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Study what happens in the distant future to a large cloud of matter  



I. At first, ignore dissipative effects



Homogeneous, isotropic, pressure-less. 
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Vidotto, CR, Planck Stars, IJMP 2014.  arXiv:1401.6562. 

Planck star
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What about outside the star? 

Birkhoff’s theorem (classical GR): that any spherically symmetric solution of the vacuum field equations must be 
given by the Schwarzschild metric. 

How does the boundary of the star fall?

Exactly as in Newton!

From inside:

From outside:
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The part of the Kruskal spacetime that is relevant for the geometry around a
collapsing star. The dotted line is the surface of the star.

Remar k abl y, in this geometr y there is a secon d exterior region, separated from
the fi rst. T his secon d region has a separate asy m ptotic in fi nit y.

D ue to quantu m p henomena, ap proaching r = 0 w e lea v e the domain of v ali d-
it y of classical general relati v it y; therefore w e m ust l i m it oursel v es to the regions of
positi v e r. N ote that the t w o regions r = 0 are spatial regions (in M in ko w sk i r = 0
is a ti mel ine l ine). T he geometr y for med by the black an d w hite holes, in a d d ition
to the t w o outer regions, is the largest possible extension of Sch w ar zschil d space-
ti me as (pseu do-) Riemannian geometr y. Q uantu m theor y cou l d exten d it further,
beyon d r = 0.

• Physical black holes formed by a collapsed star

M ost of the black holes w e see in the sk y w ere l i kel y for med by the collapse of a
star, w hen the heat of n uclear fusion is no longer sufficient to prod uce the pressure
that cou nterbalances gra v it y.

O nl y the exterior of the star is described by a part of the exten ded Sch w ar zschil d
spaceti me described abo v e, because the Sch w ar zschil d sol ution is a sol ution w ith
Tab = 0 an d does not hol d insi de the star, w here the geometr y is more si m p le.

F igure 11.7 ill ustrates the confor mal d iagram of a spaceti me w ith a collapsing
star. In the beginning, there is onl y the star an d the outsi de. W hen the star enters
the ra d i us r = 2m, a hori zon an d a trap ped region are for med, i.e. the black hole.

Insi de the black hole, the future reaches the r = 0 region. A gain: in the v icinit y of
r = 0 w e lea v e the v ali d it y regi me of classical theor y. T he geometr y of a collapsing
star ’s black hole necessaril y ev ol v es in a quantu m region.

• Exploding white holes

T he ti me rev ersal of a collapsing star is dep icted in figure 11.8. N otice that w hile
the black hole ends into a quantu m region, a w hite hole emerges from a quantu m
region.

W hile w e ha v e am p le ev i dence that the geometr y of figure 11.7 describe actual
p henomena in our u ni v erse, w e ha v e so far no d irect ev i dence that the same does
the geometr y of figure 11.8. So, p h ysical w hite holes are h y pothetical onl y for the
moment. But so w here black hole for qu ite longti me, after all.
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tFigure 11.8
The part of the Kruskal spacetime that is relevant for the geometry around an
exploding white hole. The dotted line is the surface of the exploding matter.

T he black hole geometr y of a collapsing star en ds into a quantu m region. T he
w hite hole geometr y emerges from a quantu m region. It is possible to suspect that
w hite holes cou l d emerge from the same quantu m region in w hich black holes
en d. I shall touch on this possibilit y in the last C hapter, on quantu m gra v it y.
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https://en.wikipedia.org/wiki/Spherically_symmetric_spacetime
https://en.wikipedia.org/wiki/Vacuum_field_equations
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From inside:

From outside:

• Killing symmetry respected, 

• Matching conditions with the star respected, 

• Same metric as the obtained from modifying quantum dynamics!

Lewandowski, Ma, Yang, Zhang, PRL 2023

Husain, Kelly, Santacruz, Wilson-Ewing, PRD 2022. 
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Hawking radiation

Outside  
the trapping horizon, 

the curvature becomes

Planckian !
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At the end of the Hawking evaporation the horizon of a black hole enters a physical region where
quantum gravity cannot be neglected. The physics of this region has not been much explored. We
characterise its physics and introduce a technique to study it.

I. INTRODUCTION

In a spacetime formed by gravitationally collapsed mat-
ter, there are three distinct regions in which curvature
becomes Planckian. We expect the approximation de-
fined by quantum field theory interacting with classical
general relativity to break down in all three of them. The
physics of these regions is quite di↵erent.

The three regions are illustrated in the Carter-Penrose
causal diagram of Figure 1. The dark grey area is the re-
gion where quantum gravity cannot be neglected and the
diagram itself becomes unreliable. The light grey area is
the collapsing matter and the dashed line is the (trap-
ping) horizon (the event horizon is not determined by
classical physics). The three physically distinct regions
where curvature becomes Planckian are:

1. Region C, in the future of the event c in the di-
agram, which is directly a↵ected by the collapsing
matter reaching Planckian density.

2. Region B, in the future of the event b in the di-
agram, which is a↵ected by the horizon reaching
Planckian size because of Hawking’s evaporation.

3. Region A, in the future of any location like a (that
is a generic event in the dark grey area distant from
the events b and c) in the diagram, where the cur-
vature becomes Planckian but the classical evolu-
tion to the singularity is not causally connected to
the collapsing matter or to the horizon.

The physical distance between these regions depends
on the age of the black hole at the time when its horizon
reaches the quantum region. This age depends in turn
on the overall mass of the black hole before being shrunk
by Hawking evaporation.

To give a rough estimate of these distances we consider
for simplicity the interior of a Schwarzschild black hole.
(Most of the evaporation takes place at late times.) The

Figure 1: The three regions of a black hole spacetime where
quantum gravity becomes relevant. In the dark grey region
quantum gravity cannot be neglected and the diagram itself
becomes unreliable. The future of the locations a, b and c en-
counter di↵erent quantum gravity phenomena depending, re-
spectively, on the presence of the collapsing matter (C), the
horizon (B), or neither (A).
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There are three independent  
physical phenomena happening
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Physics of the horizon (region B)

15

Han, Rovelli, FS (2023)
Physics of the horizon (region B)

15

Han, Rovelli, FS (2023)

M Han, CR, F. Soltani, PRD (2023), arXiv:2302.03872.  



Physics of the horizon (region B)

15

Han, Rovelli, FS (2023)



Global coordinates (diverge on 
horizons)

Good coordinates for L and I

Good coordinates for T and I

On overlap (I)



118 3. The black-to-white hole spacetime

0

0

2Tα β T

Figure 3.9: In red is the worldline of an observer moving at a constant distance
R � 2m in the qualitative Carter-Penrose diagram of the black-to-white hole
spacetime.
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H. Haggard, CR, PRD 2015, arXiv:1407.0989 



A trapping  (dynamical) horizon is the boundary of the region where the area of outgoing null surfaces decreases.


(No light escapes from a trapping horizon for a while.) 

An event horizon is the boundary of the past of future infinity.

  

(No light escapes from an event horizon ever.)

Real black holes have no event horizon !!



Black   
hole

Quantum 
Transition

White   
hole

H. Haggard, CR, PRD 2015, arXiv:1407.0989 

E. Bianchi, M. Christodoulou, F. D’Ambrosio, H. M.  Haggard, CR,  
“White holes as remnants: A surprising scenario for the end of a black hole,”  
CQG 2018, arXives: 1802.04264. 



Structure of the theory
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i. Lattice gauge theory
ii. Feynman graph expansion

Spin networks

Quantum states of geometry

i. Quantum histories of geometries
ii. Discretized spacetime

Spin foams
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FIG. 4. The spinfoam 2–complex C (left) and its oriented
boundary graph � = @C (right) chosen in [6]. The four mid-
dle links (faces) carry the boundary data !� and ⇣� that
correspond to a discretization of the sphere �, defined as the
intersection of C±. The six upper and six lower links (faces)
carry the boundary data !± and ⇣± respectively, that corre-
spond to a particularly rough discretization of the remaining
of the surfaces C± while the surfaces F± were disregarded.
It is striking that this rough discretization gives exactly the
behavior for the bounce time Tc and lifetime ⌧ expected on
general grounds from the analysis in Section V. This should
be taken as an indication that the relevant physics happen in
the vicinity of the sphere �, see [90] for a detailed argument.

glued along one of their five tetrahedra so that they cor-
respond to a simplicial manifold dual to the spinfoam in
Figure 4, have zero 4–volume. This can be checked ex-
plicitly by calculating the edge lengths of the 4–simplices
from !` and k`n, and then calculating their 4–volume
written as a Cayley–Menger determinant, verifying that
it vanishes. The vanishing of the 4–volume follows from
the fact that the triangulation is taken to be intrinsically
flat: the five tetrahedra making up each four simplex
glue properly when embedded in a 3d Euclidean space.
They correspond to a tetrahedron split in four tetrahedra
with all deficit angles on the interior edges equal to zero.
Thus, when promoted to a 4–simplex, this is a degenerate
4–simplex. For an analogy in one dimension lower, think
of a tetrahedron with three of its triangles in the plane
of the fourth triangle. This can be understood either as
a 2d geometry made up of three triangles, or, as a 3d
geometry made up of one tetrahedron of zero 3–volume.

We saw in Section V that the estimates for Tc and ⌧

are not a↵ected by the kind of geometrical critical point
for the partial amplitude. Then, the fact that the chosen
boundary data correspond to a degenerate 4d triangu-
lation can be seen as an (accidental) smart choice, that
allows to understand easily equations (A2) and (A3). All
dihedral angles �`(�`) will vanish, there is only a ⇧` = ⇡

thin–wedge contribution at � to consider on top of the
embedding data ⇣`. The dihedral angles �(�`) are cal-
culated using well known trigonometry formulas, see for
instance [91].

Setting �`(�`) = 0 for all ` and neglecting the sum over
co–frame orientations s(v) and the scaling �

2M of (43),
the transition amplitude then scales as

W (m,T ) ⇠ e
� 4

t(m) (� T

2m�⇡)2
e
� 12

t(m) (⇣
±)2

, (A4)

with the factors 4 and 12 coming from the number of
corresponding links in the boundary graph. Then, the

crossing time can be read o↵ directly from this expres-
sion as Tc = 2⇡m/�, in agreement with the numerical
estimate in equation (A2). Setting T = Tc, we have

|W (m,Tc)|2 ⇠ e
� 24

t(m) (⇣
±)2

. (A5)

Thus the lifetime will scale as ⌧(m) ⇠ e
⌅

t(m) with ⌅ =
24 (⇣±)2 ⇡ 1820, in agreement with equation (A3).

These results are verified numerically in the figures be-
low. We briefly summarize their content with further de-
tails given in their description. The amplitude estimate
is shown in Figure 5. We see that a pronounced peak is
present in the interval of the bounce time T for which
the estimate is reliable. The value of T at the peak is the
crossing time Tc. In Figure 6 we verify that Tc is given by
T = 2⇡/�. In the following two figures we show that the
lifetime scales as ⌧(m) ⇠ e

�⌅/t(m) with ⌅ a positive con-
stant. Instead of ⌧(m), we plot �t(m) log ⌧(m) against
m. In Figure 7 we see that �t(m) log ⌧(m) is constant
in the mass m and does not depend on the power n. In
Figure 8 we verify that for t = m

2
/~, ⌅ scales as the

inverse of ~.

FIG. 5. The modulus squared of the transition amplitude
W (m,T ) for mass values m = 10, 11, . . . , 15. The peak in
the bounce time T is at Tc = 2⇡m/� and corresponds to the
crossing time, see also Figure 6. The peak is normalized to
unit for presentation purposes. The semiclassicality parame-
ter is fixed to t = ~/m2 (n = 2) and the Immirzi parameter to
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carry the boundary data !± and ⇣± respectively, that corre-
spond to a particularly rough discretization of the remaining
of the surfaces C± while the surfaces F± were disregarded.
It is striking that this rough discretization gives exactly the
behavior for the bounce time Tc and lifetime ⌧ expected on
general grounds from the analysis in Section V. This should
be taken as an indication that the relevant physics happen in
the vicinity of the sphere �, see [90] for a detailed argument.
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These results are verified numerically in the figures be-
low. We briefly summarize their content with further de-
tails given in their description. The amplitude estimate
is shown in Figure 5. We see that a pronounced peak is
present in the interval of the bounce time T for which
the estimate is reliable. The value of T at the peak is the
crossing time Tc. In Figure 6 we verify that Tc is given by
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C�
Coherent states depend on intrinsic and extrinsic geometry.
The intrinsic geometry is the same in the past and future surfaces.
The extrinsic geometry has opposite sign.
Hence the transition is a flip in the sign of the extrinsic geometry.
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1 Coherent states on the boundary spin network

2 Compute the amplitude

Analytical calculations: 

Numerical calculations
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Transition probability 

How to think about this:

-  A quantum tunnelling effect [Hal Haggard at Loop24] 

P Donà , H Haggard, CR, F Vidotto, arXives: 2402.09038

- The amplitude is approximated in the semiclassical regime by

The transition is suppressed for large BH !



II. Dissipative effects
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Exterior

Black hole

White hole

Exterior

r=0

r=0

r=2m

r=2m

t=0

tFigure 11.7
The part of the Kruskal spacetime that is relevant for the geometry around a
collapsing star. The dotted line is the surface of the star.

Remar k abl y, in this geometr y there is a secon d exterior region, separated from
the fi rst. T his secon d region has a separate asy m ptotic in fi nit y.

D ue to quantu m p henomena, ap proaching r = 0 w e lea v e the domain of v ali d-
it y of classical general relati v it y; therefore w e m ust l i m it oursel v es to the regions of
positi v e r. N ote that the t w o regions r = 0 are spatial regions (in M in ko w sk i r = 0
is a ti mel ine l ine). T he geometr y for med by the black an d w hite holes, in a d d ition
to the t w o outer regions, is the largest possible extension of Sch w ar zschil d space-
ti me as (pseu do-) Riemannian geometr y. Q uantu m theor y cou l d exten d it further,
beyon d r = 0.

• Physical black holes formed by a collapsed star

M ost of the black holes w e see in the sk y w ere l i kel y for med by the collapse of a
star, w hen the heat of n uclear fusion is no longer sufficient to prod uce the pressure
that cou nterbalances gra v it y.

O nl y the exterior of the star is described by a part of the exten ded Sch w ar zschil d
spaceti me described abo v e, because the Sch w ar zschil d sol ution is a sol ution w ith
Tab = 0 an d does not hol d insi de the star, w here the geometr y is more si m p le.

F igure 11.7 ill ustrates the confor mal d iagram of a spaceti me w ith a collapsing
star. In the beginning, there is onl y the star an d the outsi de. W hen the star enters
the ra d i us r = 2m, a hori zon an d a trap ped region are for med, i.e. the black hole.

Insi de the black hole, the future reaches the r = 0 region. A gain: in the v icinit y of
r = 0 w e lea v e the v ali d it y regi me of classical theor y. T he geometr y of a collapsing
star ’s black hole necessaril y ev ol v es in a quantu m region.

• Exploding white holes

T he ti me rev ersal of a collapsing star is dep icted in figure 11.8. N otice that w hile
the black hole ends into a quantu m region, a w hite hole emerges from a quantu m
region.

W hile w e ha v e am p le ev i dence that the geometr y of figure 11.7 describe actual
p henomena in our u ni v erse, w e ha v e so far no d irect ev i dence that the same does
the geometr y of figure 11.8. So, p h ysical w hite holes are h y pothetical onl y for the
moment. But so w here black hole for qu ite longti me, after all.
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Exterior

White hole

Exterior

r=0

r=0

r=2m

r=2m

t=0

tFigure 11.8
The part of the Kruskal spacetime that is relevant for the geometry around an
exploding white hole. The dotted line is the surface of the exploding matter.

T he black hole geometr y of a collapsing star en ds into a quantu m region. T he
w hite hole geometr y emerges from a quantu m region. It is possible to suspect that
w hite holes cou l d emerge from the same quantu m region in w hich black holes
en d. I shall touch on this possibilit y in the last C hapter, on quantu m gra v it y.

Hawking radiation

Outside  
the trapping horizon, the 

curvature becomes

Planckian !



Hawkings radiation: wavelength

Temperature: Planck spectrum with max at wavelength: 

Emitted power:

Lifetime of the black hole

After this lifetime the black hole reaches the size where the transition becomes increasingly probable !



This is non sensical !
No theory predicts this !

Black   
hole

Quantum 
Transition

White   
hole
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This was Hal’s first idea: the inside of the black hole is 
able to cross the zone forbidden by Einstein’s  equations— 
 the gray zone in the figures  above—  and jump, by tunnel ef-
fect, “to the other side.”

The quantum properties of space and time allow the in-
side of the black hole to “leap” beyond the singularity, when 
classical equations would have time stop.

Quantum leap by tunnel effect
Ti

m
e
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At the end of the Hawking evaporation the horizon of a black hole enters a physical region where
quantum gravity cannot be neglected. The physics of this region has not been much explored. We
characterise its physics and introduce a technique to study it.

I. INTRODUCTION

In a spacetime formed by gravitationally collapsed mat-
ter, there are three distinct regions in which curvature
becomes Planckian. We expect the approximation de-
fined by quantum field theory interacting with classical
general relativity to break down in all three of them. The
physics of these regions is quite di↵erent.

The three regions are illustrated in the Carter-Penrose
causal diagram of Figure 1. The dark grey area is the re-
gion where quantum gravity cannot be neglected and the
diagram itself becomes unreliable. The light grey area is
the collapsing matter and the dashed line is the (trap-
ping) horizon (the event horizon is not determined by
classical physics). The three physically distinct regions
where curvature becomes Planckian are:

1. Region C, in the future of the event c in the di-
agram, which is directly a↵ected by the collapsing
matter reaching Planckian density.

2. Region B, in the future of the event b in the di-
agram, which is a↵ected by the horizon reaching
Planckian size because of Hawking’s evaporation.

3. Region A, in the future of any location like a (that
is a generic event in the dark grey area distant from
the events b and c) in the diagram, where the cur-
vature becomes Planckian but the classical evolu-
tion to the singularity is not causally connected to
the collapsing matter or to the horizon.

The physical distance between these regions depends
on the age of the black hole at the time when its horizon
reaches the quantum region. This age depends in turn
on the overall mass of the black hole before being shrunk
by Hawking evaporation.

To give a rough estimate of these distances we consider
for simplicity the interior of a Schwarzschild black hole.
(Most of the evaporation takes place at late times.) The

Figure 1: The three regions of a black hole spacetime where
quantum gravity becomes relevant. In the dark grey region
quantum gravity cannot be neglected and the diagram itself
becomes unreliable. The future of the locations a, b and c en-
counter di↵erent quantum gravity phenomena depending, re-
spectively, on the presence of the collapsing matter (C), the
horizon (B), or neither (A).

line element is

ds2 = �

✓
1�

2Gm

r

◆
dt2 +

✓
1�

2Gm

r

◆�1

dr2

+ r2
�
d✓2 + sin2 ✓ d�2

�
(1)

We can take the three locations a, b and c to be at the
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74 C A R L O  R O V E L L I  

This was Hal’s first idea: the inside of the black hole is 
able to cross the zone forbidden by Einstein’s  equations— 
 the gray zone in the figures  above—  and jump, by tunnel ef-
fect, “to the other side.”

The quantum properties of space and time allow the in-
side of the black hole to “leap” beyond the singularity, when 
classical equations would have time stop.

Quantum leap by tunnel effect
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the white hole horizon. This is the flow of the major part of 
the energy:

Information entering the horizon, on the other hand, re-
mains trapped until after the quantum leap. The leap frees 
it, to return to the world of light.
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It takes a long time to release a lot of  low-  energy infor-
mation from a very small horizon (think of an enormous 
number of very small marbles needing to get through a tight 
opening). The information needs a long period to exit. The 
white hole must live for a long time.

When all of the information and residual energy inside 
has finally left, the long, happy life of the rebound of a Planck 
star is over, and the white hole horizon dissipates.

A

Information

White_9780593545447_all_2p_r1.indd 112 7/10/23 11:16 AM



Black   
hole

Quantum 
Transition

White   
hole

E. Bianchi, M. Christodoulou, F. D’Ambrosio, H. M.  Haggard, CR,  
“White holes as remnants: A surprising scenario for the end of a black hole,” CQG 2018, arXives: 1802.04264. 

S. Kazemian, M Pascual, F Vidotto, 2022,  arXiv:2207.06978.  
   



suppressed! 

This also solve the old problem: 
Why WH are not easily produced?



The thermodynamical entropy

The von Neumann entropy measures entanglement 
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SvN = �k Tr[⇢A log ⇢A]

The non existence of  the information paradox

measures the number of states

It is maximized by  

This is only true under  
(severe) conditions !
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The thermodynamical entropy is  
determined  by the number 


of states of B1  
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determined by the total number of states 
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Entanglement
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Does not hold anymore!

The von Neumann can be higher that the thermodynamical entropy.



DoF relevant for the thermodynamical entropy

DoF relevant for the von Neumann entropy

Black   
hole

Quantum 
Transition Early observer sees the hole near stationary

Late observer sees the information coming out

CR, The subtle unphysical hypothesis of the firewall theorem, Entropy 2019.  

CR, Black holes have more states than those giving the Bekenstein-Hawking entropy: a simple argument, CQG 2018, arXives:1710.00218   



White holes are unstable
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tFigure 11.7
The part of the Kruskal spacetime that is relevant for the geometry around a
collapsing star. The dotted line is the surface of the star.

Remar k abl y, in this geometr y there is a secon d exterior region, separated from
the fi rst. T his secon d region has a separate asy m ptotic in fi nit y.

D ue to quantu m p henomena, ap proaching r = 0 w e lea v e the domain of v ali d-
it y of classical general relati v it y; therefore w e m ust l i m it oursel v es to the regions of
positi v e r. N ote that the t w o regions r = 0 are spatial regions (in M in ko w sk i r = 0
is a ti mel ine l ine). T he geometr y for med by the black an d w hite holes, in a d d ition
to the t w o outer regions, is the largest possible extension of Sch w ar zschil d space-
ti me as (pseu do-) Riemannian geometr y. Q uantu m theor y cou l d exten d it further,
beyon d r = 0.

• Physical black holes formed by a collapsed star

M ost of the black holes w e see in the sk y w ere l i kel y for med by the collapse of a
star, w hen the heat of n uclear fusion is no longer sufficient to prod uce the pressure
that cou nterbalances gra v it y.

O nl y the exterior of the star is described by a part of the exten ded Sch w ar zschil d
spaceti me described abo v e, because the Sch w ar zschil d sol ution is a sol ution w ith
Tab = 0 an d does not hol d insi de the star, w here the geometr y is more si m p le.

F igure 11.7 ill ustrates the confor mal d iagram of a spaceti me w ith a collapsing
star. In the beginning, there is onl y the star an d the outsi de. W hen the star enters
the ra d i us r = 2m, a hori zon an d a trap ped region are for med, i.e. the black hole.

Insi de the black hole, the future reaches the r = 0 region. A gain: in the v icinit y of
r = 0 w e lea v e the v ali d it y regi me of classical theor y. T he geometr y of a collapsing
star ’s black hole necessaril y ev ol v es in a quantu m region.

• Exploding white holes

T he ti me rev ersal of a collapsing star is dep icted in figure 11.8. N otice that w hile
the black hole ends into a quantu m region, a w hite hole emerges from a quantu m
region.

W hile w e ha v e am p le ev i dence that the geometr y of figure 11.7 describe actual
p henomena in our u ni v erse, w e ha v e so far no d irect ev i dence that the same does
the geometr y of figure 11.8. So, p h ysical w hite holes are h y pothetical onl y for the
moment. But so w here black hole for qu ite longti me, after all.
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tFigure 11.8
The part of the Kruskal spacetime that is relevant for the geometry around an
exploding white hole. The dotted line is the surface of the exploding matter.

T he black hole geometr y of a collapsing star en ds into a quantu m region. T he
w hite hole geometr y emerges from a quantu m region. It is possible to suspect that
w hite holes cou l d emerge from the same quantu m region in w hich black holes
en d. I shall touch on this possibilit y in the last C hapter, on quantu m gra v it y.
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The energy pulse cannot  
be too much in the future

The energy pulse cannot  
be too much in the past
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White hole

A white hole is unstable toward becoming a black hole
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quantum states of geometry and matter inside a sphere,
of Schwarzschild radius r = 2m. This is a reduced model
since we disregard internal degrees of freedom others
than v. We are interested in the evolution of the state
as the surface ⌃ moves up in time.

Let’s label the position of ⌃ with a temporal parameter
t. For a black hole, it is natural to identify t with the
advanced time v and for a white hole, it is natural to
identify it with the retarded time -u. So let’s define

dt = dv, for H = B, and dt = �du, for H = W, (8)

with an arbitrary origin for the t label. A number of
processes can occur as the surface ⌃ moves up in time.
We list them here using relativistic units G = c = 1 and
keeping ~ explicit to distinguish classical from quantum
phenomena.

1. Black hole volume increase and white hole volume

decrease

|B,m, vi ! |B,m, v + �vi, (9)

|W,m, vi ! |W,m, v � �vi. (10)

This is simply determined by the Einstein’s equa-
tions if nothing else happens. The variation is com-
puted in [26] to be governed by

dv

dt
= ±3

p

3⇡m2
o
. (11)

where mo is the initial mass of the black hole and
the sign is plus for a black hole and minus for white
hole.

2. White to black instability

|W,m, vi ! |B,m, vi. (12)

This process is allowed by classical general relativ-
ity in the absence of any perturbation when there is
a second asymptotic region, as it is apparent from
the Top panel of Fig. 3; but it can also be triggered
by an external perturbation [25]. Notice that the
volume does not change: this is due to the fact
that this is a local process in the horizon region,
which does not modify the interior. The lifetime of
a white hole under decay to a black hole has been
estimated to be proportional to its Schwarzschild
radius [25]:

⌧W!B ⇠ m. (13)

This is equivalent to a transition probability per
unit of time

p ⇠ m
�1

. (14)

3. Hawking evaporation

|B,m, vi ! |B,m� �m, vi. (15)

This is a process that decreases the mass of a black
hole, produced by negative energy entering the hole
when a Hawking quantum is radiated. It is a phe-
nomenon described by the classical backreaction on
the geometry of the dynamics of a quantum field.
Hawking radiation theory gives

dm

dt
=

~
m2

. (16)

Giving the lifetime for a massive black hole

⌧B ⇠
m

3

~ . (17)

4. Black to white tunnelling

|B,m, vi ! |W,m, vi. (18)

This is a genuine quantum gravitational process
[16, 30, 31]. Its probability per unit of time is still
unclear. We take here the conservative estimate de-
rived in [15] using covariant Loop Quantum Grav-
ity [32], which agrees with the semiclassical expec-
tation for tunnelling phenomena, namely that this
probability is suppressed by the semiclassical stan-
dard tunnelling factor

e
�S

~ ⇠ e
�m2

~ (19)

where S is a typical action for the transition. On di-
mensional grounds, this suggests a tunnelling prob-
ability per unit time

p ⇠ e
�m2

~ /m (20)

Here we have assumed for simplicity that the in-
ternal volume v is conserved in this transition. A
more precise account of this process will be studied
elsewhere (for the tentative phenomenology derived
from this process, see [33–39]).

VII. DYNAMICAL EVOLUTION

The ensemble of the processes listed above can be de-
scribed as an evolution in t

i~ @t| i = H| i (21)

for a two component state

| i =

✓
B(m, v)

W (m, v)

◆
(22)
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governed by the Hamiltonian
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(23)
where we have added also a diagonal energy term propor-
tional to the mass in order to obtain the standard energy
phase evolution, and c and b are constants of order unit.

We now ask what are the stable or semi-stable states
of the hole as seen from the exterior.

A macroscopic black hole with mass m much larger
than the Planck mass mP =

p
~ is stable when seen from

the exterior for a (long) time span of the order m
3
/~,

which is the Hawking evaporation time. The stability
is due to the fact that process (1) does not a↵ect the
exterior, process (2) does not concern black holes and
process (4) is strongly suppressed for macroscopic holes.

A macroscopic white hole, on the other hand, is not so
stable, because of the fast instability of process (2). As
basic physics is invariant under time reversal, one may
wonder what breaks time reversal invariance here. What
breaks time reversal invariance is the notion of stability
that we are using. This is a stability under small fluc-
tuations of the past boundary conditions. If instead we
asked about stability under small fluctuations of the fu-

ture boundary conditions, we would obviously obtain the
opposite result: macroscopic white holes would be stable
while macroscopic black holes would not.

The question we are interested in is what happens
(generically) to a large macroscopic black hole if it is
not fed by incoming mass. Then two processes are in
place: its Hawking evaporation for a time ⇠ m

3
/~ (pro-

cess 3) and the internal growth of v (process 1). This
continues until process (4) becomes relevant, which hap-
pens when the mass is reduced to order of Planck mass.
At this point the black hole has a probability of order
one to tunnel into a white hole under process (4). But a
white hole in unstable under process (2), giving it a finite
probability of returning back to a black hole. Both pro-
cesses (4) and (2) are fast at this point. Notice that this
happens at large v, therefore in a configuration that clas-
sically is very distant from flat space, even if the overall
mass involved is small.

As energy is constantly radiated away and no energy
is fed into the system, the system evolves towards low
m. But m cannot vanish, because of the presence of the
interior: in the classical theory, a geometry with larger v
and small m is not contiguous to a Minkowski geometry,
even if the mass is small. Therefore in the large v region
we have m > 0. Alternatively, this can be seen as a
hypothesis ruling out macroscopic topology change.

But m cannot be arbitrarily small either, because of
quantum gravity. The quantity m is defined locally by
the area of the horizon A = 16⇡G2

m
2 and A is quan-

tized. According to Loop Quantum Gravity [40] the
eigenvalues of the area of any surface are [41]

A = 8⇡ ~G
p
j(j + 1) (24)

where we have taken the Immirzi parameter to be unit
for simplicity. The minimal non-vanishing eigenvalue is

ao = 4
p

3⇡ ~G (25)

and is called the ‘area gap’ in loop quantum cosmology
[42]. This gives a minimal non-vanishing mass µ defined
by ao = 16⇡G2

µ
2, that is

µ ⌘
3

1
4

2

r
~
G
. (26)

(we have momentarily restored G 6= 1 for clarity.) Radi-
ating energy away brings down the system to the m = µ

eigenspace. Consider now states that are eigenstates of
m with the minimal value m = µ and denote them
|B,µ, vi and |W,µ, vi. The dynamics governed by the
above Hamiltonian allows transition between black and
white components. This is a typical quantum mechanical
situation where two states, here |B,µ, vi and |W,µ, vi,
can dynamically turn into one another. Let us we disre-
gard for a moment v, which is invisible from the exterior,
and project H̃ down to a smaller state space H with ba-
sis states |H,µi. This is a two dimensional Hilbert space
with basis vectors |B,µi and |W,µi. Seen from the exte-
rior, the state of ⌃ will converge to Hµ.
The Hamiltonian acting on this subspace is

H =

 
µ

b~
µ

a~
µ

µ

!
(27)

where a = ce
�

p
3

4 . Quantum mechanics indicates that in
a situation where the system can radiate energy away and
there are possible transitions between these two states,
the actual state will converge to a quantum state which
is a quantum superposition of the two given by the lowest
eigenstate of H. This is

|Ri =

p
a

b
|B,µi � |W,µi
p

1 + a

b

(28)

(R for ‘Remnant’) and has eigenvalue µ � ~
p
ab/µ. If

the amplitude b of going from black to white is larger
than the amplitude a of going from white to black (as
it seems plausible), the state is dominated by the white
hole component. A related picture was been considered
in [43–45]: a classical oscillation between black and white
hole states.
In a fully stationary situation, the mass m is equal

to the Bondi mass, which generates time translations at
large distance from the hole in the frame determined by
the hole. (Quantum gravity is locally Lorentz invariant
[46, 47] and has no preferred time [48] but a black hole
in a large nearly-flat region determines a preferred frame
and a preferred time variable.) Keeping possible tran-
sitions into account there is a subtle di↵erence between
the mass m, determined locally by the horizon area, and
the energy of the system, which is determined by the full
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where we have added also a diagonal energy term propor-
tional to the mass in order to obtain the standard energy
phase evolution, and c and b are constants of order unit.

We now ask what are the stable or semi-stable states
of the hole as seen from the exterior.

A macroscopic black hole with mass m much larger
than the Planck mass mP =

p
~ is stable when seen from

the exterior for a (long) time span of the order m
3
/~,

which is the Hawking evaporation time. The stability
is due to the fact that process (1) does not a↵ect the
exterior, process (2) does not concern black holes and
process (4) is strongly suppressed for macroscopic holes.

A macroscopic white hole, on the other hand, is not so
stable, because of the fast instability of process (2). As
basic physics is invariant under time reversal, one may
wonder what breaks time reversal invariance here. What
breaks time reversal invariance is the notion of stability
that we are using. This is a stability under small fluc-
tuations of the past boundary conditions. If instead we
asked about stability under small fluctuations of the fu-

ture boundary conditions, we would obviously obtain the
opposite result: macroscopic white holes would be stable
while macroscopic black holes would not.

The question we are interested in is what happens
(generically) to a large macroscopic black hole if it is
not fed by incoming mass. Then two processes are in
place: its Hawking evaporation for a time ⇠ m

3
/~ (pro-

cess 3) and the internal growth of v (process 1). This
continues until process (4) becomes relevant, which hap-
pens when the mass is reduced to order of Planck mass.
At this point the black hole has a probability of order
one to tunnel into a white hole under process (4). But a
white hole in unstable under process (2), giving it a finite
probability of returning back to a black hole. Both pro-
cesses (4) and (2) are fast at this point. Notice that this
happens at large v, therefore in a configuration that clas-
sically is very distant from flat space, even if the overall
mass involved is small.

As energy is constantly radiated away and no energy
is fed into the system, the system evolves towards low
m. But m cannot vanish, because of the presence of the
interior: in the classical theory, a geometry with larger v
and small m is not contiguous to a Minkowski geometry,
even if the mass is small. Therefore in the large v region
we have m > 0. Alternatively, this can be seen as a
hypothesis ruling out macroscopic topology change.

But m cannot be arbitrarily small either, because of
quantum gravity. The quantity m is defined locally by
the area of the horizon A = 16⇡G2

m
2 and A is quan-

tized. According to Loop Quantum Gravity [40] the
eigenvalues of the area of any surface are [41]

A = 8⇡ ~G
p
j(j + 1) (24)

where we have taken the Immirzi parameter to be unit
for simplicity. The minimal non-vanishing eigenvalue is

ao = 4
p

3⇡ ~G (25)

and is called the ‘area gap’ in loop quantum cosmology
[42]. This gives a minimal non-vanishing mass µ defined
by ao = 16⇡G2

µ
2, that is

µ ⌘
3

1
4

2

r
~
G
. (26)

(we have momentarily restored G 6= 1 for clarity.) Radi-
ating energy away brings down the system to the m = µ

eigenspace. Consider now states that are eigenstates of
m with the minimal value m = µ and denote them
|B,µ, vi and |W,µ, vi. The dynamics governed by the
above Hamiltonian allows transition between black and
white components. This is a typical quantum mechanical
situation where two states, here |B,µ, vi and |W,µ, vi,
can dynamically turn into one another. Let us we disre-
gard for a moment v, which is invisible from the exterior,
and project H̃ down to a smaller state space H with ba-
sis states |H,µi. This is a two dimensional Hilbert space
with basis vectors |B,µi and |W,µi. Seen from the exte-
rior, the state of ⌃ will converge to Hµ.
The Hamiltonian acting on this subspace is

H =

 
µ

b~
µ

a~
µ

µ

!
(27)

where a = ce
�

p
3

4 . Quantum mechanics indicates that in
a situation where the system can radiate energy away and
there are possible transitions between these two states,
the actual state will converge to a quantum state which
is a quantum superposition of the two given by the lowest
eigenstate of H. This is

|Ri =

p
a

b
|B,µi � |W,µi
p

1 + a

b

(28)

(R for ‘Remnant’) and has eigenvalue µ � ~
p
ab/µ. If

the amplitude b of going from black to white is larger
than the amplitude a of going from white to black (as
it seems plausible), the state is dominated by the white
hole component. A related picture was been considered
in [43–45]: a classical oscillation between black and white
hole states.
In a fully stationary situation, the mass m is equal

to the Bondi mass, which generates time translations at
large distance from the hole in the frame determined by
the hole. (Quantum gravity is locally Lorentz invariant
[46, 47] and has no preferred time [48] but a black hole
in a large nearly-flat region determines a preferred frame
and a preferred time variable.) Keeping possible tran-
sitions into account there is a subtle di↵erence between
the mass m, determined locally by the horizon area, and
the energy of the system, which is determined by the fullDark matter? 
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Plenty of things still to do !

I trust in you do go ahead !


