map  s.t. on its image:      Yγ j = k Langlands classification:Vogan’s minimal k-type

http://en.wikipedia.org/wiki/Langlands_classification
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SPINFOAM AMPLITUDES

W (q0ij , qij) ⇠
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foamy!
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VERTEX AMPLITUDE

2-complex  
(vertices, edges, faces)

C
v

e
�

hvf

f

�

Wv = (PSL(2,C) � Y� �v)(1I)

[Engle-Pereira-Livine-Rovelli, Freidel-Krasnov, 
Kaminski-Kisielowski-Lewandowski ’08-’09] 
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CLASSICAL LIMIT

⟨Wv |ψg⟩ ∼ e i
ℏ SRegge[g]

Coherent state peaked on the  
boundary geometry g Regge action of  a flat 4 simplex  

with the boundary geometry g

[Barret et al. ’09]

The simple vertex expression codes the Einstein equations!



AMPLITUDES
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VERTEX AMPLITUDE

2-complex  
(vertices, edges, faces)

C
v

e
�

hvf

f

�

Wv = (PSL(2,C) � Y� �v)(1I)

[Engle-Pereira-Livine-Rovelli, Freidel-Krasnov, 
Kaminski-Kisielowski-Lewandowski ’08-’09] 

How can we extract a number from this, concretely?
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SPINFOAM DYNAMICS: EXPLICIT FORMULAS

h ▹ | j, m⟩ = Dj
mn(h) | j, n⟩ Dj

nm(h) = ⟨j, n |h | j, m⟩ Wigner matricesSU(2)

g ▹ |k, ν; j, m⟩ = Dkν
jm,j′ n(g) |k, nu; j, n⟩ Wigner matricesSL(2,ℂ)

Change of basis ⟨j, n, m |h⟩ = Dj
mn(h)L2[SU(2)] = ⊕j (H*j ⊗ Hj)

⟨k, ν; j, n, j′ , m |g⟩ = Dk,ν
jm,j′ n(g)L2[SL(2,ℂ)] = ⊕k,ν (H*kν ⊗ Hkν)

 mapYγ Yγ | j, m⟩ = | j, γj; j, m⟩ ⟨g |Yγ |h⟩ = ∑
j,m,n

Dj,γj
jm,jn(g) Dj

m,n(h) ≡ P(g, h)
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VERTEX AMPLITUDE

f

hℓ
gsℓ

gtℓ

Wedge amplitude Ww(g, g′ , h) = P(gg′ , h)

2-Complex amplitude

WC = ∫SU2
dhvf ∫SL2C

dgve ∏
w

P(gsℓ
, gtℓ, hvf ) ∏

f
δ(hl1 . . . hlNf

)

P(g, h) = ∑
j,m,n

Dj
m,n(h) Dj,γj

jmjn(g)

⟨Wv |hℓ⟩ = (PSL(2,ℂ)Yγ |hℓ⟩)(11) = ∫SL(2,ℂ)
dgn ∏

l
P(gse

g−1
te , hℓ)
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NUMERICAL METHODS

Exploit factorization of  the amplitude:                                                        

                              

New !"#$%&'()*+,- library 

W( jl, in) = ∑
lf ,ke

(∏
e

(2ke + 1)B( jl, lf; in, ke)){15j}(lf, ke) [Speziale’17] 

[Gozzini’21, Doná, Frisoni ’22] 
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CLASSICAL LIMIT

⟨Wv |ψg⟩ ∼ Re [e i
ℏ SRegge[g]]

Coherent state peaked on the  
boundary geometry g Regge action of  a flat 4 simplex  

with the boundary geometry g

[Barrett et al. ’09]

The simple vertex expression codes the Einstein equations!
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COMPUTING THE AMPLITUDE ON A GIVEN 2-COMPLEX

Analytical results N-point functions 
Black to White hole transition  
Big bounce transition  
…

Numerical results Small spin regime: Monte Carlo                                     [Donà, Gozzini, Frisoni…] 
High spin regime: Complex saddle point methods         [Han, Liu, Qu, Huang …] 
…

From properties of  the amplitude Curvature Bound 
BH entropy 
…
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RESULTS FROM THE COVARIANT DYNAMICS

Classical Limit 

Coupling of  fermions, scalars, Yang-Mills fields…  

Graviton propagator 

Scattering Amplitudes 

Radiative Corrections 

Black Holes Entropy 

Cosmology 

…. 

.

.

.

.

..

.

..

.



CLASSICAL 
LIMIT                                       



Spinfoam………………………………………………………………………………………………………………………………  Francesca Vidotto

CLASSICAL LIMIT

⟨Wv |ψg⟩ ∼ e i
ℏ SRegge[g]

Coherent state peaked on the  
boundary geometry g Regge action of  a flat 4 simplex  

with the boundary geometry g

[Batterrt et al. ’09]

The simple vertex expression codes the Einstein equations!
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INTRINSIC COHERENT STATES

 Spinnetwork states   ↔ Coherent states 

 has minimal spread  coherence 

   direction:  

       faces 

  intrinsic coherent states: equally spread on 3d geometry (intrinsic curvature) 
( extrinsic coherent states: also spread in j, i.e. area, so that 
                                    the extrinsic curvature is not spread ) 
   

|Γ, jl, vn >

| j, j > ⇒

∀ ⃗n | j, ⃗n > = h ⃗n | j, j >

|| ji, ⃗n i > = ∫SU(2)
dh ⨂

i
h ▹ | ji, ⃗n i > ∀i = 1,2,3,4

~n`

vn j`
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CONVERGENCE BETWEEN QED AND QCD
All physical QFT are constructed via a truncation of the d.o.f.   (QED: particles, QCD: lattice) 

All physical calculation are performed within a truncation. 

 The limit in which all d.o.f. is then recovered is pretty different in QED qnd QCD: 

 

Quantum Gravity: Diff invariance !    

Lattice site = small region = excitations of the = quanta of space = quanta 
                       of space         gravitational field                              of the field 
   

+ +   ....

→ →  ....



STRUCTURE OF THE THEORY

On the structure of a background independent quantum theory:
Hamilton function, transition amplitudes, classical limit and continuous limit

Carlo Rovelli
Centre de Physique Théorique, Case 907, Luminy, F-13288 Marseille, EU

(Dated: March 24, 2012)

The Hamilton function is a powerful tool for studying the classical limit of quantum systems, which

remains meaningful in background-independent systems. In quantum gravity, it clarifies the physical

interpretation of the transitions amplitudes and their truncations.

I. SYSTEMS EVOLVING IN TIME

Consider a dynamical system with configuration vari-

able q 2 C, and lagrangian L(q, q̇). Given an initial con-

figuration q at time t and a final configuration q
0
at time

t
0
, let qq,t,q0,t0 : ! C be a solution of the equations of
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2
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TABLE I. Continuous and classical limits

The interest of this structure is that it remains mean-

ingful in di↵eomorphism invariant systems and o↵ers an

excellent conceptual tool for dealing with background in-

dependent physics. To see this, let’s first consider its gen-

eralization to finite dimensional parametrized systems.

II. PARAMETRIZED SYSTEMS

I start by reviewing a few well-known facts about

background independence. The system considered above
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The classical limit is ℏ⟶ 0 , the limit for ∞ quanta is relevant for the continuous limit 
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just as the electromagnetic field emerges from photons 
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■ there is no classical spacetime in the quantum regime 
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■ states are defined by the continuity relations between quanta 
■ a spinfoam is a quantum interaction, but also a spacetime region 

THERE IS NO TIME, THERE IS ONLY CHANGE 
in fact change is everything we measure!
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evidence from two sources: First, the Randall-Sundrum
II braneworld [36] provides an example of an induced
gravity model. In particular, it has been observed that
in this framework, using holographic prescription for
entanglement entropy [8], black hole entropy corre-
sponds to entanglement entropy [27]. However, it is also
straightforward to show that the area term in eq. (2)
appears for any su�ciently large region, irrespective of
whether or not the entangling surface corresponds to
an event horizon [27, 35]. Similar results were noted in
[28] for other simple induced gravity models using heat
kernel techniques. Finally we turn to loop quantum
gravity to find support for our conjecture.

Spin Foam Models: In ‘loop quantum gravity’, a
smooth macroscopic geometry is expected to emerge from
a description of space and spacetime which is discrete at
a fundamental level [37]. There has been recent progress
in the understanding of black hole entropy in this context
[25, 38] and so it is natural to ask whether these models
give some evidence for our conjecture that general re-
gions of macroscopic spacetimes carry an entanglement
entropy given by eq. (2).

Consider a cellular decomposition of a three-
dimensional manifold, for instance, a triangulation. A
spin-network graph with a node in each cell and a link
connecting nodes in neighbouring cells is said to be dual
to this triangulation. Lorentz-group representations la-
bel the links of the graph and determine a quantum ge-
ometry of the triangulation. Generically such states are
highly entangled [26]. In particular, we consider the vac-
uum state defined using the covariant spinfoam dynam-
ics, which has the properties that it is invariant under lo-
cal Lorentz transformation and time translations. Now,
even neglecting interactions between di↵erent links, the
state has entanglement associated to the endpoints of
each link. In the cellular picture, the quantum geome-
tries of two nearby cells in the three-dimensional manifold
are entangled.

Now we consider a three-dimensional region A in
the manifold. The cellular decomposition induces on
the boundary ⌃ of the region a tessellation in two-
dimensional cells. In the dual picture these are links l

crossing the surface ⌃. Exactly as discussed above, the
relevant part of the reduced density matrix ⇢A can be
written in the form (9) with the entanglement Hamilto-
nian

HA = 2⇡
P

l
Kl + logZ . (13)

The sum is over the links l that cross the entangling sur-
face ⌃, and Kl is the hermitian generator of boosts in the
unitary representation of the Lorentz group associated to
the link. This expression has the same form of eq. (11)
for the QFT case. The term logZ provides the normal-
ization of the density matrix ⇢A = e

�HA , i.e., this term
provides the constant c

0 in eq. (11). The entanglement
entropy is now easily computed:

SEE = �Tr(⇢A log ⇢A) = 2⇡Tr(
P

l
Kl ⇢A) + logZ . (14)

The simplicity constraint on representations of the
Lorentz group allows us to express the first term as the
area A⌃ of the entangling surface [25]. The second term
is proportional to the number N of links crossing ⌃, so
that we have

SEE =
A⌃

4G0
+ µ(�) N , (15)

where µ is a chemical potential that depends on the
Immirzi parameter � [38]. The entanglement entropy
is finite because the theory has no degrees of freedom
below the scale `LQG = (8⇡�G0)1/2, the physical cut-o↵
scale in loop quantum gravity. As the area A⌃ is
proportional to N , the second term can be understood
as a finite renormalization of G0 and be reabsorbed in
the first term in the same way as described in eq. (7),
thus providing further evidence for our conjecture.

Discussion: We have proposed that the Bekenstein-
Hawking formula has a much wider applicability that pre-
viously considered. In fact, our conjecture is that eq. (2)
corresponds to the leading contribution to the entangle-
ment entropy for any su�ciently large region in a theory
of quantum gravity. Evidence for this conjecture was pre-
sented from four directions:
i) In the AdS/CFT correspondence, the well-tested pre-
scription for holographic entanglement entropy [8] clearly
assigns an entropy to large classes of surfaces which are
unrelated to horizons, with precisely eq. (2) as the lead-
ing term.
ii) In examining quantum fields in curved spacetime, for
any large region, the leading contribution to the entan-
glement entropy is an area term and the coe�cient of
this term matches precisely the renormalization of New-
ton’s constant in eq. (2). Further, applying the ‘o↵-shell’
method to calculate the Rindler entropy locally along the
entangling surface suggests the presence of a bare term
A/4G0, as well.
iii) In simplified models of induced gravity, the lead-
ing term to the entanglement entropy for large regions
is finite and takes precisely the form given by eq. (2)
[27, 28, 35].
iv) Our preliminary investigations of spin foam models
indicate that general regions will carry a finite entangle-
ment entropy, again with the leading term described by
eq. (2).
We feel that combining these results provides strong ev-
idence for our conjecture as a general result.

Our proposal demands that quantum gravity e↵ects
two essential features for entanglement entropy: First,
it ‘regulates’ entanglement entropies for general regions.
This might be seen as another realization of the gen-
eral lore that quantum gravity contains fewer states than
quantum field theory. The second property is that this
regulator yields a simple universal result, i.e., eq. (2).
This property would seem to rely on the universal cou-
plings of the e↵ective Einstein theory emerging at low
energies [22]. We expect this universality is a unique fea-
ture of the entanglement entropy. For example, the Rényi
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Constantly accelerated observer:
K generator of boost 
E=aK    generator of proper time evolutionP 0

P

z

t

� = 1/a



COSMOLOGICAL 
CONSTANT                                      
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REMOVAL OF IR INFINITIES:  FINITENESS OF THE AMPLITUDE
Early perturbative quantum gravity: non-renormalizability

Local: observables at arbitrarily small regions in a continuous manifold 
Infinite renormalization group 
Cut-off: it is a mathematical trick 

Perturbations methods are some kind of  approximation.  

Infinities: we perturb around points that are not really good.

Han, Fairbairn-Moesburger, 2011 
see also Bianchi, Rovelli 2011

ao = 8⇡G~�
p
3

2

Non-perturbative approach: presence of  a fundamental scale! 

Minimal area                                → natural UV cut-off  

Cosmological constant  Λ > 0   → natural IR cut-off  
`P

fmin =
p

L `P

horizon
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REMOVAL OF IR INFINITIES:  FINITENESS OF THE AMPLITUDE
Planck length + horizon = minimal angular resolution 

Mathematically a fuzzy spheres: spherical harmonics with   

A maximum angular momentum characterizes the representations of   

                                                               

The local rotational symmetry is better described by  

than by SU(2), with       

Physically: non-commutativity, fuzziness of  any angular function,  

impossibility of  resolving small dihedral angles.  

Loop gravity: φ is an operator with a discrete spectrum. 

Best angular resolution:                                                with 

(Majid’88)

jmax

q = ei2⇡/k
SU(2)q

q = ei⇤l2P

�min=
p

2/jmax jmax⇠ 1
l2P ⇤

(Major’99)

(Connes’94)

SU(2)q

with  k~2 

SU(2)q



FRANCESCA VIDOTTO’S INTRODUCTION TO                                       

LECTURE 5                                   
An application of the covariant  
formalism: COSMOLOGY    
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QUANTUM COSMOLOGY

symmetry 
reduction

quantum 
cosmology

quantum gravitygravity

canonical / covariant 
quantization

Rµ⌫ � 1
2 gµ⌫ = 8⇡G Tµ⌫

cosmology

ds2 = dt2 � a2(t) d3~x

+ perturbations

Wv = (PSL(2,C) � Y� �v)(1I)

[Bianchi, Rovelli,Vidotto’10]

canonical 
quantization
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LOOP QUANTUM COSMOLOGY

Input: SU(2) group variables

Minimal area gap
Hamiltonian constraint

Holonomy corrections 
Inverse-volume corrections

Output: Singularity resolution

No need to violate the SEC 
Modified Friedmann equations

Wave-packet non-singular trajectories 
Modified Muhanov-Sasaki equations

Predictions for the CMB

ȧ2
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8�G

3
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[Ashtekar, Pawlowski, Singh ’04][Bojowald  ’99]

(canonical) LQG 
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THE STANDARD SCENARIO                   LOOP QUANTUM COSMOLOGY

SINGULARITY 

BIG BANG: The universe starts hot and dense 

in a quantum regime ⇒ quantum fluctuations 

INFLATION: a non-identified field governs the 

dynamics of the universe driving the expansion and 

putting in place the seeds of structure formation 

INITIAL CONDITION: kinetic energy of the inflaton 

should dominate over the potential  

⇒ power spectra depends on the choice of vacuum

BIG BOUNCE: maximal energy density 

deep quantum regime ⇒ tunnelling

NO SINGULARITIES: maximal curvature

INFLATION IS GENERIC: 
no fine-tuned initial conditions are required

INITIAL CONDITION: the contracting phase 

makes the inflaton to climb up the potential 

⟶
[Agullo, Wang, Wilson-Ewing 2301.10215 ]

https://arxiv.org/abs/2301.10215
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QUANTUM COSMOLOGY

symmetry 
reduction

quantum 
cosmology

quantum gravitygravity

canonical / covariant 
quantization

Rµ⌫ � 1
2 gµ⌫ = 8⇡G Tµ⌫

cosmology

ds2 = dt2 � a2(t) d3~x

+ perturbations

Wv = (PSL(2,C) � Y� �v)(1I)

[Bianchi, Rovelli,Vidotto’10]
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IN THIS LECTURE

THEORY: Covariant Loop Quantum Gravity (Spinfoam) 

STATE: Cosmological Lorentzian Spinfoam State                           with Rovelli and Bianchi 

BOUNCE: Semiclassical techniques                                        with Han, Liu, Qu, and Zhang 

QUANTUM FLUCTUATIONS: Numerical Evaluation                       with Gozzini and Frisoni 

FUTURE ROADMAP
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GRAPH STATES

Restrict the states to a fixed graph with a finite number N of nodes.  

This defines an approximated kinematics of  the universe,  

inhomogeneous but truncated at a finite number of  cells. 

The graph captures the large scale d.o.f. obtained averaging the metric  
over the faces of  a cellular decomposition formed by N cells.

The full theory can be regarded as an expansion for growing N.  

For instance FRW cosmology corresponds to the lower order where there is only  

a regular cellular decomposition: the only d.o.f. is given by the volume. 

Different graphs can be useful to model different physical situations.

•    •
•       •

•

•      •
•      •

•      •

•

...•      •

[Borja, Garay, Vidotto 2011]
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 FEW-NODE THEORY:   REGGE CALCULUS
IDEA             Evolve one or few tetrahedra, triangulating a 3-sphere. 
PROBLEM    Compare the evolution for 5, 16 and 600 tetrahedra. 
RESULT        The qualitative behavior is the same!  

[Collins & Williams ’72]



EXTRINSIC COHERENT STATES

�H�(U�) =

Z

SU(2)N
dgn

Y

l2�

Kt( gs(�) U� g
�1
t(�) H

�1
� )

Spinnetwork states                    ↔ Coherent states 

Geometrical interpretation  for the labels                   : 
 
           are the 3d normals to the faces of  the cellular decomposition; 

Im(zl)   ↔ curvature at the faces and  Re(zl) ↔ area of  the face 

Hom&Iso coherent states 
                      fixed by requiring a regular cellular decomposition 

in terms of  the scale factor                               and

[Bianchi, Magliaro, Perini ’09]

[Marcianò, Magliaro, Perini, Rovelli, FV…]

|�, j`, vni |�, z`,~n`,~n
0
`i

(z`,~n`,~n
0
`)

|�, zi

[Freidel, Speziale ’10]

~n`,~n
0
`

~n`,~n
0
`

Re(z) ⇠ ȧ
p

Im(z) ⇠ a

Re(z`)Im(z`)

Re(z`) = ✓(�K + �)

~n` vn

~n0
`

vn j`

H` 2 SL(2,C)

“group average"  
to get gauge invariant states

The heat kernel      peaks each      on U` H`Kt

 H`(h`) =

Z

SU(2)N
dgn

LY

`=1



Spinfoam amplitude with an effective :Λ

[Bianchi, Krajewski, Rovelli,Vidotto’11]SEMICLASSICAL REGIME

ZC =
X

jf ,ve

Y

f

(2j + 1)
Y

e

ei�ve
Y

v

Av(jf , ve)

LQG coherent states 
peaked on a homogenous and isotropic geometry
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BOUNCE FROM SPINFOAM

Hypercube  torus 

Coupling with a scalar field 

Same initial and final state 
            but for a flip  
in the extrinsic curvature 

Suppressed but non-vanishing 
amplitude for the process 

In the semi-classical limit we get 
an action with extra higher-
derivative terms

∼

[Han, Liu, Qu, Vidotto, Zhang ’24]



classical dynamics

1ST-ORDER FACTORIZATION

H = const (aȧ2 � �

3
a
3) = 0 ȧ = ±

r
�

3
a

Text

[Vidotto ’11]

Many-nodes/many-links spinfoam: the homogeneous and isotropic case



classical dynamics

1ST-ORDER FACTORIZATION

SH = const

Z
dt (aȧ2 +

�

3
a3)

��� = const
2

3

r
�

3
(a3

f
� a3

i
)

ȧ = ±
r

�

3
a

Text

[Vidotto ’11]

Many-nodes/many-links spinfoam: the homogeneous and isotropic case



classical dynamics

quantum dynamics

1ST-ORDER FACTORIZATION

SH = const

Z
dt (aȧ2 +

�

3
a3)

��� = const
2

3

r
�

3
(a3

f
� a3

i
)

ȧ = ±
r

�

3
a

W (af , ai) = e
i

~ SH(af ,ai) = W (af )W (ai)

Text

[Vidotto ’11]

Many-nodes/many-links spinfoam: the homogeneous and isotropic case



classical dynamics

quantum dynamics

loop dynamics  

1ST-ORDER FACTORIZATION

�W |�H(z,z0)⇥ = W (z, z0) = W (z)W (z0)

SH = const

Z
dt (aȧ2 +

�

3
a3)

��� = const
2

3

r
�

3
(a3

f
� a3

i
)

ȧ = ±
r

�

3
a

W (af , ai) = e
i

~ SH(af ,ai) = W (af )W (ai)

Text

[Vidotto ’11]

Many-nodes/many-links spinfoam: the homogeneous and isotropic case



classical dynamics

quantum dynamics

loop dynamics  

1ST-ORDER FACTORIZATION

�W |�H(z,z0)⇥ = W (z, z0) = W (z)W (z0)

SH = const

Z
dt (aȧ2 +

�

3
a3)

��� = const
2

3

r
�

3
(a3

f
� a3

i
)

ȧ = ±
r

�

3
a

Spinfoam Cosmology

h f = =

 

’
v2∂ f

hv f

!
h` (5.8)

h f v ! h` (see figure)

Av(h`) =
Z

SL(2,C)
dGn ’̀ P(h`, G`) (5.9)

where we define G` := Gs(`)G�1
t(`) as the product of the SL(2,C) group elements at the

source and target nodes, extremals of each oriented link `. We take a product on the links
`, having defined for each link a function P(h, G):

P(h, G) = Â
j
(2j + 1)2

Z

SU(2)
dg c(j)(hg�1) c(gj,j)(gG) (5.10)

being c(j)(hg�1) bla bla bla bla. We integrate and we obtain:

P(h, G) = Â
j
(2j + 1)2 D(j)(h)m0

m D(gj,j)(G)j,m
j,m0 . (5.11)

The sum is over the coloring of these links, i.e. on the spins j`.
D(j)(h) is a representation-(j) matrix of SU(2) with dimension 2j+1 and D(gj,j)(G) i a

representation-(gj, j) matrix of SL(2,C) with an infinite dimension. The function P(h, G)
is the kernel of a map Y that glues these matrices with different dimensions:

Y : H
(j)

�! H
(j,gj)

|j,mi |(j,gj); j,mi (5.12)

whose matrix elements are given by h(j,gj); j0,m0
|Y | j,mi = dp,gjdkjdjj0dmm0 .

order (0) = W0(h`, h`0) = dG`
(h`, h`0)

(5.13)

trivial dynamics (in analogy with QED scattering)
We are interested in the probability amplitude of finding a different geometry from

the initial one (while here W(z,z0) has support on p = p0).

9

W (af , ai) = e
i

~ SH(af ,ai) = W (af )W (ai)

Text

[Vidotto ’11]

Many-nodes/many-links spinfoam: the homogeneous and isotropic case



classical dynamics

quantum dynamics

loop dynamics  

1ST-ORDER FACTORIZATION

�W |�H(z,z0)⇥ = W (z, z0) = W (z)W (z0)

SH = const

Z
dt (aȧ2 +

�

3
a3)

��� = const
2

3

r
�

3
(a3

f
� a3

i
)

ȧ = ±
r

�

3
a

Spinfoam Cosmology

order (1) s WC•(z
0,z) =

Z
h`
Z

h0` yz0(h0`) W1(h0`, h`) yz(h0`) (5.14)

W1(h0`, h`) not simplicial

W1(h0`, h`) =
Z

SL(2,C)

N�1

’
n=1

dGn

L

’̀
=1

P(h`, G`)P(h0`, G0

`) (5.15)

The integration over the SL(2,C) elements Gn associated to the edges imposes Lorentz
invariance. Notice that the integration is over all the Gn but one, in order to avoid a
redundancy that makes the amplitude diverge [?].

We use the definition of yz(h`) and W1(h`, h0`)

WC•(z
0,z) =

Z
h`
Z

h0` yz0(h0`) W1(h0`, h`) yz(h0`)

=

 Z

SL(2,C)
dG0

L

’̀
=1

P(h0`, G0)

! Z

SL(2,C)
dG

L

’̀
=1

P(h`, G)

!

= W(z)W(z0) h o H qui sopra? (5.16)

and we define (???)

Pt(H`, G) =
Z

dh`Kt(h`, H`)P(h`, G) (5.17)

= Â
j`

(2j`+1)e�2th̄j`(j`+1)D(j`)(H`)
m0

m D(gj`,j`)(G`)
jm
jm0 (5.18)

The transition amplitude factorize (this is because we are working at the first order in
the exponsion) and each single term W(z) can be interpreted as the Hartle-Hawking wave
function of the universe determined by a no-boundary initial condition [?]. We can therefore
study W(z) instead of W(zfin,zin) and interpret it as the wave function of the universe3.

W(H`) =
Z

SL(2,C)

N�1

’
n=1

dGn

L

’̀
=1

Â
j`

(2j`+1)e�2th̄j`(j`+1)eilve Tr
h
D(j`)(H`)Y†D(gj`,j`)(G`)Y

i
.

(5.19)
3The factorization survives also beyond the classical (large distance) limit when we restrict to the one-

vertex approximation of the amplitude and can be reinterpreted as the amplitude to go from the initial state to
nothing and from nothing to the final state, namely as the contribution of a disconnected spacetime topology
to the total transition amplitude [?].

10
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Z
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N�1Y
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dGn

LY

`=1
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0
`)

W (af , ai) = e
i

~ SH(af ,ai) = W (af )W (ai)

G` = GnsG
�1
nt

Text

[Vidotto ’11]

Many-nodes/many-links spinfoam: the homogeneous and isotropic case



Hartle-Hawking states:

Spinfoam HH states:
hf =

Y

v

hvf

WC(hl) =

Z

SU(2)
dhvf

Y

f

�(hf )
Y

v

A(hvf )

v

e hvf

f
�

[Bianchi, Rovelli,Vidotto’10]SPINFOAM HARTLE-HAWKING STATES

ψH(q) = ∫∂g=q
Dg eiS[g]



CORRELATIONS
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5-CELL PENTACHORDS

•

[Frisoni, Gozzini, Vidotto ’22]

Simplest regular 4-polytope Regular triangulation of S3
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OBSERVABLES

Area 

Volume                                                                      

Dihedral Angles ⇒  Curvature                                                                             spread 

Correlations                               

Entanglement

⟨O⟩ = ⟨ψo |O |ψo⟩

C(O1, O2) = ⟨ψo |O1O2 |ψo⟩ − ⟨O1⟩⟨O2⟩
(ΔO1) (ΔO2)

ΔO = ⟨ψo |O2 |ψo⟩ − ⟨O⟩2
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RESULTS

1. 3-sphere as emerging geometry 

2. large fluctuations 

3. large correlations
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RESULTS
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RESULTS
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2. large fluctuations 
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GRAPH REFINEMENT

•

••
•

••

[Frisoni, Gozzini, Vidotto ’22]
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GRAPH REFINEMENT

•

••
•

••

•
• •

••

[Frisoni, Gozzini, Vidotto ’22]
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DIHEDRAL ANGLE
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[Frisoni, Gozzini, Vidotto ’22]
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VOLUME
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[Frisoni, Gozzini, Vidotto ’22]
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ENTANGLEMENT ENTROPY

Partition:    

Reduced density matrix:    

Entanglement entropy:    

ℋ = ℋA ⊗ ℋĀ

ρA = 1
Z

TrĀ |ψ0⟩⟨ψ0 |

SA = − Tr (ρA log ρA)

[Frisoni, Gozzini, Vidotto ’22]



Spinfoam………………………………………………………………………………………………………………………………  Francesca Vidotto

ENTANGLEMENT ENTROPY

Partition:    

Reduced density matrix:    

Entanglement entropy:    

ℋ = ℋA ⊗ ℋĀ

ρA = 1
Z

TrĀ |ψ0⟩⟨ψ0 |

SA = − Tr (ρA log ρA)

[Frisoni, Gozzini, Vidotto ’22]
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CORRELATIONS
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[Frisoni, Gozzini, Vidotto ’22]
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ENTANGLEMENT ENTROPY
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Bianchi, Donà, Vilensky “Entanglement entropy of Bell-network states in LQG”

Partition:    

Reduced density matrix:    

Entanglement entropy:    

ℋ = ℋA ⊗ ℋĀ

ρA = 1
Z

TrĀ |ψ0⟩⟨ψ0 |

SA = − Tr (ρA log ρA)
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BF 16-CELL MODEL
4

FIG. 1: Left: Geometry of the 16-cell triangulation. Numbers correspond to points, and lines correspond to
segments (the internal one is dashed in red). Right: The corresponding spinfoam, with eight vertices and
six internal faces (highlighted with di↵erent colors). The labels refer to the points in the triangulation. We

label only the edges not to clutter the picture.

face with 3 (each face is dual to a triangle). All tetrahedra in the triangulation labeled with points 1 and 5
are in the spinfoam bulk, while the remaining ones (labeled with points 1 or 5) are on the boundary. The
tetrahedra in the triangulation sharing 3 points are glued on a face in the spinfoam. For example, the two
tetrahedra labeled with points 5678 and 5278 are connected by a link on the boundary of the spinfoam.

We first perform the integrals over SU(2) in each one of the 16 boundary tetrahedra using relation (B4),
defined in Appendix B. Applying (B4) we have an intertwiner on each boundary tetrahedron of the spinfoam.
Since the BF topological invariance allows computing the amplitude by focusing on the boundary, we perform
the integrals over the 6 internal faces of the 16-cell spinfoam. We are left with the diagram reported in the
top left panel of Figure 2, where each boundary intertwiner is represented with a brown dot. A Wigner
48j symbol constitutes the boundary of the 16-cell spinfoam amplitude. To compute it e�ciently, we write
the symbol as contractions of smaller Wigner 21j symbols. The definition of the 21j symbol split as the
contraction of 6j and 9j symbols is bulky. Therefore it is reported in Appendix B (see (B7)). We take
advantage of it to write the “north and south” amplitudes associated with the boundary of the top right
panel in Figure 2. These are given by the contraction of 21j symbols along the vertical purple spins:

WN =
X

p1,p2

{21j} (j, i1, i2, i3, i4, b1, b2, b3, p1, p2) {21j} (j, i16, i15, i14, i13, b5, b4, b3, p1, p2) dp1dp2 (11)

WS =
X

p1,p2

{21j} (j, i8, i7, i6, i5, b1, b2, b3, p1, p2) {21j} (j, i9, i10, i11, i12, b5, b4, b3, p1, p2) dp1dp2(�1)� , (12)

where � = 2p1 + 2p2 + 3b3 and djk ⌘ 2jk + 1. Finally, we contract the “north and south” amplitudes (11) -
(12) along the five horizontal blue spins in the top right panel of Figure 2. Therefore, we write the expression
for the 16-cell BF spinfoam amplitude as:

W (j, in) =
X

b1...b5

(WN ·WS · db1db2db3db4db5) ·
16Y

k=1

p
dik , (13)

where in = i1 . . . i16.

[Frisoni, Gozzini, Vidotto ’23]
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FIG. 7: Normal distribution (23) of the expectation values of the dihedral angle operator (24). The
statistical fluctuations increase as a function of the boundary spin j.

of Figure 8, we report the exact same boundary of the 16-cell spinfoam defined in Section III, labeling the
nodes with numbers. We do this to identify the correlations within the 16-cell geometry easily. Looking at
the correlation values, we notice that each node k is equivalent to node k ± 4. This is because the 16-cell
spinfoam boundary is symmetrical for 90 degree rotations. Interestingly, there are relatively high values
of the correlations between nodes not directly connected by a link (for example, 1-9, 5-13, etc.). In other
words, some couples of non-adjacent nodes are strongly correlated. This is the striking di↵erence between
the 16-cell geometry and the spinfoam model studied in [2] or the 4-simplex [1].

FIG. 8: Left: 16-cell spinfoam boundary (same as Figure 2) with nodes labeled by numbers Right: Some
values of quantum correlations (21) as a function of the boundary spin j.

In Figure 8, we explicitly show the correlation between just a few couples of nodes not to clutter the picture.
We infer that correlations are constant as a function of the boundary spin j, confirming the trend observed
in [1, 2]. In Figure 9, we show the numerical values of (21) computed between all possible combinations
to emphasize the complete pattern of nodes. We report the tables for the minimum and maximum values
considered for the boundary spins for visualization purposes. From Figure 8, it is evident that the values
between j = 0.5 and j = 4 have very similar values.

[Frisoni, Gozzini, Vidotto ’23]
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SUMMARY

Computing primordial quantum fluctuations from the full theory  
is one of  the main goals of  a quantum theory of  gravity! 

Proposal: use Spinfoam Hartle-Hawking States 

Graph truncation: 5-cell (full) ✓, 20-cell (refinement) ✓, 16-cell (topological) ✓ 

Computational challenge: compute expectation values for observables 

Results:  1. emerging  geometry 
2. large fluctuations 
3. large correlations (for adjacent nodes) ⟶ 16-cell needed for richer structure

S3
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COLLABORATIONS AND FUTURE DIRECTIONS

with Francesco Gozzini

with Mateo Pascualwith Pietropaolo Frisoni

FIRST SIMPLE MODEL 

1 vertex 
5-cells boundary graph 
computation of observables 
high correlations

RELATION TO COSMOLOGICAL VACUUM 

properties of standard cosmological vacua 
QFT on a triangulated 3-sphere 
entanglement entropy

NON-INFLATIONARY MODELS 

cosmological perturbations from an effective 
highly-correlated vacuum states 
matter bounce as an alternative 
to the inflationary models

MORE COMPLEX RELIABLE MODELS 

1 vertex, 6 vertices 
16-cells and 20-cells boundary graphs 
MCMC to compute observables 
rich behaviour of correlations

with Sofie Ried
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COSMOLOGY SUMMARY

THEORY: Covariant Loop Quantum Gravity (Spinfoam) 

STATE: Cosmological Lorentzian Spinfoam State                           with Rovelli and Bianchi 

BOUNCE: Semiclassical techniques                                        with Han, Liu, Qu, and Zhang 

QUANTUM FLUCTUATIONS: Numerical Evaluation                       with Gozzini and Frisoni 

FUTURE ROADMAP:        a lot of things to do!



www.cpt.univ-mrs.fr/~rovelli/IntroductionLQG.pdf  


