B

Regge calculus and applications Regge colculus and applications
Loops school 2024
- Regge calentes basics Today
- Lorutzian Regge calculus (Tomorrow) Loops School ²⁰²⁴

· Regge calculus basics

· Lorutzian Regge calculus

Path integral for Quantum Gravity
(1) and i? Very hard to compute $Z \sim$ Very hard to comprise
(Dejeour exp(iS) Very hard to comprise - Oua
S)
-Path integral for Oceanolum Gravity
~ (Depour explis) Very hard to comprie. W yearn crp (° E)
Many ways
Many ways this . Easier to compate,
bat. Conformal factor to define this.
• Reseze calculars · Regge calculaus Relation to · spin foams spin foams exp(iS) · effective spin foams

Even with explis) factor : can sum over factor: can sum Euclidean or

Piece wise feat spaces

Consider piecewise flat geometrics . Pince
Consider pince isise
Here: Using simplices, but can be easily generalized. Vere: Using simplices, but can be easily generalized.
NB: Can also use homogeneously curved simplices. [Bahr, BD 2009] $2D$ \mathcal{L}_1^2 \mathcal{L}_2^2 triangle: geometry lenguely Simplices : ℓ_3^2 specified by lengths (squared) of edges. Can be unbedded into /Euclidean or Minkowskian) feat space , iff appropriate triangle inequalities are satis find.

Piesewise flat spaces

 $3D$ ℓ_1^2 $\begin{matrix} \ell_1 \\ \ell_2 \end{matrix}$ ι_{ι}^{2} $\overline{\iota_{\iota}^{2}}$ $\overline{\iota_{\iota}^{2}}$ $\overline{\iota_{\iota}^{2}}$ $\overline{\iota_{\iota}^{2}}$.

Edge lengths (squand) uniquely specify geometry S Caer be unbedded into $(E \propto \mu)$ fight space if generalized triangle inequalities 4D · As above. are satisfied GTI

· includes ¹⁰ edges , ¹⁰ triangles , 5 Autrahedra -

Using embedding into flat space , can For a given simplex: construct (Cartesian) Coordinate system . A different choice: bany centric coordinates $[$ Sorkin 70° s, BD, Fridel, Speziale 'Ot]

gluing two simplices

· Can always emboid a pair of glaed e simplices into flat space (if GT1 satisfied) & can find common Cartesian coordinate system · This defines parallel transport between simplices

· can go from simplex to simplex around "bone" ⁼ co-dimension -2 simplex a

Curvatur

(Euclidean)

 $\begin{matrix} \begin{matrix} 0 \\ 1 \end{matrix} \\ \begin{matrix} 0 \\ 1 \end{matrix} \end{matrix}$ $\Theta_{\!\scriptscriptstyle 2}$ E $\left(\begin{matrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{matrix}\right)$ (Enclidean)

Curvature univarial (Luccaleur)
2 D: Parallel transport bector around v:
(tudidian) : Vector will be rotated by deficit Parallel transport vector around v:
• Vector will be rotated by deficit angle E. ϵ = 2π - \sum_{i} Θ_i \Rightarrow Curvature has delta function like support on vertices .

bone shared by Hop-dim .) simplices. · Project each such top-dim. simplex onto place orthogonal to the bone . & préhogonal To rue d'a.
Result : A chain of triangles around a verdex. · Angle at merlex ⁼ dihedral augh 2023 $\epsilon_{\text{hole}} = 2\pi - \sum_{i} \Theta_{s_i \text{bow}}$ σ $\overline{\sigma}$ => Carvature has delta function like support on bons.

Hight dimension: Borisova, BD

The Regge action (Euclideae)
Curvature characterized by ε_b - constant along given bone. · Curvature characterized by ε_{b} · Integrate awasture over mfd: $S_{Rasse} = \sum_{bestse} Vol_b \cdot \varepsilon_b$ + + boundary term bones (bulk) bohn dang term: \sum_{obs} Vol_b (R_b. π - \sum θ _{σ} bonn dang tem: $\sum_{\text{bures}} V_{\text{ab}} G_{\text{ab}} + \pi - \sum_{\text{obs}} (\theta_{\text{ab}})$ $(\rho_{b}\cdot\pi - \frac{1}{\sigma_{b}}\left(\frac{\rho_{\sigma_{b}}}{\sigma_{b}}\right))$ bonn dang term :
(fixed balry length) (bdry) $R_b = 0.2$ $\overline{\mathcal{A}}$ $\sqrt{2}$) $\begin{array}{ccc} \mathcal{Z} & \mathcal{Z} & \mathcal{O}_{\mathcal{Z}} \\ \mathcal{Z} & \mathcal{Q}_{\mathcal{D}} & \mathcal{Q}_{\mathcal{Q}} \end{array}$ can be adjusted to expected $S_{20} = -5$ libb $\begin{array}{ccc} \text{Cau} & \text{be} & \text{adj'ushd} \\ \text{E} & \text{b} & \text{Hypr} & \text{of} & \text{b} \end{array}$ \neg #..... Choice of k_b does not matter for EOM: R_b does not matto
 R_b does not matto {
bdy-b Volb k_b π = coust.

Equation of Motion
\n
$$
S = \sum_{briæs}
$$
 Vele: E_b [boundary or bulk ellipti
augli)
\n $\frac{SS}{Sl_e} = \sum_{briæs > 0} \frac{\partial V_{obls}}{\partial l_e} \cdot E_b - \sum_{birreis} V_{obls} \sum_{\sigma > birres} \frac{\partial D_{\sigma_{ib}}}{\partial l_e}$
\n $\frac{S}{\sigma} \sum_{b \subset S} V_{obls} \frac{\partial C_{\sigma_{ib}}}{\partial l_e} = 0$
\n $\frac{S_{oblls}}{\sigma} \sum_{b \subset S} V_{obls} \frac{\partial C_{\sigma_{ib}}}{\partial l_e} = 0$
\n $\frac{S_{oblls}}{\sigma} \sum_{b \subset S} V_{obls} \cdot \frac{\partial C_{\sigma_{ib}}}{\partial l_e}$
\n $\frac{S_{oblls}}{\sigma} \sum_{\sigma \in S} V_{\sigma} = 0$, 2D: Regge action is a+topological
\n $\frac{S_{oblls}}{\sigma} \cdot \frac{\partial C_{obls}}{\partial l_e} = 0$
\ndiscut field Eiaslain equations. 4D: $E_b = 0$
\ne 8b = 0 solutions, misbit and be absolutely displayed in 4D.
\n $\frac{S_{oblls}}{\sigma} \sum_{\sigma \in S} \frac{\partial A_{\sigma}}{\partial l_e} E_{\sigma} = 0$

$\frac{S\sqrt{12}}{4}$	$\frac{1}{2}$	
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
$\frac{1}{2}$	$\frac{1}{2}$	
$\frac{1}{2}$		

 $\mathcal{E}_{\mathit{bck}} = 2\pi - \mathcal{E} \mathcal{E}_{\mathit{c,b}}$ $\mathcal{E}_{bdry} = \bigcirc \mathcal{E} / \mathcal{F} - \sum \mathcal{O}_{cib}$ S_{σ} = $\sum_{t} A_{t} \Theta_{t}$ $\uparrow\hspace{-2.8ex}\uparrow_{e} = \frac{\partial S}{\partial le} = -\sum_{t} \frac{\partial A_{t}}{\partial le} \Theta_{t}$ ξ le π } = 1 ${2A_t, T_t 3 = 1}$ $\rightarrow A_{t}(e), \quad \mathbb{T}_{t}$ $\Rightarrow \left(\begin{matrix} 1 \\ 1 \\ 1 \end{matrix}\right), \qquad \begin{matrix} \mathsf{H}_{t} & \leftarrow & \mathsf{H}_{t} \\ \mathsf{H}_{t} & \leftarrow & \mathsf{H}_{t} \end{matrix}$

2 Questions *

. Some unusual configurations: Spikes

② Coupling of Matter Sorkin 70's

⁺ body diagonal · Lattice Continuum limit => 6 tetrah. Roceck, Williams 80's, BD, Fridel, Speziale 107

* Diffeomorphism symmetry, Triangulation invariante BD 08 , Bahr, BD 09 * Canonical Analysis BD, Höhn 2010+ Pachner Moves as time coolution BD, Hohn 2010+

· Path integral measure BD, Steinhaus ²⁰¹¹ ; BD , Borisova ²⁰²³

Spikes

· a ditany long bulle Lolge length
1 "small" boundary
colge lungth · "small" boundary edge length · represents conformal factor ~ kills Euclidean approach

-> Even more possibilities for Lorentzian signature

Diffeomorphism symmetry

· All examples describe the same (feat) geometry but have different Edge length . · Subdivide flatly a flat simplex into (d ⁺ 1) simplices \Rightarrow v ide flatty a flat
glex into $(d+1)$ simplice
Provides family of garegeglex in to
Provides family of gar
equivalent solutions. => $S_{|sel} = \text{const.}$ on this foundy; $\frac{\partial S}{\partial Reole_i}\Big|_{sel} = 0$. S_{θ} S_{θ

· What about solutions with curvature?

=> Broken symmetry. \cdot What about $\frac{1}{20}$
 $\frac{1}{20}$ $\frac{1}{20}$ $\frac{1}{20}$ $\frac{1}{20}$ $\frac{1}{20}$ small Confirmed by · Digree of Inedom court . Genowical Analysis

Time coolution discrete: always possible, even if # dof change [BD, Hōhr, 2010+] · Continuous : il $cliff$ -symmetry is there · Or in time-continuum limit for symmetry reduced configurations IBD, Gielen , Schander 2021]

 $\triangle \rightarrow \triangle$

· Discrch Evolution steps 3D:

Time evolution

 $\begin{picture}(120,1111) \put(0,0){\line(1,0){10}} \put(15,0){\line(1,0){10}} \put(15,0){\$ $\sqrt{ }$

Discrete time evolution with Pachue moves ⁱ in & hypersurface
Continues and Roberts moved - Tunt moves: Combination of Reduc proverences
which do not change the trianger la tion. · Phase space can be constructed · Generating function : Regge action for glacel simplex. BD , Hohn ²⁰¹², ²⁰¹³ . Prc- & Post Constraints

Lorentzian Regge calculers

More Surprises.

Lorentzian angles Euclidean angle $\frac{iau}{\sqrt{\tilde{a}\cdot\tilde{a}}\sqrt{\tilde{b}}}}$ $a \cdot b$ θ = arcros $\frac{a}{\sqrt{a-b}}$
 $\frac{a}{\sqrt{a-a}}\sqrt{b\cdot b}$ $\Theta \in \subset \Theta$ _c π] Lorentian angle Angle Risionplex $A \cup B$
given by $\begin{matrix} 1 & 1 \end{matrix}$ Angle
Angle
Parameter & Complements Lorentian angle
What should we do? · Allow angles w/ jungginary parts [sorkin 1977,
Puckeel: boost with $\zeta = \pm i \frac{\pi}{2}$ = $\left(\begin{array}{cc} 0 \\ 1 \end{array}\right)$ \Rightarrow $\left(\begin{array}{cc} 1 \\ 0 \end{array}\right)$ $\begin{array}{cc} \text{Each } \text{length} \ \text{const} \neq \frac{1}{2} \end{array}$ $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$ $\begin{pmatrix} 2d & \text{deg} \end{pmatrix}$ $\begin{pmatrix} 2d & \text{deg} \end{pmatrix}$ $\cos \theta + \sin \theta = \frac{1}{2}$ · More straight for ward : Define angles via analytical [Asante , BD, Padua-Arguelles2)

Loantvian angles Generalized Wick transform in (1+1)D: $\vec{a} * \vec{b} = e^{i\phi}$ as $b_0 + a_1 b_1$ $\phi = 0.2\pi$: Euclideau
 $\phi = \pm \pi$: Minhowskiau

 θ = arccos $\frac{\bar{a} * \bar{b}}{\sqrt{\bar{a} * \bar{b}} \sqrt{\bar{a} * \bar{b}}}$ $\log_{+}(-1) = + i \text{ } t$
 $\sqrt{-1} = -i$ $\theta^{(1)} = -i \log_{1} \frac{\vec{a}*\vec{b} + i \sqrt{(\vec{a}*\vec{a})\vec{b}+\vec{b}+\vec{a}*\vec{b}}^2}{\sqrt{\vec{a}*\vec{a}} \sqrt{\vec{b}*\vec{b}}^2}$

Aralytical
Continuation
in
$$
\phi
$$
:
Natural Extension
No (-2π, 2π)

Red: Both in QuI. Blue: Ou in Ou I, one in A. II Solid: Real part Dotted: Imaginary part

Example	Lemma	Angle	Angle	Problem	Area	Problem	Area																				
Example	\n $60 - \rho l x$ and $2\pi l$ \n	\n $60 - \rho l x$ and $2\pi l$ \n																									
Example	\n $60 - \rho l x$ and $3\pi l$ \n	\n $60 - \rho l x$ and $4\pi l$ \n																									
Example	\n $60 - \rho l$ \n	\n $60 - \rho l$ \n	\n $60 - \rho l$ \n	\n $60 - \rho l$ \n	\n $60 - \rho l$ \n	\n $60 - \rho l$ \n	\n $60 - \rho l$ \n	\n $60 - \rho l$ \n	\n $60 - \rho l$ \n	\n $60 - \rho l$ \n	\n $60 - \rho l$ \n	\n $60 - \rho l$ \n	\n $60 - \rho l$ \n	\n $60 - \rho l$ \n	\n $60 - \rho l$ \n	\n $60 - \rho l$ \n	\n $60 - \rho l$ \n	\n $60 - \rho l$ \n	\n $60 - \rho l$ \n	\n $60 - \rho l$ \n	\n $60 - \rho l$ \n	\n $60 - \rho l$ \n	\n $60 - \rho l$ \n	\n $60 - \rho l$ \n	\n $60 - \rho l$ \n	\n $60 - \rho l$ \n	\n $60 - \$

definit augle Con plex $\delta(\phi) = 2\pi - \sum_{\sigma b} \Theta_{\sigma,b}(\phi)$ $\delta(0) = \epsilon_E$
 $\delta(\phi) = k_{b} \cdot \frac{\pi}{2} - \sum_{\sigma b} \Theta_{\sigma,b}(\phi)$ $\delta(\phi)$ $\delta(\pi) = +\bar{x} \epsilon_{L+1}$ Bulk: Beloy $\delta(2\pi) = -\epsilon_E + (4-\mu) \pi$ For each $\theta_{\sigma,b}$ we have associated $N_c^{s,b}$ =#lijtings in
 $N_c = 2$ = [Me = 1]

A $N_c = 2$ = [Me = 1] $\mathcal{F}_{\epsilon} \wedge_{\epsilon} = \sum_{s>b} N_c^{s,b}$ $\neq 4$ \Rightarrow $\delta(\pm \pi)$ has a roal part.
(ϵ_{LL} has an inaginary part) 3) Light come irregular configuration. Heightrags Odightrags

Complex Regge action $\sum_{b} \sqrt[k]{\frac{1}{b}} \sqrt[k]{\frac{1}{b}}$ δ_{b} \rightarrow $\Lambda \sum_{c} \sqrt[k]{\frac{1}{b}}$ $\begin{array}{ccc} \mathcal{L} & S & : & = \end{array}$ * Eucl. twang.: $S_b = E_b \Rightarrow iS = -S_E V$
* Lorute twang.: $(S_{Regge} = -S_E)$ Consistence Check: Timelike bore => Euclideau augle Spacelike bore => lorutrian augle $\Rightarrow iS_b = \sqrt{|V_b^s|}' \cdot (\pm i) \varepsilon_{L_s}$ Null bone => do not contribute to action is has real parts Light were irregular configurations: · exp (iS) either enhancing or suppr.

Question :

Are those light come

irregular configurations relevant ?

Melle Grande space like $\frac{h^{s}}{s_{pc}}$ 1 spralike
1 spralike
1 spacelike:
1 spacelike honizon
w/out light-
1 spaces spacelike But also appear E sential for computing Entropic! $in cos m_0log q$! [Marolf 2022] [BD_I Jacobson, Palar Agualles [20]

Question:

I learned a difficult definition for Lorentzian augles in spin foams. $\begin{array}{l} \mathbb{Z} \\ \mathbb{Z} \end{array}$ Samett, Foxou $10's :$ thin & trick augles I
No imaginary parts: $\epsilon = \sum_{\text{thin}} \widehat{\theta}_{\epsilon} + \sum_{\text{trick}} \widehat{\theta}_{\text{trick}}$ This delimition does ust satisfy the (Lorent Ziour) Gan B-Bonnet Huovem.

we could get the For sphere and torus triangulation $\frac{a v}{a} \frac{1}{\sqrt{\frac{b v}{a}}}$

2 A cosmological example BD, Gielen (Schacher 21) $2D \cdot \bigwedge e^{eqcot}$ 3D $\bigwedge e$ subdivided [Asank , BD, Pedua hypersurf . Sobdivided Lindon pour Arguelles 21 Certifier 20 AV.
19 Importer : 30 AV.
10 Subdivided :
10 Subdivided : subdivided 16-cell Egnal
Le time 3D (4D: subdivided [Assurly B), Padua
4-Simplex
Cosahedron · subdivided 16-cell
Cosahedron · subdivided 600-cell
Cosando del length) beus edges : · $S_{\alpha} > 0$ (squared edge length) r_{ch} edges: $S_{\text{b}} \geq 0$ Loratzian triangle cond. orcuttion triangle
4D: $s_{b} < \frac{3}{9}$ Sa Introduce height of top-dim . simplices : Lorzian condition : Sn< ^O 4D $S_h = S_b - \frac{3}{8} S_a$ S_{μ} n Lapse

· Note that bulk sub-simplices might be spacelike.

A cosmological exemple

· bulk triangles timelike: light cone regular $4D:$. bulle triangles spacelike, bulk tetrale timelike: La irry.
. bulle triangles spacelike, bulk tehrale spacelike: La irreg. - These light cone imagness contig. Also appear usheen
wolving from a binote vol- lupper surface to a binote No backward light come THE SILV Two forward light cours $\sqrt{1 - \frac{1}{2}}$

Regge action for cosmology Complex 3 Complexify this variable $S_{\textrm{L}}$ \sim lapse iraga lar configuration $-5256 - \frac{1}{8}$ $l\!\!\!\mathcal{L}$ $S_h = e^{i\phi}$ δ_h $(T_R>0)$ $\phi = \pi$ $5u$ $P_{\text{rel}}(S) < 0$ $\begin{cases} \text{cS}_{L+1} & \text{Re}(S) > 0 \\ \text{cS}_{L+2} & \text{Re}(S) > 0 \end{cases}$ branch cent for le irreg coupig.
Le jorg coupig.
Le surveytival courtin-ortion leads to finant sheet.
- SEDD to a different Riemann sheet.
(W= is changes by undbiples of it.) $Q = 2\pi$ => Explanation for Nc dependence $\sqrt{1-\frac{1}{2}}$ of $\delta(\phi = 2\pi)$. $-i54 - i56$ $\phi = 3\pi$

No-bonndary weer-function - De Siter radius
- De Siter radius
- smallest radius · Eudidian "Plase" Lor. Sol.
(1) Euch. Sol. In our discriti case: Pathintegral = integral our s_h . => As long as $s_{\alpha} \leq s_{\text{crit}}$ there are only
Enclidean squalle points at $\phi = 0, 2\pi$. · Need to decide on Loventiaux $+550$
 $\phi=2\pi$ $\phi=0$ contour: On the left or the
night of branchat. Decides on saddle point!

Choice 1:

This repreduces surprisingly will the
no-loday than climp your for from continuum on
mini-super space (eg. (Feldbragge, lohnes, Turok 2016]) But we meet to include le irreg. configurations,

Turneling amplitude

Lc irreg. Configurations are
Charolf 2022,
essuntial: Gaussan, Vissu¹²³]

Eutropy from Looutzian pathintynal

Periodically identify spacetime with housen:

sprelike
un wlowthight
come: CTC singularity

Entropy from simplicial Coventrian path integral C BD, Jacobson, Palag-Arguelles
- Path integral our Lormtzian metrics on a sphere. 2024]

·

· ID analogue of our 3D /or 4D) triangulation Integrate over so and like b: Sb - Sh (height variable)

For spacelike b: · ^A represents a CTC singularity and Acf ion (Sa , Sa): 1 represents a
CTC singularity and Action (Sa1 St):
Ic incegularity. has the same

ien (Sa1 Sa):
Las the sam
as before.

structure

Choice L:

. Entrope \sim # plus. dof => Need to integrate our positive and nigative lapse to project outo Hamiltonian Constraint

· We obtain exposurationly

 $\mathbb{Z} \sim exp\left(1.4 \times S_{dS}\right)$

discutization artificat

 $S_{0}S_{3} = \frac{4\pi^{2}}{\sqrt{N}}$

 $GH - \omega$

=> Le irregulacities arc His result essential for

Compan to continuum

· Ambiguity for Lorentzian contour · · same ambiguity.

· Physical interpretation for ambiguity pretation

Essent- $\frac{1}{\sqrt{2}}$ $Corr_{trunc}$ · Same ambiguity. · Debate about contour [Feldbugge, Lehners, Turok] vš E Diaz Dorroussion Halliwell, Hartle , Herlog , Jansen]

· Fluctuation convergence criterion and conformal mode problem

Application:

·

。

Effective spin foam cosmology discrete Areas Application:
ive spin foam cosmo
Length my discrete)

How does the replacement of integral by sum change the result? => Begond saddle point the
addle pi Allows to conside time evolution

How to deal with oscillating infinite sum ? Shank transform and Wynn algorithm $\overline{\text{max}}$ (explorined in [BD, Podce- $"23]$ · Works very will for path integrals/state sums
a for A verp (in.c) well for for purint ming no? in . c)
ig. for it wearge value: For computation of exp. 2×10^{-8} 20 Rel $\begin{bmatrix}\n 1. \times 10^{-8} \\
 0. \times 10^{-8}\n\end{bmatrix}$

Revenue 1. $\times 10^{-8}$ 1×10^{-8} $e(Sum)$ error -20 \sim 10^{-8} -2×10^{-8} -40 -3×10^{-8} $\mathbf{0}$ 20000 40000 60000 80000 100000 20 40 60 80 100 N_B N_B

Compan Regge integral with Eff. SF sim Lorentzian Correstinan phase: -2.8 &phase pronse
Enclidean -2.9 **ESF** Class $rac{\lambda}{2}$ -3.0
 $rac{\lambda}{2}$ -3.1 Almost no difference visible. -3.2 $_{-3.3}\frac{\Lambda = 0.2\ell_P^{-2}}{32.0}$ 32.4 32.1 32.2 32.3 a^2 Good ! Consistency clack . $Euclidew$ $\sum_{0.100}^{1} \sum_{P=0.2\ell_P^{-2}} \sum_{z_{ESF-Ref}} \sum_{z_{ESF-Ref}} \sum_{T=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{j=1}^{T} \sum_{i=1}^{T} \sum_{i=1}^{T} \sum_{j=1}^{T} \sum_{i=1}^{T} \sum_{j=1}^{T} \sum_{j=1}^{T} \sum_{j=1}^{T} \sum_{j=1}^{T} \sum_{j=1}^{T} \sum_{j=1}$ phase de de la forme de la forme larger scale factors. General effect ? 10^{-4} 10^{-5} I should be confirmed 10^{-6} 0.00 0.05 0.10 0.15 0.20 time a^2 using more s teps.

Lorentzian (Regge) path integral . Le irregular configurations: physically important role To appear: Le irregularities in the regime of lengths [Borisova, BP, large edge and I have Sein Glory · Lead to imaginary contributions to the action · Lead to unapposity which is the contropy cale. . Lattice continuum limit for Lorentzran
effective spice foverns To apper CAsante, BDJ effective spia foams

Effective spin foams

· Both Euclidean and Lorentzian signatures possible

no restriction on space likel timelike · Corutian case: nature of sub-building blocks

Key ingredients of spin foams a) discrete aras [Routli, Smolin, Ashkkar, Couichi,
Lewandowski... 3
Spall from: b) extension of configuration space from : f o are arca metric length metric [BD , Ryan O8, Fraidel, Speziale 10 F BD_{l} Regan 11_{l} --BD, Bon Sova 122 BD, Padua - Arguelles'23]

Remarkably b) follows from a).

Area - Length constraints $\begin{picture}(120,140) \put(0,0){\line(1,0){100}} \put(15,0){\line(1,0){100}} \put(15,0){\line(1,0){100}} \put(15,0){\line(1,0){100}} \put(15,0){\line(1,0){100}} \put(15,0){\line(1,0){100}} \put(15,0){\line(1,0){100}} \put(15,0){\line(1,0){100}} \put(15,0){\line(1,0){100}} \put(15,0){\line(1,0){100}} \put(15,0){\line(1,0){100$ · ¹⁰ lengths Shared · 10 lengths -10 aras tehal. Deras $20 - 6 = 14$ lengths $20 - 4 = 16$ anas $20 - 4 = 16$ area
=> There are two area length constraints. There are the area to dihedral angles in shared
(Regnining that two dihedral angles in shared data)
fetrals. agree, if computed from either 4-simples data) fition. agree in lead to diophantine equ.
With distrite are values: Constraints lead to diophanting surfable · Very fer solutions , preventing suitable semiclassical regime [Asaule, BDI Hagard '20]

=> Need to enlarge configuration space.

Twisted Simplex geometry and Ana metrics $In LQC$ - > ¹⁰ areas - > Also ² dihedral angles in each of the two tetrahedra Overall Ed^I variables Bartero-Immirzi $\begin{array}{c} \xi \varphi_{e}^{\tau} \ \ \, ,\ \ \, \varphi_{e}^{\tau}, \xi \ \ \, \sim \, \gamma \end{array}$ $\varphi_{e}^{\tau}\sim\varphi_{f}\cdot\varphi_{f}^{\prime}% \varphi_{e}^{\prime}+\varphi_{e}^{\prime}\varphi_{e}^{\prime}+\varphi_{e}^{\prime}\varphi_{e}^{\prime}+\varphi_{e}^{\prime}+\varphi_{e}^{\prime}+\varphi_{e}^{\prime}+\varphi_{e}^{\prime}+\varphi_{e}^{\prime}+\varphi_{e}^{\prime}+\varphi_{e}^{\prime}+\varphi_{e}^{\prime}+\varphi_{e}^{\prime}+\varphi_{e}^{\prime}+\varphi_{e}^{\prime}+\varphi_{e}^{\prime}+\varphi_{e}^{\prime}+\varphi_{e}^{\prime}+\varphi_{$ EBD, Ryan 108] "Twisted Simplex" [Fridal, Speziale : 10] [BD , Podua - Arguelles' 23] : The ²⁰ variables associated to the twisted simplex define an Area-metric .

Area metrics $G_{\mu\nu}Y, g\sqrt{}$ and $G_{\mu\nu\Omega\tau} \in \mu\nu\Omega\tau = 0$ $\frac{MYgG}{T}$ $\frac{1}{2}$ antisymmchic ymn
1 Symmetric => same elgebraic symmetrics as Riemann terson \Rightarrow 20 components Prucribes areas of parallelograms & dihedral angles. Each length metric defines an area metric : $G_{\mu\nu\rho\sigma} = g_{\mu\sigma} g_{\nu\sigma} - g_{\mu\sigma} g_{\nu\sigma}$ \Rightarrow Ana metrics extend contiguration space of lingth metic.

Area metrics

Microscopic: LQG simples data => Arca metric & BD/ Pedua-Arguelles] Continuum Effective spin focus => Action Mesoscopic: Effective spin focas => round on regular lattice limit is Arc untr. [BD 121, BD, Kopis, 22] *Consistent* Continuum: Modified Plebanski => Area metric certiar

 E Krasnov, Freidel, Speziale ⁰⁶ ⁺ $\begin{bmatrix} 1 & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} & \sqrt{2} \end{bmatrix}$

E Bonissova,

Ara metric action Limeanzed action obtained from modified Plebanski: $G_{\mu\nu\delta\sigma} = \delta_{\mu\sigma}\delta_{\nu\sigma} - \delta_{\mu\sigma}\delta_{\nu g} + \alpha_{\mu\nu\delta\sigma}$, $\alpha_{\mu\nu g\sigma} \rightarrow l_{\mu\nu}$, $\chi_{\mu\nu}^+$

$$
\frac{d}{dt} = \frac{1}{\sqrt{2\pi}} \left(l_{\mu\nu} \right) + \frac{1}{2} \int_{\frac{1}{2}}^{2} h_{\mu\nu} P^{2} \frac{\gamma_{\mu}^{\mu\nu}}{2} + \frac{1}{2} \int_{\frac{1}{4}}^{2} h_{\mu\nu} P^{2} \frac{\gamma_{\mu\nu}^{\mu\nu}}{2} + \frac{1}{2} \int_{\frac{1}{4}}^{2} h_{\mu\nu} \frac{\gamma_{\mu\nu}^{\mu\nu}}{2} + \frac{1}{2} \int_{\frac{1}{
$$

[Borissova, BD, Krasnov 2024]: • 8 affuts classical EDM in arca metric gravity.
• Leads to mixing of cross and plus polarization

· One finds the action, it looking for general diff-inv. and metric actions

Area metric action	E	E	Lecheure	Leugth	ucleic	setior
$d_{eq}(R)$ = $d_{en}(h) = \frac{m}{m}$	$\frac{1}{p^2 + M^2}$	$\frac{m}{m}$	$\frac{1}{m}$			
Does usb add	Number local	Wugl ² - How				
Does usb add	Number poles:	$(Pop)^{TT} = 2(\frac{1}{p^2} + \frac{1}{M^2})$				
Very	promin siug!					
Later: Gevent	Coruch	Sipnature.				

Area metric actions · First candidate effective actions describing the continuum limit of spin foams E is dence : \qquad continuum limit of effective $spin$ focus \in 2021, BD, ZCD 2021, ED key ss¹²⁷] - duivation from modified Plebanski framework [Borisova , BD'22] $=$ Extension of spin four config. $[BD, R=decA - Aq$ uelles 123 space to area mpo
unefoics and constructing diff. -invariant arca-mehide actions $[$ Borisova, BD , Krasnov $[23]$

Areaangle variables in spin-foams E_{B} S_{P} cziale '08] · Can invot areas a lingth · Compute Dihedral angles as · 10 anos
10 anos functions of arcas - 2 ditredrait angles 4°c => Shape matching / Gluing constraints in each tetrahedron ما
ح x tions of arcs
se matching / Ghing coostrains
 $C_c^{\tau} = \varphi_c^{\tau} - \Phi_c^{\tau} (A)$ · Bul ut do not community there et ? I $e = 1e$ $\frac{e}{t}$ \Rightarrow Constraints \mathcal{C}_e^0 are second class Cannot be imposed sharply need to be imposed "weakly". $LEPRL, FK$] How weakly? As strongly as allowed by commutator!

 E ffuctive $Spin$ foams [Assurte (B),
Haggard '20] $2 = \sum_{\{j\}\in\} M(j\epsilon) \left(\prod_{\tau} d\mu[\phi^{\tau}] \prod_{t} d\mu[\phi^{\tau}] \right)$ $\prod_{\sigma} d_{\sigma}(j)$ $\prod_{\tau \in S} \gamma_{\tau}(\phi^{\tau}, \Phi^{\tau, \infty}(j))$ Simplex
au plitude face weight simplex coherent state in angle amplitude variables , peaked on Diledral angles \Rightarrow integrate out augh variables $/$ sum over vair ables / san ovo infotisiners $=$ E ffective model: z $Z_{m(j_k)}\left(\prod_{i\in I}d_{pi}[\phi^c]\prod_{t}d_{t}(j)\right)$
 $Z_{m(k_j)}\left(\prod_{j\in I}d_{pi}[\phi^c]\right)$ $Z_{n(k_j)}$ for surform and $Z_{n(k_j)}$
 $Z_{n(k_j)}$ and $Z_{n(k_j)}$
 $Z_{n(k_j)}$ Z $\frac{d}{d\ell}$ and $\frac{d}{d\ell}$ function out aught variables!
 model:
 $(A_t(j) \text{ H } A_{\sigma}(j) \text{ H } G_{\tau}^{\text{av}})$
 \downarrow $exp(i S_{Area\text{-}Regge}(j))$ Recoupling sym $\begin{array}{ccccc} \text{g} & & \text{h} & & \text{g} \\ \text{bol} & \text{ih} & & \text{g} \end{array}$ T_{t} ω $\ell \times \varphi$ $\left(-\frac{\sum_{e}^{2} (\zeta_{e}^{t})^{2}}{4 \sum_{e}^{2}} \right)$ Hight -Gange theory (Baratin, Fairle); Asante, BD, Girclli, Tsaniklis, Ricles] $\Sigma^2 \sim \lambda_p^2 \gamma |V_{\sigma}^s|$

Effective spin focus

· Effichive sprin foaus son far only explicit calculation of \vec{z} for inputations require much mach less resources (Seconds -Minutes on ^a laptop) [Asante, BD, Haggard' 20] · Completentions to point it calculation of Z for
So far only explicit calculation of Z for
inner edge: Successful test of EOM.
(Seconds-Minutes on a loptop) [Assuring limit. (Sconds-Minutes on a laptop) LAsmington
Frech geometric into prefation / less variables
Allows for (perturbative) continuum limit. $[27]$ 121; $3D$, Kopiss^{, 127}]

· Loratzian signature : Timelike & spacelike subbuilding blocks allowed ; no vector geometrics [Assunte, SD, Padada - Arguelles [21]

Area Rigge action

$$
S_{length-Regg} = \sum_{t} A_{t}(l) \in E(l)
$$
\n
$$
= \sum_{t} Z_{t} + A_{t}(l) = \sum_{t} \sum_{t \in S} A_{t}(l) \mathcal{O}_{t}^{(t)}(l)
$$
\n
$$
= \sum_{t} Z_{t} + A_{t}(l) = \sum_{t \in S} \sum_{t \in S} A_{t}(l) \mathcal{O}_{t}^{(t)}(l)
$$
\n
$$
S_{total} = \sum_{t} B_{t} \left(\frac{1}{2} \right) \mathcal{O}_{t}^{(t)}(l) = \sum_{t} B_{t} \left(\frac{1}{2} \right) \mathcal{O}_{t}^{(t)}(l)
$$

$$
S_{Area\text{-}Regy} = \sum_{L} 2\pi A_{L} - \sum_{S} \sum_{t \in S} A_{t} \theta_{+}^{S}(A)
$$

$$
= \sum_{L} A_{L} \cdot \widetilde{c}_{L}(A)
$$
Area Regy action
3. appears in semi-closed limit of spin locus

 \Rightarrow

The Flatness Problem (or not SAra-Begge ⁼ $=\sum_{t} A_{t} \widetilde{\epsilon}_{t} (A)$ EOM : $8 S_{Area-Res8} = \tilde{\epsilon}_{t}(A) = 0$ $8A_{t}$ Schläfti identity Are these EOM demanding flatues? This is not the case. $\mathcal{E}_t(A)$ is a countriestion This is not the case. $\epsilon_t(A)$ is a In the continuum limit (because of different scalings) on does obtain the Length-Regge EOM · C BD 2021]

flatness problem

In to > O centil : Stronger and stronger escallations made out Gaussiaus/Constraints Thus y has to be suedd. $\gamma^2 \frac{\sqrt{Area}}{C_P}$, $\frac{SS_{AR}}{SArea} \leq O(1)$ $[$ Haca $13/$
Assenting Explicit Hoggard2

Test of (discrete) EOM
EAsank BD, Ha
expedention value (bulk anas) by ² Asanle , BD, Haggard' 20] Compute expectemion value (balk areas) by directly eva lating the path integral valenting the parts integral
As a function of t^a (Computation can be done for guncal γ 1) Expectation : Reproduce Rigge for small values of ^V. small curvatures.

·

·

·

· Expectations are even exceeded.

· Check paper for different curvature regimes .

Test of (discrete EOM [Asante , BD Haggard'20] · Effective spin foam action has imaginary
parts from Gord-factors. => Saddle points are in the complex place. $\begin{array}{ccc} \mathcal{A} \mathcal{L} \mathcal{D} & \mathcal{F} \end{array}$ for $\begin{array}{ccc} \mathcal{L} \mathcal{P} \mathcal{R} & \mathcal{L} \end{array}$ $\mathcal{A} \mathcal{L} \mathcal{S} \mathcal{P} \mathcal{R} \mathcal{L} \mathcal{P} \mathcal{$ ton,
Lin, Q_{cr} 24 => One other aspect of resolution of Saddle points are in
Also the case for
The flatness problem

Additional aspect :

Beyond stationary phase effects

There is a strong suppression of the partition function with growing γ . This has been interpreted as proof of flatness problem. But for fixed γ parameter, absolute value of Z does not necessarily matter, if computing expectation values.

$$
\langle \mathcal{O} \rangle \; = \; \frac{\sum_{a_t} \mathcal{O}(a_t) \mathcal{A}(a_t)}{\sum_{a_t} \mathcal{A}(a_t)}
$$

But what does lead to instabilities in the expectation values are γ -values where Abs Z goes more sharply to almost zero. This is caused by destructive interference.

(Not visible with stationary phase method.)

Maximal in Abs Z caused by "pseudo stationary points" resulting from discreteness of areas. Occur for unreasonable large values of γ .

.
तेन strongest case : Continuum limit · E ffective action = Arca-Regge -finunu
Ana-Regge
hypocal + Constraint terms · Can be put on
where each cube Effective action = Ana-Regge + Constraint:
Can be put on hyporcubical lattice, can be put on nypolarica.
Where each cube is subdivided into X Simplices , be put on hyporcubical latti
in each aubi is subdivided into
- gimplices (X = 24,48, ...). flat (shape-matching) · Expand around configurement
=> Compute Hessian (k) & $\frac{1}{2}$ A Lattice momentum Huge matrix with R-dependent entries

Continuum limit

Analyze this Messian . Gange modes ⁼ wall modes for any R Massless modes = annul modes for $k = 0$

P . There are always 6 massless \neq gauge modes and at least 4 Ther or
6 massd
at least
gauge jauge moder - > Length dof .

Continuum limit => Get GR on family of different lattices. Surprise : Even Area-Regge without it
different
GR in constraint => Get GR on family of different
Surprise: Even Area-Rogge without

Barrett-Crave model can lead to GR.

Leading order correction Can identify blocks with different scaling behaviour (in k) in the Hessian scaling colores insightful variable transform.) · These contribute to different order in the unglis - effective action 11 a decid caling biharions (in k) in the Hessian
moght requisit an insightful variable transform.)
here contribute to different order in the
length-effective action H a Stell $\frac{1}{2}$
Suightes which contribute to correction: $\frac{1}{2}$ metric dof (in addition to length dof) · Lead Arca Leading order corridion
Untily blocks with different
behaviour (in k) in the Hessian
requist an insightful variable bansfit
contribute to different and ition is to
- effective action to correction:
to Civil - sprand correc Weye-squared correction Consistent with modified Plebenski approach.

Effective Spin foams & latness problem · Addressed flahmes problem * in the discrete by explicit computation ive som forms a partner process discrh EDM . of path integral / expectation view.
Reproduce discrite EOM.
Issue integral looser than expected. Allowed regime larger * in the (partitative) continuum limit : $\frac{110}{11}$ surprise: Constraints are actually not needed to get GR ef leading · Do influence corrections

Area metric actions Find that leading order correction comes from arca metrics · Motivates to look for diff. -invariant area metric actions :

Ara metric achious $8 = 12\frac{1}{8}$ $d = L_{EH}(h_{\mu\nu}) + \frac{1}{2} h_{\mu\nu} P^2 \chi_{\tau}^{\mu\nu} + \frac{1}{2} h_{\mu\nu} P^2 \chi^{\mu\nu}$ + $(p^2 + M^2)(\gamma \chi^2_{\mu\gamma} \chi^{\mu\nu}_{\mu\gamma} + \gamma \chi^2_{\mu\gamma} \chi^2_{\mu\nu})$ This is actually for the Euclidean theory! Lorentian case: N+ are complex (self-devel decomp.) · introduce real and imaginave But Hun $(\chi^2 + \chi^2)$ ms $(\chi^2 - \chi^2)$ Corenticen: Dayvrais! En diclean

Lorentzian Area Metric actions Well known effect : Will known effect:
Lem = $E^2 + B^2$ - Jem = $E^2 - B^2$ Lorentiur Lorentteau
Ericlicheau $\mathcal{L}_{em} = E^2 + B^2$
Endideau statu: Endidean : normalizable Loruttian: normalizable [witter]

· Dangerous : Could lead to unstable behaviour. modes Second order: . Position and negative lengy whose
Second order: . Position and negative length stable $\frac{\partial}{\partial s}$; that and $\frac{\partial}{\partial s}$ $\frac{\partial}{\partial s}$ $\frac{\partial}{\partial t}$ stuble
clear up le \Rightarrow Dyminimits $\frac{\partial}{\partial s}$ stuble, $\frac{\partial}{\partial t}$ K rasnou 23 Leonie order . Jecomple => "Dynamines" is a D.
E Bonisova, D. (23)
Decomple => "Dynamines" E Bonisova, D. (23)

Effective Spir foams: Applications S · Effective spin form cosmology : -Effect of discrete spectra on time evolution More time steps and · Area metric actions = Effective continuous action describing spin foan dynamie · Higher order turns , renormalization Now , ara metric phenomenology, spin foan dynam
Corcutzian Syn.
Corcutzian Syn.