Hongguang Liu

Spinfoam numerics How to calculate the amplitude and observables

Overview of the spinfoam numerics

Booster decomposition: 15j symbol + booster function

Sl2cfoam-next

Spinfoam based on different formulations

Spinfoam renomralization: 2211.09578

Structure

1. Introduction to EPRL and its extension

- 1.1 Triangulation
- 1.2 EPRL transition amplitude
- 1.3 Booster function decomposition
- 1.4 Integral representation
- 2. Introduction to (complex) saddle points and Lefschetz thimble methods
- 3. Numerical examples

Each set of 4 points gives a tetrahedron $f(\theta_1, \theta_1, \theta_2, \theta_3, \theta_4)$... 5 tetrahedra e Each set of 3 points gives a triangle $e.g.$ [P_1 , P_2 , P_3]... 10 triangles $+$ Each set of 2 points gives a segments $e.g.$ $\lbrack p, p \rbrack$ $e.g. LP_1, P_2$ 10 segments
 $\sum_i \mathcal{N}_i V_i = D \in V_1$ volume of te trahedra.

 $B_f = A_{ij} \frac{N_i \wedge N_i}{|N_i \wedge N_i|}$, A:j area,, describe the triangles.

4-simplex: triangulation of 4d manifold 4d polytope as convex hull of 5 points generalization of triangles/tetrahedra

dual graph

-
-

boundary spinnetwork states

 M faces \oint boundary links ι

4 valent nodes: intertwiners

amp Spinfoam amplitude: T_1A_f T_2A_e $\begin{array}{cc} & \mathsf{U} \mathrel{\mathop{\longleftarrow}} \mathsf{H} \mathrel{\mathop{\cup}_{\mathsf{G}}} \end{array}$ Z = Jentex amp

Full celluar decomposition:

Gluing single vertices via edges Identifying and integrating states on the glued edge Internal triangles: summing over reps labels

EPRL model

SL(2,C) unitary irreps: principle series

Naimark's canonical basis $J^2|j_m\rangle = j(j+1)|jm\rangle$, $J^3|j_n\rangle = m|j_m\rangle$,

EPRL model

 $SL(2, C)$ BF theory + simplicity (weakly imposed) ArXiv: 1205.2019, 2310.20147

 $\mathcal{I}(\Delta) = \int \prod_{e} dq_e \prod_{f} \delta(\prod_{\text{ceaf}}^{G} g_e)$ $=\sum_{\{U_f\}} \int \pi dg \, \pi d_1 \pi i \mathcal{F}_f(\pi \mathcal{F}_f)$ $9\frac{195}{1}$ $\frac{3\pi}{4\pi i}\left[\frac{3}{2}\right]$ $\frac{1}{2}\left[\frac{1}{4}\right]$ $\frac{1}{2}\left[\frac{1}{4}\right]$ $\frac{1}{2}\left[\frac{1}{4}\right]$ $\frac{1}{2}\left[\frac{1}{4}\right]$ $\frac{1}{2}\left[\frac{1}{4}\right]$ $\frac{1}{2}\left[\frac{1}{4}\right]$ $\frac{1}{2}\left[\frac{1}{4}\right]$ $\frac{1}{2}\left[\frac{1}{4}\right]$ $\frac{1}{2}\left[\frac{1}{4}\right]$ $\frac{1}{2}\left[\frac{1}{4}\$

EPRL model

$$
\int_{0}^{3} \frac{1}{\pi} \int_{0}^{3} e^{i\theta} \left(1 - \frac{1}{2} \int_{0}^{3} e^{-i\theta} \left(1 - \frac{1}{2} \int_{0}^{3} e^{-i\theta} \right) \left(1 - \frac{1}{2} \int_{0}^{3} e^{-i\theta} \right) \right) dx dy
$$
\n
$$
e^{i\theta} = \frac{1}{\pi} \int_{0}^{\pi} \frac{1}{\pi} \int_{0
$$

Booster decomposition

Integral representation Again SL(2,C) representation theory $H^{(\int,\Lambda)}$: $\Psi(z)$. $z = \begin{pmatrix} z_t \\ z \end{pmatrix} \in \Phi^2$ \bullet Action of $g \in SL(2, L)$: $9D\pm(2) = \pm (9^7z)$ Scalan product:
 $\langle \Psi_1, \Psi_2 \rangle = \int_{\Omega} \sqrt{\Psi_1(z) \Psi_2(z)} \frac{1}{w_2} dz + \frac{1}{z} \frac{1}{z} (z_1 dz_2 - z_1 dz_1) \sqrt{\overline{z}_1} d\overline{z}_1 - \overline{z}_1 d\overline{z}_1$ $H(\varphi,n) = \{ \Psi : \langle \Psi, \Psi \rangle \langle \infty \rangle \}$

Integral representation SU(2) coherent states
 $\frac{1}{\sqrt{T}}$ $\left\{\frac{1}{2}, \frac{1}{2}\right\}$ $\left\{\frac{2}{3}, \frac{1}{2}\right\}$ \bullet \forall maps: $\overline{U}_j \rightarrow \overline{U}(1j, 2j)$. SUG Coherent states: 4 je (2) = - For highlot weight states, we
 $\int_{0}^{1} (u(2)) f(t^{\frac{1}{2}}|u(z)|^{\frac{1}{2}})^{\frac{2}{3}} dx$ \Rightarrow $\pi_{jg}(z) = \pi_{jj}(v(g)^T z) = \pi_{j+1}$ 3d normal vector of the triangle in each tetrahedron

301

\n22.
$$
2x + 2x
$$

\n(2) $\sqrt{2}x + 2x$

\n(3) $2x + 2x$

\n(4) $2x + 2x$

\n(5) $\sqrt{2}x + 2x$

\n(6) $\sqrt{2}x + 2x$

\n(7) $2x + 2x$

\n(8) $\sqrt{2}x + 2x$

\n(9) $2x + 2x$

\n(1) $\sqrt{2}x + 2x$

\n(2) $\sqrt{2}x + 2x$

\n(2) $\sqrt{2}x + 2x$

\n

Integral representation action and measures g_{avg} fixing
 $A_v = \int \vec{v} \, d\theta_e \, \delta g_{\text{avg}} \hat{f} \int_{\Phi} \vec{v} \cdot \oint_{\Phi} \vec{v} \cdot \vec{g}$ $= \int_{e}^{\pi} dg_{e} \pi \int_{\phi} w_{2} \sqrt{9e^{i}z_{v}f}$, $9e^{i}z_{v}$ $49.20224.$ = $\int_{Q} \pi d\rho_{ve} = \frac{\omega_{2}}{2\pi f} \cdot \frac{\omega_{2}}{2\pi f} \cdot \frac{2\pi f}{2\pi f} \cdot \frac{2\pi f}{2\pi f}$

[dx] x $\left(\frac{2}{\pi} \cdot \frac{e}{2} \cdot \frac{e}{2} \cdot \frac{e}{2} \cdot \frac{e}{2} \cdot \frac{e}{2}}{2\pi f} \cdot \frac{e}{2\pi f} \right)$ $= \int Ldx \int Q^{SL}x \cdot 3.9d$ $k=1$ for s .
 $k=-1$ for t . Swef = $\frac{1}{4}$ ($ln\left[\frac{1}{2}gt, \frac{1}{2}gt\right]$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

\n
$$
\sqrt{4}x_{4}e_{4} - 9e_{4}e_{4} + \frac{1}{4}e_{4}e_{4} \\
\sqrt{4}x_{4}e_{4} - 9e_{4}e_{4} + \frac{1}{4}e_{4}e_{4} \\
\sqrt{4}x_{4}e_{4} - \frac{1}{4}e_{4}e_{4} + \frac{1}{4}e_{4}e_{4} \\
\sqrt{4}x_{4}e_{4} - \frac{1}{4}e_{4}e_{4} \\
\sqrt{4}x_{4}e_{4} - \frac{1}{4}e_{4}e_{4} \\
\sqrt{4}x_{4}e_{4} + \frac{1}{4}e_{4}e_{4} \\
\sqrt{4}x_{4}e_{4} + \frac{1}{4}e_{4}e_{4} \\
\sqrt{4}x_{4}e_{4} + \frac{1}{4}e_{4}e_{4} \\
\sqrt{4}x_{4}e_{4} + \frac{1}{4}e_{4}e_{4} \\
\sqrt{4}x_{4}e_{4} \\
\sqrt{4
$$

Integral representation

 $A_v = \int [dx] e^{S_x[X;\cdot]_{s_x}I_y]}$ $S_v = \sum_{c \in e} (S_{vef} + S_{ue'f})$ $X \subseteq [9,2]$ Svef = j_f (In $\left(\sqrt{8}g_{ff}, 2\sqrt{e^{2}}\right)^2$ < Zvef, $3g_{ff}$) + (if k_{ref} -1) (n < Zvef, Zvef) $k = 1$. $X = Ig_{ve}$, Zuf, g_{el}]. <u>fef</u> $-ky_{e'}f = kw_{f} = -kv_{e}f$

Gauge transformations

 $S = \frac{1}{v} \sum_{c \in e} (S_{vef} + S_{ue'f})$, $S_{vef} = \frac{1}{v} \left(ln \left[\left\langle \frac{dg}{d} + \frac{2}{v} + \frac{1}{v} \right\rangle \right] + \left(\frac{1 - k_vg}{v} + \frac{1}{v} \right) ln \left(\frac{2}{v} + \frac{3}{v} \right) \right)$ $k = 1$ gange trans. $g_{\nu e} \rightarrow \pm g_{\nu e}$ discrete trans. \odot Contineurs: at each $v: \bigoplus_{z \downarrow f} \neg \widetilde{\theta}_v \bigoplus_{v \in f} \neg (\widetilde{\theta}_v^{-1})^T z_v f$ $\begin{array}{ccccccc}\n\mathbf{Q} & \mathbf{z}_{\nu f} & \rightarrow & \lambda_{\nu f} & \mathbf{z}_{\nu f} & \mathbf{c} & \mathbf{z} & \text{in} & \mathbf{f}P_{I}\n\end{array}$ For each Zuf \circledS \mathscr{G}_{ef} + $e^{i\mathscr{U}_{ef}}$ \mathscr{G}_{ef} \mathscr{V}_{ef} $\in \mathbb{R}$ For internal e: \oplus $g_{\nu e}$ \rightarrow $g_{\nu e}$ h_{e}^{T} , g_{ve} \rightarrow g_{ve} h_{e} g_{ef} \rightarrow h_{e} g_{ef} \rightarrow

Integral
$$
A = \int_{\mathbb{R}^n} d^n x f(x) e^{-S(x)}
$$
 with complex action $S(x)$

Saddle point approximation!

Perturbative (asymptotic) expansion

$$
S_{v} = \sum_{c \in C} (S_{vef} + S_{ue'f})
$$
\nSued the point \Leftrightarrow solutions of E-M.

\nSingle

\n
$$
\overline{Z}_{uef} := \int_{ue}^{T} z_{vf} \cdot \overline{z} \cdot \overline{z}_{vef}
$$
\nVertex

\n
$$
\begin{aligned}\nS_{g_{ve}} S &\Rightarrow \widetilde{Z}_{vef} \cdot \overline{g}_{ve}^T = \widetilde{Z}_{vef} \cdot \overline{g}_{ve}^T \\
\overline{S}_{g_{ve}} S &\Rightarrow \overline{Z}_{vef} \cdot \overline{g}_{ve}^T = \widetilde{Z}_{vef} \cdot \overline{g}_{ve}^T \\
\overline{S}_{g_{ve}} S &\Rightarrow \overline{V}_{e} \cdot \overline{g}_{vef}^T \cdot \overline{g}_{vef}^T = 0 \\
\overline{S}_{g_{ve}} S &\Rightarrow \overline{V}_{e} \cdot \overline{g}_{vef}^T \cdot \overline{g}_{vef}^T = 0 \\
\overline{S}_{g_{ve}} S &\Rightarrow \overline{V}_{e} \cdot \overline{g}_{vef}^T \cdot \overline{g}_{vef}^T = 0 \\
\overline{S}_{g_{ve}} S &\Rightarrow \overline{V}_{e} \cdot \overline{g}_{vef}^T \cdot \overline{g}_{vef}^T = 0 \\
\overline{S}_{g_{ve}} S &\Rightarrow \overline{V}_{e} \cdot \overline{g}_{vef}^T \cdot \overline{g}_{vef}^T = 0 \\
\overline{S}_{g_{ve}} S &\Rightarrow \overline{V}_{e} \cdot \overline{g}_{vef}^T \cdot \overline{g}_{vef}^T = 0 \\
\overline{S}_{g_{ve}} S &\Rightarrow \overline{V}_{e} \cdot \overline{g}_{vef}^T \cdot \overline{g}_{vef}^T = 0 \\
\overline{S}_{g_{ve}} S &\Rightarrow \overline{V}_{e} \cdot \overline{g}_{vef}^T \cdot \overline{g}_{vef}^T = 0\n\end{aligned}
$$

 $Z_{\text{V}}\left(\frac{R_{\text{V}}+1}{2}z\overline{z}+\frac{1-k_{\text{V}}-1}{2}+i\frac{1-k_{\text{V}}-1}{2}(n\langle z-\rangle+1)$ $k = 1$. vef = g_{ve1}^{-1} $\frac{1}{2}ve_{f}$ $\frac{1}{2}ve_{f}$ $\frac{1}{2}ve_{f}$ $\Rightarrow \boxed{g_{\text{ke}}^{-1}B_{\text{vef}} g_{\text{ke}}^{-1}} = g_{\text{ke}}^{-1} B_{\text{vef}} g_{\text{ke}} \cdot g_{\text{ke$ $c\,losupe$. is a bivector, $\beta\in sl(2,4)$. complex saddle points. $f = \frac{6}{5}$ of $\frac{1}{2}$, we have in addition

ArXiv: 2104.06902

 $g_{\text{re}}^T B_{\text{vef}} g_{\text{ve}}^T = g_{\text{ve}}^T B_{\text{vef}} g_{\text{ve}}.$ E.M. \mathbb{O} describe exactly a 4-simplex. $(1) + (2)$ With 4 simplex geometry

 $Q \quad V_{\epsilon} \leq \frac{1}{f} \partial_{f} B_{\nu \epsilon f} = 0$ For real critical points: Bref = $\mathcal{L}_{ef} \otimes \mathcal{L}_{ef}^+ - \frac{1}{2} \mathbb{1} = \beta_{ef} \in \mathcal{L}_{bivector}$ from
 $v \in SU(2)$ $v(\xi)^T \frac{1}{2} v(\xi)^T = \beta_{ef} = N_o \wedge \vec{Re}f$. \vec{n}_{ef} and normal of triangles. $N_{o} = (1, 0, 0, 0)^{T}$ $B_{f}(v)$ i = $(9_{w}T)^{-1}$ Bef $9_{ve}T = (9_{w}T)^{-1}$ Be't $9_{we}T$ $s^{\prime\prime}$ 10 bivectors of 4-simplex triangle. Ne w): = $(9ye^7)'$ No \rightarrow 5 normals of 4-simplex.
Fix the 4-simplex by rescaling. (hon-degenerate) real saddle points.

 $(9x^7)^{-1}$ Bef $9x^7 = (9x^7)^{-1}$ Bef $9x^7$) $^+$ also Satisfied. $Bef = Bef$ ⁺ $\Rightarrow (97_{ve})^{\dagger}$ Bef $(9\bar{u})^{-1}$ = $(97_{ve})^{\dagger}$ Bef $(9\bar{u})^{-1}$ pairs of solutions ? I've !. ?
It turns out they correspond to different orientations Kegge action Amp. at critical points: at critical points:
 $A_v \sim N_t e^{i \sum_{i=1}^{n} \frac{1}{2} \int_{0}^{2\pi} f(x)} + N_t e^{-i \sum_{i=1}^{n} \frac{1}{2} \int_{0}^{2\pi} f(x)}$ Q_{f} : = arccesh ($N_{e} \cdot Ne'$) & dihedral angle.

For internal facts:
\n
$$
\begin{array}{ccc}\n & \downarrow &
$$

 $\Rightarrow_{f} \qquad \qquad \mathcal{P}_{f} \Rightarrow_{f} \$

O E "Flatness problem"

lat geometries x critical points \bullet Techniquelly difficult we't $9w \cdot 2$ $\forall e \in \sum_{f} \partial_{f} B_{vef} = 0$ $\delta_{f} S = 0$ we do not have V_e . N_e . Bref = 0 part of the simplicity. points. method.

Goal: computing the integral $A = \int_{\mathbb{R}^n} d^n x f(x) e^{-S(x)}$ non-perturbatively with complex action $S(x)$

$$
\int_{\mathbb{R}^n} d^n x f(x) e^{-S(x)} \mathsf{n}
$$

Not positive semi-definite Sign-problem: Not positive semi-definit
probability distribution

How we solve this in 1D?

Goal: computing the integral $A =$

$$
\int_{\mathbb{R}^n} d^n x f(x) e^{-S(x)} w
$$

Critical points: ∂*S*(*z*) *zi* $|z_{\vec{z}}|^2_{\vec{z}_{\sigma}}=0$

σ all possible critical points in \mathbb{C}^n

 x *s S*(*x*)e∠ *S*(*x*)

Sign-problem:

E. Witten, Analytic Continuation Of Chern-Simons Theory

Deformation of the integral curve $=$ $\sum n_{\sigma}$ \mathcal{J}_{σ} *σ* ∫ℝ*n* $d^n z f(\vec{z})e^{-S(\vec{z})} = \sum$ *σ nσ* ∫ *σ* d*n zf*(*z*)e−*S*(*z*) Picard-Lefschetz theory Lefschetz thimble

*n*_σ weight functions, usually hard to determine

Not positive semi-definite probability distribution

Complexify the action: $S(x) \rightarrow S(z)$

$$
\int_{\mathcal{J}_{\sigma}} d^{n}z \hat{f}(\vec{z}) e^{-S(\vec{z})} = e^{-iS_{I}(z_{\sigma})} \int_{\mathcal{J}_{\sigma}} d^{n}z f(\vec{z}) e^{-iS_{I}(\vec{z})}
$$

̂

Lefschetz thimble:

Union of steepest-decent paths falling to critical points

$$
\frac{dz^{a}}{dt} = -\frac{\partial \overline{S(\overline{z})}}{\partial \overline{z}^{a}}
$$
\n
$$
\frac{dz_{i}^{R}}{dt} = -\frac{\partial S_{R}}{\partial z_{i}^{R}} = \frac{\partial S_{I}}{\partial z_{i}^{I}},
$$
\n
$$
\frac{dz_{i}^{I}}{dt} = -\frac{\partial S_{R}}{\partial z_{i}^{I}} = -\frac{\partial S_{I}}{\partial z_{i}^{R}}
$$

Gradient flow of real part, Hamiltonian flow of imaginary part of S

Flow equation is first order:

Given asymptotic boundary conditions, any point on a thimble T lies on one and only one curve

$$
\mathscr{C} = \sum_{\sigma} n_{\sigma} \mathscr{J}_{\sigma}
$$

Only σ s.t. $S_R(z_{\sigma}) \geq s_{\text{min}}$ contribute: $n_{\sigma} = 0$ if $S_R(z_{\sigma}) < s_{\text{min}}$

Contributions suppressed exponentially $e^{s_{min}-S_R(z_{\sigma})}$

$$
\int_{\mathscr{C}} d^{n}z \hat{f}(\vec{z}) e^{-S(\vec{z})} = \sum_{\sigma} n_{\sigma} \int_{\mathscr{J}_{\sigma}} d^{n}z \hat{f}(\vec{z}) e^{-S(z)} \qquad \mathscr{C} = \sum_{\sigma} n_{\sigma} \mathscr{J}_{\sigma}
$$

Suppose global minimum of $S_R(z)$ in $\mathscr C$ is given by $s_{\text{min}} = \min_{z \in \mathscr C}$ *z*∈ *SR*(*z*)

Picard-Lefschetz theory

Suppose there is only one global minimum and is given by $z_{\sigma_{\min}}$ Only the thimble attached to global minimum dominate

exclude: there are multiple thimbles close to the global minimum

$$
\int_{\mathscr{C}} d^{n}z \hat{f}(\vec{z}) e^{-S(\vec{z})} \approx e^{-i S_{I}(z_{\sigma_{\min}})} \int_{\mathscr{F}_{\sigma_{\min}}} d^{n}z f(\vec{z}) e^{-S_{R}(\vec{z})} \qquad \text{positive semi-definite}
$$

Flow to z_{σ} need infinite time $t \to \infty$, practically we need approximation

Under SD flow, points on \mathscr{J}_{σ} will arrive arbitrarily close to the critical point z_{σ} at some τ ̂ *σ*

thimble

Only a subsets \mathcal{J}_{σ} on the thimble is relevant to the calculation ̂ *σ*

tangent space of the critical point

near $z_σ$ the thimble is well approximated by its tangent space

Action decay exponentially

In V_{σ} , phases are close to phases at z_{σ}

Approximation is better when V_{σ} is small and T is large

ℍ, real, symmetric matrix

Real eigenvalues appears pairs $(\lambda, -\lambda)$

the directions tangent to the thimble correspond to the eigenvectors with $\lambda > 0$ *V*_{σ} linear combinations of $\hat{\rho}$, eigenvector with $\lambda > 0$, ̂

 $V_{\sigma} = \{\tilde{z} \; \tilde{z} =$ ̂ *N* ∑ *i*=1 $\hat{\rho}_i x^i + z_\sigma$, each $x^i \in \mathbb{R}$ is small} ̂

Complex eigen equation with eigenvector *ρ*

$$
\overline{\mathbf{H}\rho} = \lambda \rho \qquad \rho = \rho_{\mathbb{R}} + i \rho_{\mathbb{I}}
$$

$$
\mathbf{H}_{\mathbb{R}} \qquad -\mathbf{H}_{\mathbb{I}} \rho_{\mathbb{R}} = \lambda \frac{\rho_{\mathbb{R}}}{\rho_{\mathbb{I}}}
$$

$$
-\mathbf{H}_{\mathbb{I}} \qquad -\mathbf{H}_{\mathbb{R}} \rho_{\mathbb{I}} = \lambda \frac{\rho_{\mathbb{R}}}{\rho_{\mathbb{I}}}
$$

Now we have
$$
\int_{\tilde{\mathcal{J}}_{\sigma}} d^{n}z \psi(z) = \int_{\hat{V}_{\sigma}} d^{n}x \det(\frac{\partial z}{\partial x}(x)) \psi(z(x))
$$

Flow of the Jacobian

$dJ(x)$ d*t* $H(z(x))J(x), J(0) =$ ∂*z*˜ ∂*x* $=\vec{\rho}$ d*δz* d*t* Linearized SA equation again: $\frac{1}{\sqrt{2}} = H\delta z$

When ρ are real, we have the solution $J(t) = P \exp(\int dt \overline{H(t)})$ And approximating solution in the Gaussian region $J(t) = P \exp(\int \mathrm{d}t \rho^{\dagger} \overline{H(t)} \bar{\rho})$) can be solved numerically after we have the solution of SA equation

Again first order ODE

The answer to our question

Goal: computing the integral $A = \int_{\mathbb{R}^n} \mathrm{d}^n x f(x) \mathrm{e}^{-S(x)}$ with complex action $S(x)$

Answer:
$$
\int_{\mathscr{C}} d^{n}z \hat{f}(\vec{z}) e^{-S(\vec{z})} \approx e^{-iS_{I}(z_{\sigma_{\min}})} \int_{V^{\sigma}} d^{n}x \, \det(J(x)) f(\vec{z}(x)) e^{-S_{R}(\vec{z}(x))} = \int_{\hat{V}_{\sigma}} d^{n}x \hat{f} e^{i\theta_{res}} e^{-S_{eff}}
$$

The answer to our question

Goal: computing the integral $A = \int_{\mathbb{R}^n} \mathrm{d}^n x f(x) \mathrm{e}^{-S(x)}$ with complex action $S(x)$

Answer:
$$
\int_{\mathscr{C}} d^{n}z \hat{f}(\vec{z}) e^{-S(\vec{z})} \approx e^{-iS_{I}(z_{\sigma_{\min}})} \int_{V^{\sigma}} d^{n}x \, \det(J(x)) f(\vec{z}(x)) e^{-S_{R}(\vec{z}(x))} = \int_{\hat{V}_{\sigma}} d^{n}x \hat{f} e^{i\theta_{res}} e^{-S_{eff}}
$$

Monte Carlo method?

Still hard to get the normalisation factor for our probability distribution $e^{-S_{\text{eff}}}$.

High - dimensional is not efficient (grow exponentially with dimension)

The answer to our question

Goal: computing the integral $A = \int_{\mathbb{R}^n} \mathrm{d}^n x f(x) \mathrm{e}^{-S(x)}$ with complex action $S(x)$

$$
\langle f \rangle \simeq \frac{\int_{\tilde{\mathcal{J}}_{\sigma}} d^n z \, \hat{f}(z) \, e^{-\hat{S}(z)}}{\int_{\tilde{\mathcal{J}}_{\sigma}} d^n z \, e^{-\hat{S}(z)}} = \frac{\int_{\hat{V}_{\sigma}} d^n x \, \hat{f} \, e^{i\theta_{res}} \, e^{-S_{eff}}}{\int_{\hat{V}_{\sigma}} d^n x \, e^{-S_{eff}}} \times \frac{\int_{\hat{V}_{\sigma}} d^n x \, e^{-S_{eff}}}{\int_{\hat{V}_{\sigma}} d^n x \, e^{i\theta_{res}} \, e^{-S_{eff}}} = \frac{\langle e^{i\theta_{res}} \hat{f} \rangle_{eff}}{\langle e^{i\theta_{res}} \rangle_{eff}}
$$

Still hard to get the normalisation factor for our probability distribution $e^{-S_{eff}}$. High - dimensional is not efficient (grow exponentially with dimension)

Monte Carlo method?

- -

Answer:
$$
\int_{\mathcal{C}} d^{n}z \hat{f}(\vec{z}) e^{-S(\vec{z})} \approx e^{-i S_{I}(z_{\sigma_{\min}})} \int_{V^{\sigma}} d^{n}x \, \det(J(x)) f(\vec{z}(x)) e^{-S_{R}(\vec{z}(x))} = \int_{\hat{V}_{\sigma}} d^{n}x \hat{f} e^{i\theta_{res}} e^{-S_{eff}}
$$

$$
Re(\hat{S}) - log(det(J)) = S_{eff} \quad arg(det(J)) - Im(\hat{S}) \equiv \theta_{res}
$$

But for observables, we can use MCMC without knowing the normalization factor !

MCMC methods

Markov Chain: Markov property $P(X^{t+1} \mid X^t, \cdot)$

 $P(i,j) = P^t_{ij}$

Nice property: non-periodic Markov Chain lim *t*→∞

 $farget \over dx(j)$ stationary distribut

If we know π , how to get P such that we can finally sampling π using MCMC

$$
P(X^{t+1} \ X^t, \dots, X^1) = P(X^{t+1} \ X^t)
$$

\n
$$
P(X_t = j \ X_{t-1} = i)
$$

\n
$$
P(X_t = j \ X_{t-1} = i)
$$

\n
$$
P(Y_t = j \ X_{t-1} = i)
$$

\n
$$
P(Y_t = j \ X_{t-1} = i)
$$

tion (equilibrium probabilities of being in states
$$
j
$$
)

 π Is the only non-negative solution of $\pi P = \pi$

i

Nice refs: https://github.com/rmcelreath/stat_rethinking_2022

Metropolis Hastings

 $\pi(i)P(i,j) = \pi(j)P(j,i)$

Detailed balance condition (reversiable Markov Chains)

to be stationary distribution A sufficient but not necessary condition for π

We can introduce an extra acceptance rate $\alpha(i, j)$ s.t. $P(i, j) = \alpha(i, j)Q(i, j)$

P satisfying above relation is still unknown

 $\pi(i)Q(i,j)\alpha(i,j) = \pi(j)Q(j,i)\alpha(j,j)$

Scale $\alpha(i, j)$ to increase acceptance rate :

 $\alpha(i, j) = \min$

We can take Q to be symmetric $\alpha(i,j) = \min$

π(*j*)*Q*(*j*, *i*) *π*(*i*)*Q*(*i*, *j*) ,1

$$
i) \longrightarrow \alpha(i,j) = \pi(j)Q(j,i), \ \alpha(j,i) = \pi(i)Q(i,j)
$$

Acceptance rate may really small

$$
\frac{\pi(j)}{\pi(i)}, 1
$$

Metropolis Hastings

Algorithm

- 1: initial $x^{(0)}$
- 2: for iteration $i = 1, 2, \cdots N$ do
- 3: Propose candidate x^{cand} from $p(x|x^{(i-1)})$
- 4: Acceptance rate $\alpha \leftarrow \min\left\{1, \frac{\pi(x^{cand})}{\pi(x^{(i-1)})}\right\}$
- 5: $u \sim \text{Uniform}(u; 0, 1)$
- 6: if $u < \alpha$ then
- 7: $x^{(i)} \leftarrow x^{cand}$
- 8: else
- 9: $x^{(i)} \leftarrow x^{(i-1)}$
- $10:$ end if
- $11:$ end for

High dimensional: Gibbs sampling:

$$
(x_1^{(1)},x_2^{(1)}) \rightarrow (x_1^{(1)},x_2^{(2)}) \rightarrow (x_1^{(2)},x_2^{(2)}) \rightarrow \cdots \rightarrow (x_1^{(n_1+n_2-1)},x_2^{(n_1+n_2)})
$$

MCMC methods

In Lefschetz thimble spinfoam:

- high-dimensional:
	- single simplex $2*10+4*6+10 = 54$
	- Multi-simplices: $\sim 44*v 3*t + f$
- Probability distribution $e^{-S_{\text{eff}}}$ is complicated
- $\partial_x S_{eff}$ is hard to compute
- Need to solve ODE in each update step: time -

Used by us in spinfoam propagator. Implemented with Mather Julia conversion is underg

Vrugt et.al, DOI:10.1515/IJNSNS.2009.10.3.273

Summary of what we need to do

We can calculate:

$$
\langle f \rangle \simeq \frac{\int_{\tilde{\mathcal{J}}_{\sigma}} d^n z \hat{f}(z) e^{-\hat{S}(z)}}{\int_{\tilde{\mathcal{J}}_{\sigma}} d^n z e^{-\hat{S}(z)}} = \frac{\int_{\hat{V}_{\sigma}} d^n x \hat{f} e^{i\theta_{res}} e^{-S_{eff}}}{\int_{\hat{V}_{\sigma}} d^n x e^{-S_{eff}}} \times \frac{\int_{\hat{V}_{\sigma}} d^n x e^{-S_{eff}}}{\int_{\hat{V}_{\sigma}} d^n x e^{i\theta_{res}} e^{-S_{eff}}} = \frac{\langle e^{i\theta_{res}} \hat{f} \rangle_{eff}}{\langle e^{i\theta_{res}} \rangle_{eff}}
$$

We need:

$$
\begin{aligned}\n\mathbf{H}_{\mathbb{R}} \quad & -\mathbf{H}_{\mathbb{I}} \, \rho_{\mathbb{R}} = \lambda \frac{\rho_{\mathbb{R}}}{\rho_{\mathbb{I}}}, \quad \lambda > 0 \\
& -\mathbf{H}_{\mathbb{I}} \quad -\mathbf{H}_{\mathbb{R}} \, \rho_{\mathbb{I}} = \lambda \frac{\rho_{\mathbb{R}}}{\rho_{\mathbb{I}}}, \quad \lambda > 0 \\
& \overline{\lambda}_{\overline{\lambda}} & \frac{\mathrm{d}J(x)}{\mathrm{d}t} = \overline{H(z(x))J(x)}, \quad J(0) = \frac{\partial \tilde{z}}{\partial x} = \hat{\rho}\n\end{aligned}
$$

Special optimisations

Choose initial points for MC s.t. $0 < S_{\text{eff}} < 1$ is complicated

Do several test run's with different flow time T, chose the optimal one

-
-
- Approximation is better when V_{σ} is small and T is large
- But if T is too large, longer evaluation time $+$ large errors from ODE (SA equations become stiff)

8: $\Delta_m \leftarrow \Delta_m + \sum_{j=1}^d ((x_i^{(t)})^j - (x_i^{(t-1)})^j)^2 / r_j^2$, where r denotes the standard deviation current locations of the chains.

Burn-in optimazation

1: initial $t \leftarrow 1$, $L_m \leftarrow 0$, $p_m = 1/n_{cr}, m = 1, \cdots, n_{cr}$

- 2: while burn-in steps $t < K$ do
- 3: for chains $i = 1, \dots, M$ do
- 4: $m \sim \text{multinomial}(\ldots; p_1, \cdots, p_m)$
- 5: $CR \leftarrow m/n_{CR}$ and $L_m = L_m + 1$
- 6: Create a candidate
- 7: Accept/Reject the candidate
-
- $9:$ end for
- 10: $p_m \leftarrow tN \cdot (\Delta_m/L_m)/\sum_{j=1}^{n_{CR}} \Delta_j$
- 11: $t \leftarrow t + 1$
- 12: end while

Examples:

1. Real/complex critical points and Lefschetz thimble methods with Airy function

-
- 2. Real/complex critical points in EPRL vertex
- 3. Usage of sl2cfoam-next

Mainly Julia + Python (Sympy)