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Spinfoam numerics
How to calculate the amplitude and observables



Overview of the spinfoam numerics

Booster decomposition: 
15j symbol + booster function 

Sl2cfoam-next

Integral formulation 

• Asymptotic expansion 
• Real/complex critical points 
• Lefschetz thimbles, Monte Carlo/

metroplis 
• ...

Coherent 

states/intertwiners

 small spin (deep quantum) large spin

Booster decomposition Lefschetz thimbles Asymptotic expansion

Spinfoam based on different formulations
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Spinfoam renomralization: 2211.09578

2212.14396



Structure

1. Introduction to EPRL and its extension

1.1 Triangulation

1.2 EPRL transition amplitude

1.3 Booster function decomposition

1.4 Integral representation


2. Introduction to (complex) saddle points and Lefschetz thimble methods

3. Numerical examples



Triangulation
4-simplex: triangulation of 4d manifold

4d polytope as convex hull of 5 points
generalization of triangles/tetrahedra

Each set of 4 points gives a tetrahedron  

Each set of 3 points gives a triangle

Each set of 2 points gives a segments

5 tetrahedra

10 triangles

 10 segments

Can be described by 5 normals

Can be described by 10 bivectors



Triangulation

dual graph

5 tetrahedra 5 edges

2 complex

10 triangles 10 faces

1 4-simplex 1 vertex



Triangulation

boundary graph

tetrahedra boundary nodes
faces boundary links

boundary spin-
network states

4 valent nodes: intertwiners



Triangulation

Full celluar decomposition:

Gluing single vertices via edges

Identifying and integrating states on the glued edge

Internal triangles: summing over reps labels



EPRL model
SL(2,C) unitary irreps: principle series

SL(2,C) group

generators Casmirs

irreps

SU(2) decomposition

Naimark's canonical basis



EPRL model
SL(2,C) BF theory + simplicity (weakly imposed) ArXiv: 1205.2019, 2310.20147



EPRL model



Booster decomposition

ArXiv: 1609.01632



Integral representation
Again SL(2,C) representation theory



Integral representation
SU(2) coherent states

3d normal vector of the triangle in each tetrahedron



Integral representation
action and measures



Integral representation



Gauge transformations

2404.10563



Integral  with complex action A = ∫ℝn

dnxf(x)e−S(x) S(x)

Not positive semi-definite

probability distribution

Sign-problem:

Saddle point approximation!

Perturbative (asymptotic) expansion



Saddle points

ArXiv: 2104.06902



Saddle points



Saddle points



Saddle points



Lefschetz Thimble

Goal: computing the integral  non-perturbatively with complex action A = ∫ℝn

dnxf(x)e−S(x) S(x)

Not positive semi-definite

probability distribution

Sign-problem:

How we solve this in 1D?



Lefschetz Thimble

Goal: computing the integral  with complex action A = ∫ℝn

dnxf(x)e−S(x) S(x)

Sign-problem:

Critical points: 

∂S(z)

zi
|z=zσ

= 0

Complexify the action:  S(x) → S(z)

E. Witten, Analytic Continuation Of Chern-Simons Theory

Deformation of the integral curve
𝒞 = ∑

σ

nσ𝒥σ

∫ℝn

dnz f(z)e−S(z) = ∑
σ

nσ ∫𝒥σ

dnz f(z)e−S(z)

 weight functions, usually hard to determinenσ

 all possible critical points in σ ℂn

Picard-Lefschetz theory

Not positive semi-definite

probability distribution

Lefschetz thimble



Lefschetz Thimble

∫𝒥σ

dnz ̂f(z)e−S(z) = e−i SI(zσ) ∫𝒥σ

dnz f(z)e−SR(z)

SD paths

Critical points: 
∂z
̂S(z) = 0

Lefschetz thimble:

Union of steepest-decent paths falling to critical points

dzR
i

dτ
= −

∂SR

∂zR
i

=
∂SI

∂zI
i
,

dzI
i

dτ
= −

∂SR

∂zI
i

= −
∂SI

∂zR
i

,

Gradient flow of real part, Hamiltonian flow of imaginary part of S

dza

dt
= −

∂S(z)
∂za

Flow equation is first order:
Given asymptotic boundary conditions, any point on a thimble T lies on one and only one curve

 — Phase is conserved

e−SR(z)

Large

Small



Lefschetz Thimble

𝒞 = ∑
σ

nσ𝒥σ∫𝒞
dnz ̂f(z)e−S(z) = ∑

σ

nσ ∫𝒥σ

dnz ̂f(z)e−S(z)

Picard-Lefschetz theory

Suppose global minimum of  in  is given by SR(z) 𝒞 smin = min
z∈𝒞

SR(z)

Only  s.t.  contribute:  if  σ SR(zσ) ≥ smin nσ = 0 SR(zσ) < smin

Suppose there is only one global minimum and is given by zσmin

Contributions suppressed exponentially esmin−SR(zσ)

Only the thimble attached to global minimum dominate

exclude: there are multiple thimbles close to the global minimum

∫𝒞
dnz ̂f(z)e−S(z) ≈ e−i SI(zσmin

) ∫𝒥σmin

dnz f(z)e−SR(z) positive semi-definite




How to obtain the Thimble?

Under SD flow, points on  will arrive 
arbitrarily close to the critical point  at 
some τ

�̂�σ
zσ

thimble

 Vσ

tangent space of the critical point 
𝒥σ

Action decay exponentially

Only a subsets  on the thimble 
is relevant to the calculation

�̂�σ

near  the thimble is well 
approximated by its tangent space

zσ

Flow to  need infinite time , practically we need approximationzσ t → ∞

e−SR(z)

Large

Small



How to obtain the Thimble?

thimble

 Vσ

tangent space of the critical point

𝒥σSD
SA

̂z ∈ Vσ z ∈ 𝒥σ

SA

dza

dt
= +

∂S(z)
∂za

SA flow

𝒥σ
Fix Vσ �̂�σ

Fix T �̃�σ

Approximation is better when  is small and  is largeVσ T
In  , phases are close to phases at Vσ zσ

e−SR(z)

Large

Small



How to obtain the Thimble?

S(z) = S(zc) +
1
2

ωiHijωj

dω
dt

= Hω

H = Hkl(zσ) =
∂2S

∂zk∂zl
|z=zσ

In , Action is well approximated by Vσ

Linearized SA equation

Real and imaginary part

d
dt

ωℝ
ω𝕀

=
Hℝ −H𝕀

−H𝕀 −Hℝ

ωℝ
ω𝕀

= ℍ
ωℝ
ω𝕀

, real, symmetric matrixℍ

Real eigenvalues appears pairs (λ, − λ)

ω = ωℝ + iω𝕀

 repulsive direction,  attractive directionλ > 0 λ < 0



How to obtain the Thimble?

Hρ = λρ

the directions tangent to the thimble 
correspond to the eigenvectors with λ > 0

ρ = ρℝ + iρ𝕀

Complex eigen equation with eigenvector   ρ

 linear combinations of , eigenvector 
with , 

̂Vσ ̂ρ
λ > 0

̂Vσ = {z̃ | z̃ =
N

∑
i=1

̂ρixi + zσ, each xi ∈ ℝ is small}

Hℝ −H𝕀

−H𝕀 −Hℝ

ρℝ
ρ𝕀

= λ
ρℝ
ρ𝕀

∫�̃�σ

dnz ψ(z) = ∫ ̂Vσ

dnx det(
∂z
∂x

(x)) ψ(z(x))Now we have



Flow of the Jacobian

dJ(x)
dt

= H(z(x))J(x), J(0) =
∂z̃
∂x

= ρ

When  are real, we have the solution )ρ J(t) = P exp(∫ dtH(t)

dδz
dt

= HδzLinearized SA equation again:

Again first order ODE

And approximating solution in the Gaussian region )J(t) = P exp(∫ dtρ†H(t)ρ̄)

can be solved numerically after we have the solution of SA equation



The answer to our question

Goal: computing the integral  with complex action A = ∫ℝn

dnxf(x)e−S(x) S(x)

∫𝒞
dnz ̂f(z)e−S(z) ≈ e−i SI(zσmin

) ∫Vσ

dnx det(J(x)) f(z(x)) e−SR(z(x)) = ∫ ̂Vσ

dnx ̂f eiθres e−SeffAnswer:



The answer to our question

Goal: computing the integral  with complex action A = ∫ℝn

dnxf(x)e−S(x) S(x)

∫𝒞
dnz ̂f(z)e−S(z) ≈ e−i SI(zσmin

) ∫Vσ

dnx det(J(x)) f(z(x)) e−SR(z(x)) = ∫ ̂Vσ

dnx ̂f eiθres e−SeffAnswer:

Monte Carlo method? 

Still hard to get the normalisation factor for our probability distribution . 
e−Seff

High - dimensional is not efficient  (grow exponentially with dimension)



The answer to our question

⟨ f⟩ ≃
∫

�̃�σ
dnz ̂f(z) e− ̂S(z)

∫
�̃�σ

dnz e− ̂S(z)
=

∫ ̂Vσ
dnx ̂f eiθres e−Seff

∫ ̂Vσ
dnx e−Seff

×
∫ ̂Vσ

dnx e−Seff

∫ ̂Vσ
dnx eiθres e−Seff

=
⟨eiθres ̂f⟩eff

⟨eiθres⟩eff

Goal: computing the integral  with complex action A = ∫ℝn

dnxf(x)e−S(x) S(x)

∫𝒞
dnz ̂f(z)e−S(z) ≈ e−i SI(zσmin

) ∫Vσ

dnx det(J(x)) f(z(x)) e−SR(z(x)) = ∫ ̂Vσ

dnx ̂f eiθres e−SeffAnswer:

Monte Carlo method? 
Still hard to get the normalisation factor for our probability distribution . e−Seff

But for observables,  we can use MCMC without knowing the normalization factor ! 

High - dimensional is not efficient  (grow exponentially with dimension)

Re( ̂S) − log(det(J)) ≡ Seff arg(det(J)) − Im( ̂S) ≡ θres



MCMC methods

Markov Chain: Markov property P(Xt+1 |Xt, ⋯, X1) = P(Xt+1 |Xt)

transition Matrix P(i, j) = Pt
ij = P(Xt = j |Xt−1 = i)

Nice property: non-periodic Markov Chain lim
t→∞

Pt
ij = π( j) = ∑

i

π(i)P(i, j)

  stationary distribution (equilibrium probabilities of being in states )π( j) j

If we know , how to get P such that we can finally sampling  using MCMC π π

  Is the only non-negative solution of π πP = π

Nice refs: https://github.com/rmcelreath/stat_rethinking_2022



Metropolis Hastings

Detailed balance condition (reversiable Markov Chains)

π(i)P(i, j) = π( j)P( j, i) A sufficient but not necessary condition for  
to be stationary distribution

π

P satisfying above relation is still unknown

We can introduce an extra acceptance rate  s.t.   α(i, j) P(i, j) = α(i, j)Q(i, j)

π(i)Q(i, j)α(i, j) = π( j)Q( j, i)α( j, i)

Scale  to increase acceptance rate :α(i, j)

α(i, j) = min
π( j)Q( j, i)
π(i)Q(i, j)

,1

We can take Q to be symmetric

α(i, j) = π( j)Q( j, i), α( j, i) = π(i)Q(i, j)
Acceptance rate may really small

α(i, j) = min
π( j)
π(i)

,1



Metropolis Hastings

Algorithm

High dimensional: Gibbs sampling:



MCMC methods

• May take a very large number of 
updates to converge

• Calculation single step will cost a lot
• Acceptance rate may become low

In high dimensional problems, MH 

Adaptive MH

Adjust proposal distribution s.t. 
acceptance rate stays around 0.3

Differential evolution Markov chain/
Differential Evolution Adaptive Metropolis 
 Parallel multiple chains + jump 

between chains to sample 
complicated π

Used by us in spinfoam propagator
Implemented with Mathematica
Julia conversion is undergoing

In Lefschetz thimble spinfoam:

• high-dimensional: 
• single simplex 2*10+4*6+10 = 54
• Multi-simplices: ~ 44*v - 3*t + f 

• Probability distribution  is complicated

•  is hard to compute

• Need to solve ODE in each update step: time - costing

e−Seff

∂xSeff

Vrugt et.al, DOI:10.1515/IJNSNS.2009.10.3.273



Summary of what we need to do

⟨ f⟩ ≃
∫

�̃�σ
dnz ̂f(z) e− ̂S(z)

∫
�̃�σ

dnz e− ̂S(z)
=

∫ ̂Vσ
dnx ̂f eiθres e−Seff

∫ ̂Vσ
dnx e−Seff

×
∫ ̂Vσ

dnx e−Seff

∫ ̂Vσ
dnx eiθres e−Seff

=
⟨eiθres ̂f⟩eff

⟨eiθres⟩eff

We can calculate:

We need:

̂Vσ = {z̃ | z̃ =
N

∑
i=1

̂ρixi + zσ, each xi ∈ ℝ is small} Hℝ −H𝕀

−H𝕀 −Hℝ

ρℝ
ρ𝕀

= λ
ρℝ
ρ𝕀

, λ > 0

dza

dt
= +

∂S(z)
∂za

SA & Jacobian flow equation 
with fixed flow time T

Tangent space

dJ(x)
dt

= H(z(x))J(x), J(0) =
∂z̃
∂x

= ̂ρ

Probability distribution 
e−Seff /Z0 MCMC




Special optimisations

Choose initial points for MC s.t.  is complicated0 < Seff < 1

Do several test run’s with different flow time T, chose the optimal one

Approximation is better when  is small and  is largeVσ T
But if  is too large, longer evaluation time + large errors from ODE 
(SA equations become stiff)

T

Burn-in optimazation



Next

Examples: 


1. Real/complex critical points and Lefschetz thimble methods with Airy function


2. Real/complex critical points in EPRL vertex


3. Usage of sl2cfoam-next

Mainly Julia + Python (Sympy)


