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I. INTRODUCTION

This series of lectures with a total length of 3 hours aims to give a (hopefully) comprehensive introduction to the 4D
Lorentzian spinfoam model with a cosmological constant to the level of frontier research based on this spinfoam model.
This lecture note includes all the content in the lectures and provides additional details. We assume the readers have
prior knowledge of the canonical Loop Quantum Gravity and Spinfoam model with vanishing cosmological constant,
especially the EPRL model, which were introduced during the summer school before this mini-lecture. We refer to
[1–4] for an elaborate introduction for these preparing content and excellent review articles [5–8] for an overview on
the field of LQG and spinfoam, as well as 2021 Loop Quantum Gravity online Summer School for recorded lectures
in a previous Loops’ summer school.

Readers may find this lecture note overlaps with [9–13], to which we refer for more details.

∗Electronic address: qpan@fau.edu

https://sites.google.com/view/lqgonlinesummerschool/home
mailto:qpan@fau.edu
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II. PREPARATION: THE IDEA OF SPINFOAM

Before we dig into the spinfoam construction for quantum gravity with Λ ̸= 0, we first briefly review the construction
of spinfoam with Λ = 0, mainly the EPRL spinfoam model, whose formalism will be deformed to include a non-
vanishing Λ.

We work on the Lorentzian signature η := diag(−1, 1, 1, 1). The conventions of the completely anti-symmetric
symbol is

ϵ0123 = 1 , ϵ0123 = −1 . (1)

The first-order gravity action is in terms of the tetrad e and connection A, which are both sl(2,C) valued one-forms.
The action on a 4-manifold M4 takes the form

SGR[e,A] =
1

κ

∫
M4

⟨e ∧ e ∧ F(A)⟩ , (2)

where F(A) = dA + [A ∧ A] is the curvature 2-form of A. The invariant non-degenerate bilinear form over sl(2,C)
evaluates as ⟨X∧Y ⟩ := 1

2ϵ
KL

IJ XIJYKL for two forms X and Y . We will work in units where the reduced gravitational
constant κ := 8πG

!
= 1 in the rest of the note.

The equations of motion are not altered when one adds the so-called Holst term to the action in terms of an
additional constant called the Barbero-Immirzi parameter γ, giving rise to the Holst action of general relativity:

SHolst =

∫
M4

⟨
e ∧ e ∧ F(A)− 1

γ
⋆ (e ∧ e) ∧ F(A)

⟩
, (3)

where ⋆ is the Hodge star operator that acts on the internal indices as (⋆X)IJ = 1
2ϵ

KL
IJ XKL and satisfies ⋆2 = −1.

Here, we require γ ∈ R.
The actions (2) can be formulated into a constrained sl(2,C) BF action

SBF[B,A] =

∫
M4

⟨B ∧ F(A)⟩ , (4)

where the B-field is constrained to take a simple form

B
!
= ±e ∧ e . (5)

This is, therefore, called the simplicity constraint. Similarly, (3) can also be formulated into BF-type:

SHBF[B,A] =

∫
M4

⟨(
1− 1

γ
⋆

)
B ∧ F(A)

⟩
=

∫
M4

Tr

[(
⋆+

1

γ

)
B ∧ F(A)

]
, (6)

where Tr(XY ) = XIJYIJ for two forms X,Y . The momentum conjugate to A is simply

Π := ⋆

(
1− 1

γ
⋆

)
B ≡

(
⋆+

1

γ

)
B , equivalently B =

γ

1 + γ2
(1− γ⋆)Π . (7)

Apparently, if γ = ±i, the relation between B and Π is not invertible. When one separates the action into the self-dual
part and anti-self-dual part, γ = i (resp. γ = −i) corresponds to projecting out the self-dual part (resp. anti-self-dual
part) of B.

The constraint B = ±e ∧ e implies that

1

4!
ϵµνρσBIJ

µνB
KL
ρσ = det(e)ϵIJKL ⇐⇒ 1

4!
ϵIJKLϵ

µνρσBIJ
µνB

KL
ρσ = −det(e) . (8)

When γ ̸= i, which is the case in our setting, integration over B is equivalent to integration over Π as they are
linearly dependent. Quantization of the BF theory with action (6) is given by the functional integration∫

dA
∫

dB e
i
ℓ2p

SHBF[B,A]
=

∫
dA
∫

dΠ e
i
ℓ2p

∫
M4

ΠIJF
IJ

=

∫
dA δ(F(A)) , (9)

where ℓp =
√
8πGℏ/c3 is Planck length.
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Given M4 with boundary ∂M4, let ψ[A∂ ] be a gauge-invariant state on ∂M4 as a function of boundary connection
A∂ = A|∂M4

. We define a BF amplitude of the state as

⟨BF|ψ[A∂ ]⟩ =
∫

dA δ(F(A))ψ[A∂ ] . (10)

In spinfoam model, we choose such boundary states, denoted as ψΓ that has support only on a graph Γ ∈ ∂M4 and
that depends on A∂ through holonomies Gℓ[A∂ ] along links of Γ. That is, ψΓ[A∂ ] = ψΓ[Gℓ[A∂ ]]. Such states are
called the SL(2,C) spin network states.

The building block of the spinfoam amplitude for a general 4-manifold is given by the BF amplitude associated to
a 4-ball M4 = B4, whose boundary is a 3-sphere S3. In this case, it is natural to consider the boundary graph to be
Γ5 which is dual to the boundary of a 4-simplex σ (which is composed by 5 tetrahedra sharing 10 faces pairwise).

To encode gravity in this topological theory, following the EPRL spinfoam model construction, one imposes the
simplicity constraints (quantumly) on the BF amplitude ⟨BF|ψΓ5

⟩. In particular, the simplicity constraint (5) is
quantized to an operator and it acts on ψΓ5

, which restricts the validity of boundary states.
Let us look more into how the quantum simplicity constraints are implemented. We first observe that the constraint

(5) can be decomposed into 3 parts:

diagonal part: (⋆B)µν ·Bµν = 0

off-diagonal part: (⋆B)µν ·Bµρ = 0

dynamical part: (⋆B)µν ·Bρη = 1
2V ϵµνρη

(11)

where the indices µ, ν, ρ, η are all different. Upon triangulation, these constraints are promoted to constraints on a
4-simplex as follows. Define the discretized B-field in the frame of tetrahedron t associated to a boundary triangle f
as BIJ

f (t) =
∫
f
BIJ(t) with I, J = 0, 1, 2, 3 being the internal labels, then the discrete versions of (11) are [14–16]

diagonal constraints: ϵIJKLB
IJ
f (t)BKL

f (t) = 0 , ∀f ∈ t , (12a)
off-diagonal constraints: ϵIJKLB

IJ
f (t)BKL

f ′ (t) = 0 , ∀f, f ′ ∈ t , f ̸= f ′ , (12b)
dynamical constraints: ϵIJKLB

IJ
f (t)BKL

f ′ (t′) = ±12V4(σ) , ∀f ∈ t, f ′ ∈ t′ ̸= t, t, t′ ∈ σ , (12c)

where f , t and σ denote a triangle, a tetrahedron and a 4-simplex respectively. V4(σ) denotes the 4-volume of σ,
f ∈ t denotes that f is on the boundary of t, and t ∈ σ denotes that t is on the boundary of σ. (12c) can be implied
from (12a) and (12b) hence is redundant. There are two sets of solutions to the constraints (12):

BIJ
f (t) = ±eI(t) ∧ eJ(t) or ⋆ BIJ

f (t) = ±eI(t) ∧ eJ(t) , (13)

where eI(t) is a tetrad 1-form in a Cartesian coordinate patch covering t. The first solution can be viewed as the
discretized version of (5). The two quadratic constraints (12a) and (12b) can be strengthened to a single set of linear
constraints

linear constraints: ∃NJ such that NJB
IJ
f (t) = 0 , ∀f ∈ t , (14)

which selects the first solutions from (13) as wanted. We will treat (14) as the full set of simplicity constraints and
generalize it in the new spinfoam model.

The simplicity constraints then imply that the discretized B-field BIJ
f (t) measures the area af = | 12ϵIJKLN

JBKL
f (t)|

of the triangle f . One can gauge fix the vector NJ = N0 to be timelike, then (14) is equivalent to the statement that
the tetrahedron t is spacelike. Moreover, not BIJ

f (t)’s of all the 4 triangles are independent for a given tetrahedron t

but they are subject to the closure constraint that generates the SU(2) gauge symmetry:∑
f∈t

BIJ
f (t) = 0 ⇐⇒

∑
f∈t

afn
I
f = 0 , (15)

where nIf is the normal vector to f satisfying |nf | = 1. By Minkowski’s theorem, the simplicity constraint (14) together
with the closure condition (15) allows us to identify a convex tetrahedron whose face areas and normals are given by
af ’s and nIf ’s.

In the quantum theory, the constraint (14) will be promoted to constraint operator which acts on the partition
function. The above classical description is enough for us to introduce the spinfoam model with a cosmological
constant by generalization while the construction of the partition functions in the new spinfoam model is relatively
different from the EPRL model. For this reason, we will not describe in detail the quantum theory of the EPRL
model here but only mention the necessary ingredients thereinafter. We refer interested readers to the original series
of papers [14, 15, 17].
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III. FROM 4D GRAVITY WITH Λ TO CHERN-SIMONS PATH INTEGRAL

As above, the starting point of the spinfoam model with a cosmological constant is the Holst action adding a
cosmological term. The corresponding topological BF action, denoted as SΛBF, is

SΛBF[B,A] =

∫
M4

Tr

[(
⋆+

1

γ

)
B ∧

(
F(A)− |Λ|

6
B

)]
. (16)

The trace is taken in the sl(2,C) Lie algebra and it evaluates as Tr[X ∧ Y ] = XIJYIJ . Slightly different from some
literature, we let SΛBF depend on the absolute value of the cosmological constant |Λ| so that the sign is encoded in
the simplicity constraint:

B ∼= sgn(Λ)e ∧ e , (17)

imposing which one recovers the first-order action of general relativity with a cosmological constant Λ, written in
terms of the cotetrad e and the connection A

SGR[e,A] =

∫
M4

Tr

[(
⋆+

1

γ

)
(e ∧ e) ∧

(
F(A)− Λ

6
(e ∧ e)

)]
. (18)

The equations of motion of (16) from varying the B field leads to a linear relation between the F field and the B field,
which transfers to the equation between the curvature and the cotetrad after imposing the simplicity constraints.

∂SΛBF
∂BIJ

= 0 =⇒ F =
|Λ|
3
B

B∼=sgn(Λ)e∧e−−−−−−−−−→ F ∼=
Λ

3
e ∧ e . (19)

The right-most equation above is the simplicity constraint that we will implement to the theory.
The path integral of the action (16) contains a Gaussian integral for the B field, performing which is equivalent to

imposing the solution F = |Λ|
3 B. It leads to∫

dAdB e
i
ℓ2p

SΛBF
=

∫
dA exp

(
3i

2ℓ2p|Λ|

∫
M4

Tr

[(
⋆+

1

γ

)
F(A) ∧ F(A)

])
. (20)

We separate F into its self-dual part F and anti-self-dual part F̄ w.r.t. the ⋆ operation, i.e.

F = F + F̄ , F =
1

2
(1− i⋆)F , F̄ =

1

2
(1 + i⋆)F , ⋆F = iF, ⋆F̄ = −iF̄ . (21)

As ⋆2 = −1 in the Lorentzian signature, the above was done by first complexifying the sl(2,C)-valued variables before
the separation (see (33)). (20) can then be written as∫

dAdĀ exp

(
− 3

2ℓ2p|Λ|

∫
M4

(
1− i

γ

)
Tr[F (A) ∧ F (A)]−

(
1 +

i

γ

)
Tr[F̄ (Ā) ∧ F̄ (Ā)]

)
, (22)

where A and Ā are the self-dual and anti-self-dual parts of A respectively and ℓp is the Planck length. As the exponent
is a total derivative term, (22) becomes a path integral of SL(2,C) Chern-Simons action with complex level on the
boundary ∂M4. When M4 is topologically trivial, (22) takes the form as∫

dAdĀ e−iSCS[A]−iSCS[Ā] =:

∫
dA e−iSt

CS[A] , (23)

where

SCS[A] =
t

8π

∫
∂M4

Tr

[
A ∧ dA+

3

2
A ∧A ∧A

]
, SCS[Ā] =

t̄

8π

∫
∂M4

Tr

[
Ā ∧ dĀ+

3

2
Ā ∧ Ā ∧ Ā

]
. (24)

The level t and its complex conjugate t̄ can be separated into real and imaginary parts as

t = k + is , t̄ = k − is , where k =
12π

ℓ2pγ|Λ|
∈ Z+ , s = γk ∈ R . (25)
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k ∈ Z+ is required for the gauge invariance of the partition function (23). Therefore, the quantization of gravity on a
4-manifold M4 with a cosmological constant Λ now relates to quantization of the SL(2,C) Chern-Simons theory with
complex coupling constant on the 3D boundary ∂M4 of the manifold:

SCS[A, Ā] =
t

8π

∫
∂M4

Tr

[
A ∧ dA+

3

2
A ∧A ∧A

]
+

t̄

8π

∫
∂M4

Tr

[
Ā ∧ dĀ+

3

2
Ā ∧ Ā ∧ Ā

]
. (26)

The connection A (as well as Ā) is now restricted to the 3-boundary ∂M4.
Following the same spirit as in the EPRL model, the spinfoam amplitude can be defined as the inner product of the

CS partition function coupled with a gauge-invariant state ψ[A] on ∂M4 that encodes the information of quantum
geometry, formally written as

ASF = ⟨CS|ψ[A]⟩ =
∫

dA e−iSt
CS[A]ψ[A] , (27)

on which we impose the (quantized) simplicity constraint. Since the simplicity constraint requires non-trivial magnetic
flux by (19), certain defect has to be introduced to the Chern-Simons theory (otherwise the Chern-Simons theory
would imply F = 0 by the equation of motion). Therefore, the construction of spinfoam model with a non-vanishing
cosmological constant on a spacetime manifold M4 relies on the quantization of the SL(2,C) CS theory with a complex
level t on its boundary ∂M4 with defects, which we describe in detail in the next section.



6

Interlude: Self-dual and anti-self-dual decomposition for sl(2,C)C
This part of the note consults mostly Appendix B of [9]. The real generators {J IJ}I<J(I, J = 0, · · · , 3) of Lie algebra
sl(2,C) have components

J 0i = Ki, J ij = ϵijkJ
k , i, j, k = 1, 2, 3 , (28)

which satisfy the commutation relations

[J i, Jj ] = ϵijkJ
k , [Ki,Kj ] = −ϵijkJ

k , [Ki, Jj ] = ϵijkK
k . (29)

Decompose X = XIJJ IJ ∈ sl(2,C)C into its self-dual part X+ := 1
2 (1− i⋆)X and anti-self-dual part X− :=

1
2 (1 + i⋆)X which satisfy ⋆X± = ±iX± whose components are

(X±)IJ =
1

2

(
XIJ ∓ i

2
ϵ KL
IJ XKL

)
. (30)

Define the self-dual basis T k
+ for sl(2,C) and anti-self-dual basis T k

− as

T k
± :=

Jk ± iKk

2
. (31)

Then any (anti-)self-dual component of X can be written under the (anti-)self-dual basis as

X± = (X±)k T
k
± , with (X±)k =

1

2
ϵijkXij ∓ iX0k . (32)

The (anti-)self-dual basis satisfy the commutation relation of an su(2) Lie algebra separately and they mutually
commute:

[T i
±, T

j
±] = ϵijkT

k
± , [T i

±, T
j
∓] = 0 , (33)

And their bilinear form is chosen to be

⟨T i
±, T

j
±⟩ = ± i

2
δij , ⟨T i

±, T
j
∓⟩ = 0 , (34)

which gives ⟨X,Y ⟩ = 1
2ϵ

IJ
KLXIJY

KL. The self-dual generators (resp. (anti-)self-dual generators) satisfying (33) and
(34) can be represented in Weyl’s left-handed ( 12 , 0) representation (resp. Weyl’s right-handed (0, 12 ) representation)
as

(
1

2
, 0) : Jk =

σk

2i
, Kk = −σ

k

2
=⇒ T k

+ =
σk

2i
,

(0,
1

2
) : Jk =

σk

2i
, Kk =

σk

2
=⇒ T k

− =
σk

2i
.

(35)

Then the bilinear form (34) is realized by

⟨T i
±, T

j
±⟩ = ∓iTr

(
T i
±T

j
±

)
. (36)

For real-valued X, we have X̄− = X+ with the bar denoting the complex conjugate.

IV. CHERN-SIMONS PARTITION FUNCTION ON THE TRIANGULATED 3-MANIFOLD

The building block of the spinfoam amplitude is the vertex amplitude Av. To construct Av, we consider M4 to be
a 4-simplex which is topologically equivalent to a 4-ball B4, and quantize the Chern-Simons theory on its boundary
which is topologically isomorphic to a 3-sphere S3.

The triangulation T3 of S3 is the boundary of a 4-simplex. It contains 5 tetrahedra sharing 10 triangles. Their
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duality is summarized in Table I. The dual graph of a 4-simplex σ contains 5 nodes connected by 10 links and is
denoted as Γ5 (See fig.1).

triangulation T3 of S3 Γ5 graph
tetrahedron t node v

triangle f link e
edge E face

TABLE I: The one-to-one correspondence of the triangulation of S3 and its dual graph Γ5. We will use the same
terminologies and notations throughout this note.

Upon triangulation, one should smear the simplicity constraint (19) over the sub-simplices of the 4-simplex, the
quantization of which will define an operator on the wave functions on the 4-simplex. As the constraint takes the form
of 2-forms, it is natural to smear it over 2-simplices – triangles, then the curvature is smeared as F IJ

f (t) =
∫
f
F IJ(t).

In the dual picture, the violation of flatness occurs only on the links of Γ5. In other words, the simplicity constraint
operators are only inserted on the links of Γ5. Let us now view Γ5 as a graph embedded in S3. A key idea of
constructing this spinfoam model is to utilize the following equivalent treatment:

operator insertion along a graph
=

remove the graph and its open tubular neighbourhood then impose boundary condition on the graph complement .

Therefore, instead of inserting a simplicity operator to Γ5, we will remove Γ5 and define a CS quantum state on the
graph complement S3\Γ5 which is the complement of an open tubular neighbourhood of Γ5 in S3 and then impose
boundary conditions on ∂(S3\Γ5).

5̄

2̄

3̄ 4̄

1̄

FIG. 1: The Γ5 graph (projected on R2) as the dual graph of the triangulation T3 of S3.

We first perform the former step – to define a CS partition function on S3\Γ5 applying the method developed in a
series of works [18–23]. The quantization of complex Chern-Simons theory uses the ideal triangulation of the graph-
complement 3-manifold, say Γ-complement of M3 denoted as M3\Γ. The building blocks of the ideal triangulation
are the ideal tetrahedra △’s, which are tetrahedra with vertices truncated into triangles as shown in fig.2a 1. The
original boundaries of an △ before truncation are called the geodesic boundaries of △ and the truncated vertices are
called the cusp boundaries (or disc cusp) of △. The boundaries of M3\Γ can also separated into two types:

• geodesic boundaries – boundaries created by removing open balls around nodes of Γ, which are holed spheres,
and

• cusp boundaries or annulus cusp – boundaries created by removing the tubular neighbourhood of links of Γ,
which are annuli.

An ideal triangulation decomposes M3\Γ into a set of ideal tetrahedra such that the geodesic boundaries are tri-
angulated by the geodesic boundaries of △’s while the annulus cusps are triangulated by the disc cusps of △’s. An
example of the ideal triangulation of a four-valent-node-complement of S3 is illustrated in fig.3. It is part of the ideal
triangulation of S3\Γ5.

The triangulation of S3\Γ5 can be decomposed into 5 ideal octahedra (see fig.4), then each ideal octahedron can
be further decomposed into 4 ideal tetrahedra by adding an internal edge (see fig.2b). As a result, the triangulation
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z
′′

z z
′

z
′

z

z
′′

(a)

x
′
y
′′

w
′
x
′′

z
′
w

′′

y
′
z
′′

x

y

x
′′
y
′

w

w
′′
x
′

z

z
′′
w

′

y
′′
z
′

xyzw

(b)

FIG. 2: (a) An ideal tetrahedron whose edges are dressed with edge coordinates (z, z′, z′′). Each pair of
opposite edges are dressed with the same coordinate. The disc cusps are filled in gray. (b) An ideal octahedron.
Choose the equator to be edges dressed with x, y, z, w. Adding an internal edge (in red) orthogonal to the
equator separates the ideal octahedron into four ideal tetrahedra, each of which is dressed with different copies
of coordinates (x, x′, x′′) , (y, y′, y′′) , (z, z′, z′′) , (w,w′, w′′). For edges shared by different ideal tetrahedra,

coordinates are multiplied together.

contains 20 ideal tetrahedra in total. (One should not confuse the ideal tetrahedra from triangulating S3\Γ5 with
the tetrahedra from triangulating S3 as the boundary of the 4-simplex.) The boundary ∂(S3\Γ5) of S3\Γ5 is made
of five 4-holed spheres {Sa}5a=1 and 10 annuli {(ab)|a < b, a, b = 1, · · · , 5} connecting these holes. The triangulation
of S3\Γ5 induces the ideal triangulation on its boundary ∂(S3\Γ5). The ideal triangulation of a 4-holed sphere Sa

contains four triangles located at the holes and four hexagons as illustrated in fig.3b. On the other hand, an annulus
is triangulated into the boundary of a triangular prism whose two triangles are identified with the cusp discs the
annulus connects and the four parallelograms are either split into two triangles or four triangles depending on the
choice of equator of each ideal octahedron. Combinatorially, ∂(S3\Γ5) is triangulated into 20 hexagonal geodesic
boundaries and 30 quadrangular cusp boundaries.

The purpose of such ideal triangulation is to construct the partition function ZS3\Γ5
with the building blocks given

by the SL(2,C) Chern-Simons partition function for an ideal tetrahedron △, which has been well studied in the
literature (see e.g. [19, 21, 24]) and we review in the coming subsection.

1. Step 1: Ideal tetrahedron partition function

As is well-known, the phase space of CS theory with gauge group G on a 3-manifold M3 is the moduli space of
flat connection valued in the Lie algebra g of G on the boundary ∂M3 of M3 which is an oriented surface, denoted
as Mflat(∂M3, G). It is defined as

Mflat(∂M3, G) := {g-valued connection A on ∂M3 | dA+A ∧A = 0}/G , (37)

1 An ideal tetrahedron can be lifted to the hyperbolic 3-plane H3 with all the vertices located at infinity and all faces along geodesic
surfaces of H3, on which one can describe hyperbolic geometry. See more details in e.g. [24]. We will, however, not use this picture in
our construction.
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•
va

(a)

•

va

(b)

FIG. 3: (a) Illustration of part of the S3\Γ5. A four-valent node va ∈ Γ5 and its neighbourhood is removed
from S3 and generates a part of the boundary as a 4-holed sphere Sa whose holes are connected to annuli.
(b) The ideal triangulation of (a). Vertices created by edges of the graph piercing through the sphere are
truncated into triangles. Each such triangle is connected to the boundary of a triangular prism which is the
ideal triangulation of an annulus in (a). (The triangulation of the parallelograms in triangular prisms is not
shown for a clear visual effect.) In the full triangulation of S3\Γ5, each triangular prism is connected to a pair

of truncated vertices from two different triangulated 4-holed spheres.

where the quotient is by the conjugate action of G. For ∂M3, it is isomorphic to the homomorphism from the
fundamental group of ∂M3 to group G up to conjugate action, i.e.

Mflat(∂M3, G) = Hom(π1(∂M3), G)/G . (38)

We will take it as the definition of Mflat(∂M3, G) in this note. It is a symplectic space endowed with an Atiayh-
Bott-Goldmann symplectic structure ΩCS =

∫
∂M3

Tr (δA ∧ δA) (up to constant) for the holomorphic connection with
δ denoting the variation on field. Indeed, Mflat(M3, G) is a subspace of Mflat(∂M3, G). More importantly, it is a
Lagrangian submanifold of the latter. This means we can first construct functions on the phase space Mflat(∂M3, G),
which is a more natural starting point for quantization, and then restrict to its subspace Mflat(M3, G). This is the
strategy we take in constructing this spinfoam model. In particular, we consider G = PSL(2,C) = SL(2,C)/Z2 and
M3 being an ideal tetrahedron △. (We will later lift the gauge group to SL(2,C) in the quantization step.) To get a
non-trivial moduli space for △, we add, on top of that, an extra structure – a framing flag – to each cusp boundary of
△2. A framing flag s is a flat section in an associated CP1 bundle over the cusp boundary. It can be viewed as a C2

vector field on a cusp boundary, defined up to a complex scaling by the flatness equation ds = As. In other words,
the vector s(p) at a point p of the cusp boundary is the eigenvector of the holonomy around the cusp boundary based
at p. A flat connection with a choice of framing flags on cusp boundaries is called a framed flat connection.

The phase space of PSL(2,C) Chern-Simons theory on the boundary ∂△ of an ideal tetrahedron △ is the moduli
space of framed flat PSL(2,C) connection on ∂△, which we denote as P∂△. It can be spanned by the so-called
Fock-Goncharov (FG) coordinates dressing the edges of the geodesic boundary of ∂△, which we now describe [26].
Consider the ideal triangulation of a 4-holed sphere as shown in fig.3b. Label the holes with number 1,2,3,4. Each hole
i is triangulated into a disc cusp and is associated with a framing flag. Each edge E can be viewed as the diagonal of
a quadrilateral as in fig.5. Parallel transport the framing flag from hole i to a common point inside the quadrilateral
and denote the parallel transported framing flag as si. Referring to the relative locations of the holes and edge E, the
FG coordinate xE associated to E is defined by the cross-ratio of framing flags as

xE =
⟨s1 ∧ s2⟩⟨s3 ∧ s4⟩
⟨s1 ∧ s3⟩⟨s2 ∧ s4⟩

, where ⟨si ∧ sj⟩ := s0i s
1
j − s1i s

0
j , with si =

(
s0i , s

1
i

)⊤
. (39)

2 The introduction of a framing flag is related to avoiding singularity when the Kähler mass parameters associated to the cusp boundaries
are zero. See e.g. [21] for a more detailed discussion.
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FIG. 4: The decomposition of the ideal triangulation of M3 ≡ S3\Γ5 into 5 ideal octahedra (in red), each
of which can be decomposed into 4 ideal tetrahedra. The cusp boundaries of the ideal octahedra are shrunk
to vertices in this figure. (See fig.2b) for the ideal octahedron with un-shrunk cusp boundaries.) Numbers
1̄, 2̄, 3̄, 4̄, 5̄ with bars denote the 4-holed spheres on ∂M3. The faces a, b, c, d, e, f, g, h, i, j (labelled in green
and each is on a boundary triangle of the tetrahedron in gray) are the faces where a pair of octahedra are
glued. Two ideal octahedra are glued through pairs of faces having the same label (with different subscripts).
In each ideal octahedron, x, y, z, w (labelled in red) are chosen to form the equator of the octahedron. The

same figure appears in [11, 25].

It is apparent that such a definition is invariant under the complex rescaling of any framing flag and SL(2,C) gauge
transformation of all si’s as the inner product ⟨·, ·⟩ is SL(2,C) invariant. The definition (39) can be extended to define
the FG coordinates on an n-holed (n > 4) sphere.

The PSL(2,C) holonomies on ∂△ can be written as 2× 2 matrices whose matrix elements are in terms of the edge
coordinates dressing the edges they cross. This is called the “snake rule”. There are three rules for transporting
a snake – an arrow pointing from one vertex of the triangle to another with a fin facing inside the triangle, each
corresponds to a matrix as follows. (The inverse transportation of each type corresponds to the inverse of the relevant
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s2 s4

s3s1

xE

FIG. 5: A quadrilateral in a 2D ideal triangulation to define FG coordinate xE in terms of the framing flags
{si}i=1,··· ,4 by (39).

matrix.

(

1 0

1 1

)

type I:
(

0 1

−1 0

)

type II:
(

1 0

0 −xE

)

xE xE

type III:

. (40)

Type I and II correspond to transporting a snake within a triangle and III correspond to moving a snake from one
triangle to its adjacent triangle. Any holonomy of a closed loop can be calculated by multiplying the transportation
matrices from the left corresponding to moving a snake along the holonomy.

For a holonomy along a disc cusp with eigenvalue λ ≡ eL, we use Type I and Type III snake rules to calculate that

h =
∏

E around disc cusp

[(
1 0
0 −xE

)(
1 0
1 1

)]
∈ PGL(2,C) . (41)

Its normalization defines a PSL(2,C) holonomy whose eigenvalue gives∏
E around disc cusp

(−xE) = λ2 ⇐⇒
∑

E around disc cusp
(χE − iπ) = 2L , (42)

where χE is the logarithmic of xE with a chosen branch. One immediately realizes that the edge coordinates are not
sensitive to the sign of the eigenvalue λ. This reflects the fact that the gauge group the FG coordinates describe is
PSL(2,C) rather than SL(2,C). One can easily choose a lift

√
−xE or −

√
−xE of the edge coordinates, in which case

the gauge group is lifted to SL(2,C). When the eigenvalues are all fixed for holonomies around the four disc cusps of
∂△, the moduli space of flat connection on ∂△ is a symplectic space with the Poisson structure given by

{χE , χE′} = ϵEE′ , (43)

where ϵEE′ = 0,±1 counts the oriented triangles shared by E,E′ and ϵEE′ = 1 if E′ occurs to the left of E in the
triangle3.

The FG coordinates on ∂△ are obtained from those for a 4-holed sphere by setting the eigenvalue λ = 1 for
holonomy around any of the disc cusp. Consequently, P∂△ is given by three FG coordinates {z, z′, z′′} ∈ C∗ each
labelling a pair of opposite edges of △ as shown in fig.2a and it is defined as

P∂△ = {z, z′, z′′ ∈ C∗|zz′z′′ = −1} ∈ (C∗)2 . (44)

The corresponding holonomy calculated by the snake rule is

h =

(
1 0
0 −z′

)(
1 0
1 1

)(
1 0
0 −z′′

)(
1 0
1 1

)(
1 0
0 −z

)(
1 0
1 1

)
≡
(

1 0
zz′(z−1 + z′′ − 1) −zz′z′′

)
, (45)

3 For degenerate triangles, ϵEE′ could be ±2, which we do not encounter here.
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is a PSL(2,C) element as λ = 1 hence det(h) = 1. The constraint zz′z′′ = −1 eliminates one edge coordinate, say z′,
then the holomorphic part of the Atiyah-Bott-Goldman symplectic form can be written as

Ω =
dz′′

z′′
∧ dz

z
. (46)

Taking the anti-holomorphic coordinates into account, the symplectic form for the Chern-Simons action (26) is:

ωk,s =
t

4π
Ω+

t̄

4π
Ω . (47)

Lift these coordinates to their logarithmic correspondence, Z := log(z), Z ′ := log(z′), Z ′′ := log(z′′) and similarly for
the anti-holomorphic counterparts, the constraint of the edge coordinates and the Poisson structure induced by (47)
are

Z + Z ′ + Z ′′ = iπ = Z + Z
′
+ Z

′′
, {Z,Z ′′}Ω = 1 = {Z,Z ′′}Ω . (48)

Therefore, (Z,Z ′′) and (Z,Z
′′
) form two canonical pairs. The quantization is based on another equivalent canonical

pairs (µ, ν) ∈ R2 and (m,n) ∈ (Z/kZ)2 defined as

Z =
2πi

k
(−ibµ−m) , Z ′′ =

2πi

k
(−ibν − n) , Z =

2πi

k

(
−ib−1µ+m

)
, Z

′′
=

2πi

k

(
−ib−1ν + n

)
, (49)

where b is a phase parameter related to the Barbero-Immirzi parameter:

b2 =
1− iγ

1 + iγ
, Re(b) > 0 , Im(b) ̸= 0 , |b| = 1 ⇒ t =

2k

1 + b2
, t̄ =

2k

1 + b−2
. (50)

Conversely, one can express Z,Z ′′, Z, Z
′′ in terms of (µ, ν,m, n) as

µ =
k

2πQ

(
Z + Z

)
, m =

ik

2πbQ

(
Z − b2Z

)
, ν =

k

2πQ

(
Z ′′ + Z

′′)
, n =

ik

2πbQ

(
Z ′′ − b2Z

′′)
, Q = b+ b−1 .

(51)
The symplectic form in terms of the new variables and the Poisson brackets it generates are

ωk,s =
2π

k
(dν ∧ dµ− dn ∧ dm) , {µ, ν}ω = {n,m}ω =

k

2π
, {µ, n}ω = {ν,m}ω = 0 . (52)

To promote to the quantum theory, we introduce quantum parameters

q = exp

(
4πi

t

)
= exp

[
2πi

k
(1 + b2)

]
≡ eh , q̃ = exp

(
4πi

t̄

)
= exp

[
2πi

k
(1 + b−2)

]
≡ eh̃ . (53)

Here, h := 4πi/t (or equivalently h̃ := 4πi/t̄) is a (non-standard) complex quantum parameter related to the Chern-
Simons level. It is called a quantum parameter because it is proportional to the Planck constant ℏ with a complex
coefficient (taking convention G = c = 1):

h =
8πi|Λ|γ
3(1 + iγ)

ℏ . (54)

Indeed, the limit h → 0 corresponds to the classical limit. A Poisson bracket {x, y}ω is quantized to a commutator
by [x̂, ŷ] := {̂x, y}ω/i. We allow the analytic continuation of µ, ν to be in C by adding imaginary parts, and define
Z,Z ′′, Z̃ and Z̃ ′′ in the same way as in (51) with these complex variables. Then Z̃ (resp. Z̃ ′′) is not necessarily
the complex conjugate of Z (resp. Z ′′). The exponential of Z̃ and Z̃ ′′ are denoted as z̃ and z̃′′ respectively. The
quantization of P∂△ promotes µ,m (resp. Z, Z̃) to be multiplication operators µ,m (resp. Z, Z̃) and ν, n (resp.
Z ′′, Z̃ ′′) to be derivative operators ν,n (resp. Z′′, Z̃′′) with the commutators

[Z′′,Z] = h , [Z̃′′, Z̃] = h̃ ⇐⇒ [µ,ν] = [n,m] =
k

2πi
, [µ,n] = [ν,m] = 0 . (55)
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Upon quantization, we require the imaginary parts of µ and ν remain to be c-numbers. Projecting the commutators
to the exponential operators z, z′′, z̃, z̃′′, one finds q-Weyl and q̃-Weyl algebras

z′′z = qzz′′ , z̃′′z̃ = q̃z̃z̃′′ , z̃′′z = zz̃′′ , z′′z̃ = z̃z′′ . (56)

Due to the discreteness and periodicity of m,n, the spectra of m,n are discrete and bounded to be Z/kZ. On the
other hand, the spectra of µ,ν are real. The kinematical Hilbert space is hence

Hkin
k,s = L2(R)⊗C Ck , (57)

where Ck is a k-dimensional vector space. The quantum operators µ,ν,m,n act on a wave function f(µ|m) ∈ Hkin
k,s

as

µf(µ|m) = µf(µ|m) , νf(µ|m) = − k

2πi
∂µf(µ|m) , e

2πi
k mf(µ|m) = e

2πi
k mf(µ|m) , e

2πi
k nf(µ|m) = f(µ|m+ 1) .

(58)
or a re-parameterized version

zf(z, z̃) = zf(z, z̃) , z′′f(z, z̃) = f(qz, z̃) , z̃f(z, z̃) = zf(z, z̃) , z̃′′f(z, z̃) = f(z, q̃z̃) . (59)

Another equivalent way to write it is

zf(µ|m) = zf(µ|m) , z̃f(µ,m) = z̃f(µ|m) , z′′f(µ|m) = f(µ+ib|m−1) , z̃′′f(µ|m) = f
(
µ+ ib−1|m+ 1

)
. (60)

(z, z′′) are holomorphic coordinates on P∂△. The moduli space of flat PSL(2,C) connection on an ideal tetrahedron,
denoted as L△, is a holomorphic Lagrange submanifold of P∂△ determined by further requiring the holonomy h defined
in (45) to be trivial. In other words, L△ is an algebraic curve given by

L△ = {(z, z′′; z̃, z̃′′) ∈ P∂△ | z−1 + z′′ − 1 = 0, z̃−1 + z̃′′ − 1 = 0} . (61)

Quantization promotes the algebraic curve to the quantum constraints whose solution Ψ△(µ|m) satisfying

(z−1 + z′′ − 1)Ψ△ = (z̃−1 + z̃′′ − 1)Ψ△(µ|m) = 0 (62)

defines the Chern-Simons partition function. Ψ△(µ|m) is the quantum dilogarithm function [22, 27–29] 4:

Ψ△(µ|m) =

∞∏
j=0

1− q̃j+1z̃−1

1− q−jz−1
. (63)

The name “quantum dilogarithm” comes from the fact that its classical limit at q, q̃ → 1 reproduce the dilogarithm
function Li2(z) defined as

Li2(z) := −
∫ z

0

ln(1− u)

u
du =

∞∑
k=1

zk

k2
, z ∈ C , (64)

which is the generalization of the logarithm function whose Taylor expansion around 1 gives

− ln(1− x) =

∞∑
k=1

xk

k
. (65)

For each m ∈ Z/kZ, Ψ△(µ|m) defines a meromorphic function of µ and is analytic. Ψ△ has poles on the real line and
in the lower half-plane Im(µ) ≤ 0 but is holomorphic in the upper half-plane Im(µ) > 0. More precisely, its zeros and
poles are at

µzero/pole = {ibu+ ib−1v | u, v ∈ Z , u− v = −m+ kZ} with
{

zeros: u, v ≥ 1

poles: u, v ≤ 0
. (66)

4 The result (63) is due to the choice of k ∈ Z+ hence γ > 0 and |q| > 1. For k ∈ Z− and hence |q| < 1, the expression of the quantum

dilogarithm function is Ψ△(µ|m) =
∞∏
j=0

1−qj+1z−1

1−q̃−j z̃−1 .
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FIG. 6: Distributions of poles (in red) of Ψ△(µ|m).

The poles are illustrated in fig.6.
An important aspect of Ψ△(µ|m) is its asymptotic behaviour at Re(µ) → ±∞. Fixing Im(µ), Ψ△(µ|m) asymptot-

ically behaves as

Ψ∆(µ|m) =

{
O(1) , Re(µ) → +∞
exp

[
iπ
k

(
µ− i

2Q
)2

+O(1)
]
, Re(µ) → −∞

, (67)

where Q = b+ b−1 > 0. This follows from the integration expression of the quantum dilogarithm function equivalent
to (63) (see e.g. [22]). Indeed, Ψ∆(µ|m) diverges when Re(µ) → −∞ so it is not a squared integrable state in the
“naïve” Hilbert space Hkin

k,s defined in (57). However, we can find a functional space where Ψ∆(µ|m) can be naturally
valued and which renders all integrals well-defined.

Consider a 2N -dimensional symplectic space (P, ω) with Darboux coordinates (µi,mi)i=1,··· ,N and (νi, ni)i=1,··· ,N
with symplectic structure

ω =
2π

k

N∑
i=1

(dνi ∧ dµi − dni ∧mi) . (68)

This symplectic space is naturally endowed with an “angle space” (Pan, ωan) ≃ T∗RN ≃ R2N which is a symplectic
space with Darboux coordinate and the symplectic form ωan

αi := Im(µi) , βi := Im(νi) , ωan =

N∑
i=1

dβi ∧ dαi . (69)

Denote vectors α⃗ = (α1, · · · , αN )⊤ and β⃗ = (β1, · · · , βN )⊤. R2N can be thought of the universal covering of the angle
space. We define a 2N -dimensional open convex symplectic polytope (or simply polytope) P to be an open subset
of (R2N , ωan) cut out of a set of strict linear inequalities, and π(P) to be its projection on the base of T∗RN with
coordinates α⃗. Also define strip(P) ⊂ CN to be

strip(P) :=
{
µ⃗ ∈ CN | Im(µ⃗) ∈ π(P)

}
. (70)

Then we can define the functional space

FP := { holomorphic functions f : strip(P) → C s.t. ∀(α⃗, β⃗) ∈ P, the function e−
2π
k µ⃗·β⃗f(µ⃗+ iα⃗) ∈ S

(
RN
)
} , (71)

where S(RN ) denotes the Schwarz class in RN . This means e− 2π
k µ⃗·β⃗f(µ⃗ + iα⃗) decays exponentially when |µ| → ∞.

Recall the quantization of µ⃗, ν⃗ to operator as in (58), FP contains exactly the holomorphic functions f such that

e
2π
k (α⃗·ν⃗−β⃗·µ⃗)f(µ⃗) ∈ S

(
RN
)
, ∀ (α⃗, β⃗) ∈ P . (72)

as e 2π
k (α⃗·ν⃗−β⃗·µ⃗)f(µ⃗) = e

2π
k (−β⃗·µ⃗)e

2π
k (α⃗·ν⃗)e(

2π
k )

2N
α⃗·β⃗( k

2πi )
N

f(µ⃗) = e(−
2πi
k )

N
α⃗·β⃗e

2π
k (−β⃗·µ⃗)f (µ⃗+ iα⃗). In this form, it

is easy to see that the Fourier transform of a Schwarz function is also a Schwarz function. In other words, the
action of the operator e 2π

k (α⃗·ν⃗−β⃗·µ⃗) simultaneously bounds the the decay of a holomorphic function f and its Fourier
transformation. We say that (α⃗, β⃗) ∈ P is a positive angle structure of f .
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To be explicit, consider the case for Ψ△. As mentioned above, Ψ△(µ|m) is holomorphic when Im(µ) > 0, so we
first take α > 0. Then (the absolute value of) the function e−

2π
k βµΨ△(µ+ iα|m) with µ ∈ R has limits

|e− 2π
k βµΨ△(µ+ iα|m)| →

{
exp

[
− 2π

k βµ
]
, µ→ +∞

exp
[
− 2π

k µ(α+ β −Q/2)
]
, µ→ −∞

, (73)

which can be directly derived from the asymptotic behaviour (67). Therefore, e− 2π
k βµΨ△(µ + iα|m) is a Schwartz

function when (α, β) ∈ P△ satisfy the positive angle structure of Ψ△, or of △ for short, defined as

P△ = {(α, β) ∈ R2|α, β > 0, α+ β < Q/2} . (74)

Recall that Q = b+ b−1 = 2Re(b) > 0, P△ is an open triangle. Let α = Im(µ), β = Im(ν), then
∫
C dµ e

− 2πi
k νµΨ(µ|m)

is absolutely convergent when the integration contour C is shift above the real axis while remains in P△.

2. Step 2: Ideal octahedron partition function

Now that we have the Chern-Simons partition function Ψ△ on an ideal tetrahedron as the building block, the next
step is to construct the partition function on an ideal octahedron. Each ideal octahedron can be decomposed into 4
ideal tetrahedra by adding an internal edge (see fig.2b). We then have 4 copies of edge coordinates {x, y, z, w} (or
considering the logarithmic coordinates {X,Y, Z,W}) subject to the constraint

c = xyzw = 1
c̃ = x̃ỹz̃w̃ = 1

⇐⇒
C = X + Y + Z +W = 2πi

C̃ = X̃ + Ỹ + Z̃ + W̃ = 2πi
⇐⇒ µX + µY + µZ + µW = 0

mX +mY +mZ +mW = 0
. (75)

Here, we have chosen a branch for C and C̃. We define a set of symplectic coordinates (X,PX), (Y, PY ), (Z,PZ), (C,Γ)
where

PX = X ′′ −W ′′ , PY = Y ′′ −W ′′ , PZ = Z ′′ −W ′′ , Γ =W ′′ , (76)

and similarly for the tilde sectors. It is indeed a U -type symplectic transformation with a symplectic matrix

(
U 0

0
(
U⊤)−1

)
, with U =

 1 0 0 0
0 1 0 0
0 0 1 0
1 1 1 1

 . (77)
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Interlude: Symplectic matrices and generators A symplectic matrix is an 2N × 2N matrix M with real entries
that satisfies

M⊤ΩM = Ω , Ω =

(
0 IN

−IN 0

)
. (78)

They are representations of the symplectic group Sp(2N,R), which is the group of symplectic transformations. The
generators of Sp(2N,R) are given by Ω and the set of matrices in the following form

D(U) =

{(
U 0

0
(
U⊤)−1

)
: U ∈ GL(N;R)

}
, T(B) =

{(
IN 0
B IN

)
: B ∈ Sym(N;R)

}
, (79)

where Sym(N ;R) is the set of N×N symmetric matrices. This means any symplectic matrix M can be written as the
multiplication of elements in D(U), T(B) and some power of Ω. The symplectic transformations corresponding to
D(U) can be understood as “rotations” in the position space and momentum space separately, and we call them the U -
type transformations. The symplectic transformations corresponding to T(B) are denoted as T -type transformations
as they represent the translations of the momentum space. Ω represents an exchange of position and momentum and
is an involution. We denote such type of symplectic transformation as the S-type transformation.
Let a symplectic matrix M be given by a 2N × 2N block matrix(

A B
C D

)
(80)

with B being invertible, then M can be decomposed as follows(
A B
C D

)
=

(
I 0

DB I

)(
0 I
−I 0

)(
I 0

ABT I

)( (
B−1

)T
0

0 B

)
. (81)

Performing the symplectic reduction of the four copies of phase space P∂△ associated to the four ideal tetrahedra by
imposing the constraint C = 2πi as well as quotient out the gauge orbit variable Γ, we obtain the phase space P∂oct

of the boundary of the ideal octahedron with the following symplectic form and Poisson structure.

ωoct
k,s =

2π

k

∑
i

(dνi ∧ dµi − dni ∧ dmi) ,

∣∣∣∣∣ {µi, νj}ω = {ni,mj}ω = k
2π δij

{µi, nj}ω = {νi,mj}ω = 0
, i, j = X,Y, Z . (82)

Quantization of the constraint C and C̃ adds a quantum correction as

c = 1 → ĉ = q ⇐⇒ C = 2πi → Ĉ = 2πi+ h ,

c̃ = 1 → ˆ̃c = q̃ ⇐⇒ C̃ = 2πi → ˆ̃
C = 2πi+ h̃ .

(83)

Here, the addition of h or h̃ is necessary for the partition function to be invariant under 3D Pachner moves of ideal
triangulation [19], which we want so that the amplitude so-constructed can have some ideal triangulation independence.

In terms of {µi,mi}i=X,Y,Z,W which are the quantization of {µi,mi}i=X,Y,Z,W , the quantum constraints read
µX + µY + µZ + µW = iQ , mX +mY +mZ +mW = 0 . (84)

Each octahedron partition function can hence be written in terms of the position variables (x, y, z; x̃, ỹ, z̃) ≡
exp[(X,Y, Z; X̃, Ỹ , Z̃)] as
Zoct(µX , µY , µZ |mX ,mY ,mZ) = Ψ∆(µX |mX)Ψ∆(µY |mY )Ψ∆(µZ |mZ)Ψ∆(iQ−µX−µY −µZ |−mX−mY −mZ) (85)

where we have imposed the constraint (84) to eliminate the variables µW and mW . Equivalently, one can write

Zoct(x, y, z; x̃, ỹ, z̃) =

∞∏
i,j,k,l=0

1− qi+1x−1

1− q̃−ix̃−1

1− qj+1y−1

1− q̃−j ỹ−1

1− qk+1z−1

1− q̃−kz̃−1

1− qlxyz

1− q̃−l−1x̃ỹz̃
. (86)

Let us also study its asymptotic behaviour. Denote β⃗ · µ⃗ ≡ βXµX+βY µY +βZµZ . Then e− 2π
k β⃗·µ⃗Zoct({µi+iαi}|{mi})

has the following asymptotic behavior

|e− 2π
k β⃗·µ⃗Zoct({µi + iαi}|{mi})| ∼

{
e−

2π
k µi(αX+αY +αZ+βi−Q/2) , µi → +∞

e−
2π
k µi(αi+βi−Q/2) , µi → −∞

, ∀i = X,Y, Z . (87)
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It is obtained by using both limits in (73) as Ψ△(µ|mi) and Ψ∆(iQ − µX − µY − µZ | − mX − mY − mZ) always
approach the opposite limits. This function is a Schwartz function of µX , µY and µZ if (αX , αY , αZ , βX , βY , βZ) ∈ R6

is inside the open polytope P(oct) defined by the following inequalities

αi > 0 , αX + αY + αZ < Q , αi + βi < Q/2 , αX + αY + αZ + βi > Q/2 , ∀i = X,Y, Z . (88)

(α⃗, β⃗) ∈ P(oct) is the positive angle of an ideal octahedron. We need to make sure that P(oct) is non-empty, otherwise
the boundedness of e− 2π

k β⃗·µ⃗Zoct({µi + iαi}|{mi}) is not guaranteed. We can check this by taking special values for
αi, βi. Let αX = αY = αZ = α and βX = βY = βZ = β, then (88) is simplified to

0 < α < Q/3 , α+ β < Q/2 , 3α+ β > Q/2 , (89)

which is indeed non-empty as illustrated in fig.7. We then conclude that Zoct ∈ F (k)
P(oct).

FIG. 7: Positive angle of an ideal octahedron when αX = αY = αZ = α and βX = βY = βZ = β.

3. Step 3: phase space coordinates of P∂(S3\Γ5)
and partition function on S3\Γ5

As shown in fig.4, the triangulation of S3\Γ5 contains 5 ideal octahedra with all edges on the boundary ∂(S3\Γ5).
Therefore, the Chern-Simons phase space P∂(S3\Γ5) is simply the 5 copies of P∂oct with no more constraints to be
imposed. Label the octahedra as Oct(i), i = 1, · · · , 5 (see fig.4). The phase space P∂(S3\Γ5) has 15 position coordinates
Φ⃗ = (Xi, Yi, Zi)i=1,··· ,5 and 15 momentum coordinates Π⃗ = (PXi , PYi , PZi)i=1,··· ,5 where each triple (PXi , PYi , PZi)
is defined in the same way as (76). Then the partition function on S3\Γ5 is nothing but the product of 5 Zoct’s as
defined in (86). We write

Z×(µ⃗|m⃗) :=

5∏
a=1

Zoct(xa, ya, za; x̃a, ỹa, z̃a) , (90)

where µ1,2,3,··· and m1,2,3,··· are parameters of x1, y1, z1, · · · respectively. Indeed, Z× ∈ F (k)
P(oct)×5 .

On the other hand, the geodesic boundaries of S3\Γ5 (recall the definition at the beginning of this section) are
five 4-holed spheres and the cusp boundaries are 10 annuli. The ideal triangulation of a 4-holed sphere Sa contains
6 edges on the geodesic boundaries, each shared by two edges from two different ideal octahedra, so the correspond-
ing logarithmic edge coordinate, denoted as χ(a)

ij when it is shared by Oct(i) and Oct(j), is the sum of two edge
coordinates on ideal octahedra, which is, in turn, the sum of edge coordinates on ideal tetrahdera (from the set
{Xi, Yi, Zi,Wi, X

′
i, Y

′
i , Z

′
i,W

′
i , X

′′
i , Y

′′
i , Z

′′
i ,W

′′
i }i=1,··· ,5). χ

(a)
ij is called a (logarithmic) Fock-Goncharov (FG) coordi-

nate on Sa [26]. The precise relations are shown in Table II. Apparently, each χ
(a)
ij is also a linear combination of

elements in Φ⃗ and Π⃗.
These 30 FG coordinates are not mutually independent but are subject to 10 constraints. This is because every

two 4-holed spheres, say Sa and Sb, are connected to an annulus cusp through one hole, say hole p, of Sa and
another hole, say hole q, of Sb hence the eigenvalue λ2ab ≡ e2Lab of the holonomy around hole p is the same as the
inverse of the eigenvalue λ−2

ba ≡ e−2Lba of the holonomy around hole q. (They are related by an inverse because the
holonomies around holes p and q are oriented oppositely relative to the annulus.) The variable 2Lab is called the
complex (logarithmic) Fenchel-Nielsen (FN) length. Recall the result (42) from the snake rule, 2Lab is the sum of
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S1: χ
(1)
23 = Z2 + Z3 χ

(1)
34 = Y ′′

3 + Z′
3 + Z′′

4 +W ′
4 χ

(1)
24 = Z′′

2 +W ′
2 + Z4

χ
(1)
35 = Z′′

3 +W ′
3 + Y ′′

5 + Z′
5 χ

(1)
25 = Y ′′

2 + Z′
2 + Z5 χ

(1)
45 = Y ′′

4 + Z′
4 + Z′′

5 +W ′
5

S2: χ
(2)
13 = X ′′

1 + Y ′
1 +X3 χ

(2)
34 = X ′′

3 + Y ′
3 +W ′′

4 +X ′
4 χ

(2)
14 = X1 +X4

χ
(2)
35 = W ′′

3 +X ′
3 +X ′′

5 + Y ′
5 χ

(2)
15 = W ′′

1 +X ′
1 +X5 χ

(2)
45 = X ′′

4 + Y ′
4 +W ′′

5 +X ′
5

S3: χ
(3)
12 = Z′

1 +W ′′
1 +X2 χ

(3)
24 = W ′′

2 +X ′
2 + Y ′

4 + Z′′
4 χ

(3)
14 = W ′

1 +X ′′
1 +X ′

4 + Y ′′
4

χ
(3)
25 = X ′′

2 + Y ′
2 + Z′

5 +W ′′
5 χ

(3)
15 = W1 +W ′

5 +X ′′
5 χ

(3)
45 = Y4 +W5

S4: χ
(4)
12 = Z1 +X ′

2 + Y ′′
2 χ

(4)
23 = Y ′

2 + Z′′
2 + Z3 +W ′′

3 χ
(4)
13 = Y ′′

1 + Z′
1 +W ′

3 +X ′′
3

χ
(4)
25 = Y2 + Y ′

5 + Z′′
5 χ

(4)
15 = Z′′

1 +W ′
1 +X ′

5 + Y ′′
5 χ

(4)
35 = W3 + Y5

S5: χ
(5)
12 = Y ′

1 + Z′′
1 +W ′

2 +X ′′
2 χ

(5)
23 = Z′

2 +W ′′
2 + Y ′

3 + Z′′
3 χ

(5)
13 = Y1 +X ′

3 + Y ′′
3

χ
(5)
24 = W2 + Z′

4 +W ′′
4 χ

(5)
14 = X ′

1 + Y ′′
1 +W ′

4 +X ′′
4 χ

(5)
34 = Y3 +W4

TABLE II: FG coordinates χ(a)
ij of 4-holed spheres in terms of the edge coordinates in {Oct(i)}.

three coordinates χ(a)
ij − iπ’s with dressing the three edges connecting to hole p. Similarly for 2Lba. The precise

relations are given as follows.

S1 : 2L12 = χ
(1)
34 + χ

(1)
35 + χ

(1)
45 − 3iπ , 2L13 = χ

(1)
24 + χ

(1)
25 + χ

(1)
45 − 3iπ , (91a)

2L14 = χ
(1)
23 + χ

(1)
25 + χ

(1)
35 − 3iπ , 2L15 = χ

(1)
23 + χ

(1)
24 + χ

(1)
34 − 3iπ , (91b)

S2 : 2L21 = χ
(2)
34 + χ

(2)
35 + χ

(2)
45 − 3iπ , 2L23 = χ

(2)
14 + χ

(2)
15 + χ

(2)
45 − 3iπ , (91c)

2L24 = χ
(2)
13 + χ

(2)
15 + χ

(2)
35 − 3iπ , 2L25 = χ

(2)
13 + χ

(2)
14 + χ

(2)
34 − 3iπ , (91d)

S3 : 2L31 = χ
(3)
24 + χ

(3)
25 + χ

(3)
45 − 3iπ , 2L32 = χ

(3)
14 + χ

(3)
15 + χ

(3)
45 − 3iπ , (91e)

2L34 = χ
(3)
12 + χ

(3)
15 + χ

(3)
25 − 3iπ , 2L35 = χ

(3)
12 + χ

(3)
14 + χ

(3)
24 − 3iπ , (91f)

S4 : 2L41 = χ
(4)
23 + χ

(4)
25 + χ

(4)
35 − 3iπ , 2L42 = χ

(4)
13 + χ

(4)
15 + χ

(4)
35 − 3iπ , (91g)

2L43 = χ
(4)
12 + χ

(4)
15 + χ

(4)
25 − 3iπ , 2L45 = χ

(4)
12 + χ

(4)
13 + χ

(4)
23 − 3iπ , (91h)

S5 : 2L51 = χ
(5)
23 + χ

(5)
24 + χ

(5)
34 − 3iπ , 2L52 = χ

(5)
13 + χ

(5)
14 + χ

(5)
34 − 3iπ , (91i)

2L53 = χ
(5)
12 + χ

(5)
14 + χ

(5)
24 − 3iπ , 2L54 = χ

(5)
12 + χ

(5)
13 + χ

(5)
23 − 3iπ . (91j)

It is easy to check, that Lab commute with all the χ(a)
ij ’s and that, using the relations in Table II, the 10 following

constraints are admitted:

Lab = −Lba , ∀ (ab) . (92)

Therefore, one can understand 2Lab(a < b) as a coordinate dressing the annulus cusp (ab). We can choose the 10 FN
lengths {2Lab}a<b to be part of the position variables of the 30-dimensional phase space P∂(S3\Γ5). The remaining 5
position variables Xa(a = 1, · · · , 5) are FG coordinates each on one 4-holed sphere Sa on ∂(S3\Γ5). We choose these
variables as follows.

X1 = χ
(1)
25 , X2 = χ

(2)
15 , X3 = χ

(3)
15 , X4 = χ

(4)
15 , X5 = χ

(5)
14 . (93)

The conjugate variable of 2Lab, denoted as Tab, is called the (logarithmic) FN twist. We also denote the conjugate
variable of Xa as Ya. Then a new set of phase space variables equivalent to (Φ⃗, Π⃗) is

Q⃗ =
(
{2Lab}a<b, {Xa}5a=1

)
, P⃗ =

(
{Tab}a<b, {Ya}5a=1

)
, (94)

which satisfies the Poisson brackets

{QI ,PJ} = δIJ , ∀ I, J = 1, · · · , 15 . (95)
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Here, the order of the annuli (ab)’s is fixed to be {(12), (13), (14), (15), (23), (24), (25), (34), (35), (45)}. We will see
later that it is easier to impose the quantum simplicity constraints on the new set of coordinates (94) rather than
(Φ⃗, Π⃗), which urges us to express the partition function in terms of (Q⃗). To do that, we first fix the expression for
P⃗. As the only requirement is (95), there are freedoms to choose the expression of P⃗ in terms of the old coordinates
(Φ⃗, Π⃗). For simplicity, we choose the symplectic transformation to be the following form.(

Q⃗
P⃗

)
=

(
A B

−(B⊤)−1 0

)(
Φ⃗

Π⃗

)
+

(
iπt⃗
0

)
, (96)

where A and B are 15× 15 matrices with integer entries and t⃗ is a vector with integer elements. We have taken the
advantage that B is invertible (while A is not). They are determined by (91) and (93) with the following explicit
expressions.

A =



0 0 0 0 0 0 0 −1 −1 0 −1 −1 0 −1 −1
0 0 0 0 −1 −1 0 0 0 0 −1 1 0 0 0
0 0 0 0 −1 1 0 0 0 0 0 0 0 −1 1
0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 2 1 1
0 1 1 0 0 0 2 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 1 1 2 1 1 0 0 0 0 −1 −1 0 0 0
0 −1 1 0 −1 −1 0 1 1 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 0 0 1
1 1 1 0 0 0 0 0 0 0 0 0 1 0 0
−1 −1 −1 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0 −1 0
0 −1 0 0 0 0 0 0 0 −1 0 0 0 0 0



, (97a)

B =



0 0 0 0 0 0 0 −1 0 0 −1 0 0 −1 0
0 0 0 0 −1 0 0 0 0 0 −1 1 0 0 −1
0 0 0 0 −1 1 0 0 −1 0 0 0 0 −1 1
0 0 0 0 0 −1 0 −1 1 0 0 −1 0 0 0
1 0 0 0 0 0 0 0 0 −1 1 0 1 0 0
0 1 0 0 0 0 1 0 0 0 0 0 −1 1 0
−1 1 0 0 0 0 −1 1 0 1 0 0 0 0 0
0 0 1 −1 1 0 0 0 0 0 0 0 −1 0 1
−1 0 1 1 0 0 0 0 0 1 0 −1 0 0 0
0 −1 1 1 0 −1 −1 0 1 0 0 0 0 0 0
0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 1 −1 0
1 −1 0 0 0 0 0 0 0 −1 0 0 0 0 0



, (97b)

t⃗ = (3, 1, 0, 0,−4,−3,−2,−1,−2, 0, 1,−1, 3, 2, 2)⊤ . (97c)

The fact that A,B and t⃗ have only integer entries means that the components of Q⃗ are all coordinates of
Mflat(∂(S

3\Γ5),PSL(2,C)). However, the matrix −
(
B⊤)−1 has half-integer entries. In particular, each Tab is a

linear combination of elements of Φ⃗ with half-integer coefficients. This means the FN twist τab := eTab is a lift
to a coordinate of Mflat(∂(S

3\Γ5),SL(2,C)). Combinatorially, we should view (Q⃗, P⃗) as a set of coordinates of
Mflat(∂(S

3\Γ5),SL(2,C)).
Thanks to our careful choice of {Xa} (93), each momenta Ya is also given by an FG coordinate on Sa up to a sign

and ±2πi:
Y1 = −χ(1)

23 , Y2 = −χ(2)
14 , Y3 = −χ(3)

45 − 2πi ,Y4 = χ
(4)
35 − 2πi , Y5 = −χ(5)

34 + 2πi . (98)
We also parametrize the new set of variables and their tilde sectors in terms of continuous and discrete parameters

as before, i.e.

Q⃗ =
2πi

k
(−bµ⃗− m⃗) , P⃗ =

2πi

k
(−bν⃗ − n⃗) ,

⃗̃Q =
2πi

k

(
−b1µ⃗+ m⃗

)
,

⃗̃P =
2πi

k

(
−b−1ν⃗ + n⃗

)
, (99)
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and the inverse relations are

µ⃗ =
k

2πQ

(
Q⃗+

⃗̃Q
)
, m⃗ =

ik

2πbQ

(
Q⃗ − b2

⃗̃Q
)
, ν⃗ =

k

2πQ

(
P⃗ +

⃗̃P
)
, n⃗ =

ik

2πbQ

(
P⃗ − b2

⃗̃P
)
. (100)

We will also use the notations µab,mab (resp. νab, nab) to denote the coordinates corresponding to 2Lab (resp. Tab)
and use µa,ma (resp. νa, na) to denote the coordinates corresponding to Xa (resp. Ya). The Atiyah-Bott-Goldman
symplectic form for the Chern-Simons phase space P∂(S3\Γ5) ≡ ⊗5

i=1P∂Oct(i) and the Poisson structure are

Ω =

15∑
I=1

PI ∧QI , {QI ,PJ}Ω = δIJ , {QI ,QJ}Ω = {PI ,PJ}Ω = 0 , I, J = 1, · · · , 15 . (101)

The new coordinate parameters (100) are quantized to operators µ⃗, m⃗, ν⃗ and n⃗ respectively (we also use
µab,mab,νab,nab as well as µa,ma,νa,na to denote the components).

The symplectic transformation on the phase space coordinates gives rise to a unitary transformation on the wave
function Z× (and the operators). To express the unitary transformation clearly, one separates the transformation
matrix into generator matrices of the symplectic transformations (recall (81)):(

A B
−(B⊤)−1 0

)
=

(
0 −I
I 0

)(
I 0

AB⊤ I

)(
−(B−1)⊤ 0

0 −B

)
. (102)

The three matrices on the right-hand side correspond to different types of unitary transformations, which we denote
as the S-type, T -type and U -type transformations respectively using the terminology in [11, 22]. The addition of iπt⃗
on Q⃗ as in (96) corresponds to the affine translation. In general, the unitary transformation of a wave function ψ and
an operator O given by a (time-independent) unitary operator U is defined as

ψ → ψ′ = U ▷ ψ , O → O′ = UOU† =⇒ O ▷ ψ → U ▷ (O′ ▷ ψ′) . (103)

importantly, we want the wave function after the unitary transformation to be in functional space (71) with a non-
empty positive angle structure so that the boundedness is not lost. Therefore, after each unitary transformation, we
will also need to keep track of the positive angle structure for the new variables.
1. U-type transformation:

The U -type transformation is controlled by the matrix

U =

(
−(B−1)⊤ 0

0 −B

)
, (104)

and it corresponds to a “rotation” on the vector of position variables and the vector of momentum variables “in an
opposite direction”. We only need to express the old variables in the original wave function in terms of the new
variables times a scaling factor. That is,

Z1(µ⃗|m⃗) = (U ▷ Z×) (µ⃗|m⃗) =
√
det(−B)Z×(−B⊤µ⃗| −B⊤m⃗) , (105)

where
√

det(−B) = 4i. Since −(B−1)⊤ has half-integer entries, the new position variables can only be viewed as
coordinates of Mflat(∂(S

3\Γ5),SL(2,C)).
In addition, that Z× ∈ F (k)

P(oct)×5 implies that, when (α⃗0, β⃗0) ∈ P(oct)×5 and µ⃗ ∈ R15,

e−
2π
k (−B⊤µ⃗)·β⃗0Z×(−B⊤µ⃗+iα⃗0|−B⊤m⃗) ≡ e−

2π
k µ⃗·(−B−1β⃗0)Z×(−B⊤ (µ⃗+ i

(
−(B−1)⊤α⃗0

))
|−B⊤m⃗) ∈ S(R15) . (106)

It is easy to see that the new positive angle structure is

P1 =
{
(α⃗1, β⃗1) =

(
−(B−1)⊤α⃗0,−B−1β⃗0

)
| (α⃗0, β⃗0) ∈ P(oct)×5

}
. (107)

We conclude that Z1 ∈ F (k)
P1

.
2. T -type transformation:

the T -type transformation is controlled by the matrix

T =

(
I 0

AB⊤ I

)
, (108)
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where AB⊤ is a symmetric matrix with integer entries. It corresponds to a change of momenta keeping the position
variables unchanged. The partition function after this transformation is

Z2(µ⃗|m⃗) = (T ▷ Z1) (µ⃗|m⃗) = (−1)m⃗·AB⊤·m⃗e
πi
k (−µ⃗·AB⊤·µ⃗+m⃗·AB⊤·m⃗)Z1(µ⃗|m⃗) , (109)

where the sign (−1)m⃗·AB⊤·m⃗ is there for the cyclic symmetry that Z2 is unchanged the transformation mI → mI + k
for any mI .

To be convinced that (109) is true. Let us consider a 1-dimensional example of the T -type transformation on the
wave function f(µ|m) given by the unitary operator U = e

πi
k (−µTµ+(k+1)mTm) with T ∈ Z:

f(µ|m) → f ′(µ|m) = (U ▷ f) (µ|m) = e
πi
k (−µTµ+(k+1)mTm)f(µ|m) . (110)

The new operators µ′,m′ are transformed to be multiplicity operators :

eµ → eµ
′
= UeµU† ≡ eµ , em → em

′
= UemU† ≡ em , (111)

while ν′,n′ are shift operators:

eν+Tµ → eν
′
= Ueν+TµU† ≡ eν , en+m → en

′
= Uen+TmU† ≡ en , (112)

as desired. To derive (112), we have used the Baker-Campbell-Hausdorff formula:

eXeY = exp

[
X+Y +

1

2
[X,Y] +

1

12
[X, [X,Y]]− 1

12
[Y, [X,Y]] + · · ·

]
(113)

Note that although (110) – (112) is still true when the sign factor is (−1)mTm removed from U , but require the cyclic
symmetry f ′(µ|m+ k) = f ′(µ|m) for the function be true for any integers m and k. Explicitly,

f ′(µ|m+ k) = (−1)T (m+k)2e
πi
k (−µTµ+T (m+k)2)f(µ|m+ k) = (−1)Tk2+2Tkmeπi(2Tmk+Tk2)f ′(µ|m) . (114)

If the sign (−1)mTm were dropped, the sign of f ′(µ|m+ k) in (114) would have changed when k, T are both odd.
Z1 ∈ F (k)

P1
implies that, when (α⃗1, β⃗1) ∈ P1 and µ⃗ ∈ R15,

e−
2π
k µ⃗·β⃗1Z1(µ⃗|m⃗) = phase · e− 2π

k µ⃗·(β⃗1+AB⊤α⃗1)Z2(µ⃗+ iα⃗1|m⃗) ∈ Z1 ∈ F (k)
P1

. (115)

Therefore, the new positive angle structure is

P2 =
{
(α⃗2, β⃗2) =

(
α⃗1, β⃗1 +AB⊤α⃗1

)
| (α⃗1, β⃗1) ∈ P1

}
, (116)

and Z2 ∈ F (k)
P2

.
3. S-type transformation:

the S-type transformation given by the matrix

S =

(
0 −I
I 0

)
(117)

exchanges the position and momentum operators and it corresponds to the Fourier transform of the partition function.
That is,

Z3(µ⃗|m⃗) =
1

k15

∑
n⃗∈(Z/kZ)15

∫
C×15

d15ν⃗ e
2πi
k (−ν⃗·µ⃗+n⃗·m⃗)Z2(ν⃗|n⃗) , (118)

where the integration contour is along R15 + iβ⃗3 where β⃗3 satisfies the new positive angle structure

P3 =
{
(α⃗3, β⃗3) = (−β⃗2, α⃗3) | (α⃗2, β⃗2) ∈ P2

}
. (119)

Indeed, Z3 ∈ F (k)
P3

.
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4. Affine shift translation:
Finally, as shown in (96), to arrive at the partition function ZS3\Γ5

for S3\Γ5 in terms of parameters of Q⃗ and P⃗,
one needs to perform an affine shift transformation σt⃗ given by a vector t⃗ (97c) on the position variables. It shifts a
classical position variables X → X + iπt with t ∈ Z, and it adds a quantum deformation

X → X +

(
iπ +

h

2

)
t (120)

when entering the partition function. It has been argued in the literature (see e.g. [19]) that such a deformation
is more suited for a state-integral (e.g. it is necessary for the invariance of state-integral under 2-3 Pachner move)
Indeed, it breaks the periodicity when X → X+2πi. But it can be understood as a quantum effect and the periodicity
is recovered at that classical h→ 0 limit.

Parametrize X = 2πi
k (−ibµ−m) as in (99), the affine shift (120) leads to shifts on the parameters

µ→ µ− iQ

2
t , m→ m, Q = b+ b−1 . (121)

Therefore, the final partition function takes the form

ZS3\Γ5
(µ⃗|m⃗) = Z3(µ⃗− i

Q

2
t⃗|m⃗) . (122)

The positive angle structure for ZS3\Γ5
(µ⃗|m⃗) is

PS3\Γ5
=

{
(α⃗, β⃗) = (α⃗3 +

Q

2
t⃗, β⃗3) | (α⃗3, β⃗3) ∈ P3

}
(123)

and Z3
S\Γ5 ∈ F (k)

P3
S\Γ5

.

Combing all the steps above, ZS3\Γ5
(µ⃗|m⃗) can be written as finite sums and convergence integrals in terms of new

coordinates (100). The partition takes the following expression.

Z ′
S3\Γ5

(µ⃗|m⃗) = ((σt⃗ ◦ S ◦ T ◦ U) ▷ Z×)(µ⃗|m⃗)

=
4i

k15

∑
n⃗∈(Z/kZ)15

∫
C×15

d15ν⃗ (−1)n⃗·AB⊤·n⃗e
iπ
k (−ν⃗·AB⊤·ν⃗+n⃗·AB⊤·n⃗)e

2πi
k [−ν⃗·(µ⃗− iQ

2 t⃗)+n⃗·m⃗]Z×(−B⊤ν⃗| −B⊤n⃗) ,

(124)

where the integration contour C×15 is chosen to be on the plane R15 + iα⃗2.
Observe that AB⊤ is a symmetric matrix with integer entries, (−1)n⃗·AB⊤·n⃗ in (124) can be simplified to be (−1)D⃗·n⃗

where D⃗ := diag(AB⊤) is a vector whose elements are the diagonal elements of AB⊤. The sign (−1)n⃗·AB⊤·n⃗ depends
on the parity of elements in D⃗ and n⃗. Also notice that the parity of DI is the same as the parity of tI , ∀I = 1, · · · , 155.
Combining these facts, we can rewrite the sign factor (−1)n⃗·AB⊤·n⃗ in (125) to be (−1)t⃗·n⃗ and simplify the expression
(124) to

ZS3\Γ5
(µ⃗|m⃗) =

4i

k15

∑
n⃗∈(Z/kZ)15

∫
C×15

d15ν⃗ (−1)t⃗·n⃗e
iπ
k (−ν⃗·AB⊤·ν⃗+n⃗·AB⊤·n⃗)e

2πi
k [−ν⃗·(µ⃗− iQ

2 t⃗)+n⃗·m⃗]Z×(−B⊤ν⃗| −B⊤n⃗) .

(125)
It was checked in [12] that such a change does not alter the equations of motion compared to the ones computed with
the original one (124) [11]. The positive angle structure P(S3\Γ5) for S3\Γ5 in terms of the new variables (µ⃗, ν⃗) is
[11] 6

P(S3\Γ5) = σ′
t⃗
◦ S ◦ T ◦ U ◦P(oct)×5

⇒ If (α⃗0, β⃗0) ∈ P(oct)×5 , then (α⃗, β⃗) = (Aα⃗0 +Bβ⃗0 +
Q

2
t⃗,−(B−1)⊤α⃗0) ∈ P(S3\Γ5) .

(126)

5 One can check using the explicit expressions (97) of matrices A, B and vector t⃗ that the odd elements of D⃗ and t⃗ are both the 1th, 2nd,
6th, 8th, 11th, 12th and 13th elements.
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Inversely,

(α⃗0, β⃗0) = (B⊤β⃗,B−1α⃗+A⊤β⃗ − Q

2
t⃗) ∈ P(oct)×5 . (127)

The symplectic transformations ensure that P(S3\Γ5) is non-empty since P(oct)×5 is non-empty, which concludes
that ZS3\Γ5

∈ F (k)
P(S3\Γ5)

≡ FP(S3\Γ5) ⊗C (Ck)⊗15. In other words, Z3
S\Γ5 is absolute convergent hence the finiteness

of the Chern-Simons partition function on S3\Γ5 is manifest. More generally, the Chern-Simons partition function
constructed in terms of ideal triangulation converges absolutely as long as the 3-manifold admits a non-empty positive
angle structure [22, 30, 31]. This means, given any (α⃗, β⃗) ∈ P(S3\Γ5) and let Im(µ⃗) = α⃗, the integration contours
C×15 satisfying Im(ν⃗) = β⃗ renders the finiteness of ZS3\Γ5

(µ⃗|m⃗).

V. FROM CHERN-SIMONS PARTITION FUNCTION TO SPINFOAM AMPLITUDE

The partition function ZS3\Γ5
is for Chern-Simons theory on S3\Γ5 but does not yet encode the quantum gravity

information. To define a vertex amplitude associated to a 4-simplex, one needs to impose the quantized version of
the simplicity constraint F ∼= Λ

3 e∧ e on ZS3\Γ5
. The way to implement this is motivated by the EPRL model. Recall

that, in the EPRL model, the simplicity constraint at the classical and discrete level can be implemented by (14)
and (15). In other words, the simplicity constraint is to require the discretized BIJ

f (t)-field to encode the geometry of
tetrahedra in a 4-simplex by satisfying two requirements:

(a) For each tetrahedron t in the 4-simplex, there exists a common normal to the four discretized BIJ
f (t)-fields each

associated to a triangle f ;

(b) BIJ
f (t) encodes the area and normal of the triangle by satisfying the closure condition.

This can be generalized to the Λ ≠ 0 case as follows. Consider the (non-ideal) triangulation, denoted as τa, of a
4-holed sphere Σ0,4 such that each hole, denoted by p, is inside a triangle fp. See the red lines in fig.8. Define the

1

2

3

4

•

•

•

•

FIG. 8: The ideal triangulation (in black) and the (normal) triangulation τa (in red) of a 4-holed sphere Σ0,4.
Numbers 1, 2, 3, 4 label the holes of Σ0,4.

discretized B-field associated to fp as in the EPRL model, i.e. Bfp(τa) =
∫
fp
B(τa). On the other hand, let us recall

the relation F = |Λ|
3 B discussed in (19). Consider a local coordinate (x1, x2) on one patch of Sa with the hole p at

the origin. Then the discretization of this relation gives Fp(Sa) =
|Λ|
3 Bfp(τa)δ

(2)(x⃗)dx1 ∧dx2. This allows us to write

6 The operator σ⃗′
t⃗

for the positive angle structure is different from the affine transformation σ⃗t⃗ acting on the wave functions. The latter
is given in (96) while the former is defined as: σ⃗′

t⃗
: (α⃗, β⃗) 7→ (α⃗+ Q

2
t⃗, β⃗) [11].
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the simplicity constraints in the same form as (14) in terms of the Chern-Simons curvature. That is, for all holes p’s
of Sa,

∃NJ such that NJFIJ
p (Sa) = 0 . (128)

By the non-abelian Stokes’ theorem, the holonomy around each triangle fp of τa takes the form Hfp(τa) = e
|Λ|
3 Bfp (τa) ∈

PSL(2,C). The reason for Hfp(τa) ∈ PSL(2,C) instead of Hfp(τa) ∈ SL(2,C) is because this holonomy can be
computed using the FG coordinates on Mflat(Sa,PSL(2,C)) which we will see later. Eq.(128) can be translated into
constraints in terms of {Hfp(τa)}4p=1:

∃NJ such that (Hfp)
J

I (τa)NJ = NI , ∀fp ∈ τa . (129)

Similar to the EPRL case, (128) (or (129)) means that the 4-holed sphere Sa, or its triangulation τa, is orthogonal
to a common vector NJ ∈ R4. Gauge fixing NJ = (1, 0, 0, 0) implements that all the holonomies {Hfp(τa)}4p=1 are
in a common PSU(2) subgroup of PSL(2,C). In other words, the simplicity constraints restrict the moduli space
Mflat(Sa,PSL(2,C)) of flat PSL(2,C) connection to a moduli space Mflat(Sa,PSU(2)) of flat PSU(2) connection.

The flat connection in Mflat(Sa,PSU(2)) defines a representation of the fundamental group of Sa into PSU(2)
modulo gauge transformations. Let the holonomies {Hfp(τa)} have the same base point b ∈ Sa. Then they satisfy
the non-linear closure condition (we fix the ordering of the holonomies here and for the rest of this note)

Hf4(τa)Hf3(τa)Hf2(τa)Hf1(τa) = IPSU(2) (130)

due to the isomorphism

Mflat(Sa,PSU(2)) ∼= {H1,H2,H3,H4 ∈ PSU(2) : H4H3H2H1 = IPSU(2)}/PSU(2) , (131)

which is a special case of (38). An interesting fact is that the expression in the bracket on the right-hand side of
(131) can determine uniquely a (convex) homogeneously curved tetrahedron, whose faces are flatly embedded in a
three-sphere S3 or hyperbolic three-space H3 (See fig.9). That is, a curved tetrahedron with constant curvature can

4

3

2

1

(a)

4

3

2

1

(b)

FIG. 9: (a) A tetrahedron flatly embedded in S3. (b) A tetrahedron flatly embedded in H3.

be identified by four PSU(2) holonomies H1,H2,H3,H4 satisfying the closure condition H4H3H2H1 = IPSU(2) with
a few extra restrictions. This is called the “curved Minkowski theorem” for the tetrahedron, proven in [10], which we
will briefly summarize below. In the flat limit, it coincides with the well-known Minkowski theorem for flat tetrahedra
which was proven in 1897 [32].

A. curved Minkowski theorem for homogeneously curved tetrahedron

Before we describe the curved Minkowski theorem, let us first discuss the geometry of a homogeneously curved
tetrahedron, or tetrahedron for short.

We let the sign of the curvature s ≡ sgn(Λ) be identified as the sign of the cosmological constant. To unify the
notations, we denote the n-dimensional homogeneously curved space as En,s hence E3,+ = S3 and E3,− = H3. Each



25

face of a tetrahedron is a triangle flatly embedded in a two-dimensional subspace E2,s of E3,s. We only focus on the
convex tetrahedra. The convexity guarantees that each edge of the triangle is the shortest geodesic on E2,s connecting
the two end vertices of the edge. For each face, we choose a base point p on the boundary and consider the oriented
loop ℓ along the boundary starting and ending at p whose orientation is counterclockwise when seen from the outside
of the tetrahedron. Such an orientation generates an outward direction normal n̂ℓ(p) to the face at p (and any other
point within the face) by the right-hand rule, which is consistent with the topological orientation of the tetrahedron.
We also denote the same loop with the opposite orientation as ℓ−1.

Indeed, a vector at p tangent to the face gets rotated after parallel transport along ℓ. The rotation angle is
proportional to the area aℓ of the face enclosed by ℓ. We denote the holonomy of the Levi-Civita connection along ℓ
in the local frame of p as Mℓ(p). It is a group element of SO(3) for both tetrahedra embedded in S3 and H3 which
can be parametrized as

Mℓ(p) = exp

[
s
|Λ|
3
aℓn̂ℓ(p) · J⃗

]
∈ SO(3) ,

|Λ|
3
aℓ ∈ [0, 2π] (132)

where J⃗ = {J1, J2, J3} are the generators of so(3) and the sign s determines in which space the tetrahedron is
embedded. However, the Mℓ(p) can take another expression

Mℓ(p) = exp

[
s

(
2π − |Λ|

3
aℓ

)
(−n̂ℓ(p)) · J⃗

]
(133)

as SO(3) ∼= S3/Z2. This means Mℓ(p) cannot distinguish the two triangles lying in the same great 2-spheres of S3

with area and outgoing normal (aℓ, nℓ) = (aℓ, n̂ℓ) and (aℓ, nℓ) = ( 6π
|Λ| − aℓ,−n̂ℓ) respectively. Due to the isomorphism

SO(3) ∼= PSU(2) = SU(2)/Z2, given Mℓ(p) parametrized as (132) or (132), one can identify a PSU(2) group element
Hℓ(p):

Hℓ(p) = exp

[
s
|Λ|
3
aℓn̂ℓ(p) · τ⃗

]
≡ cos

(
s
|Λ|
6
aℓ

)
I− i sin

(
s
|Λ|
6
aℓ

)
n̂ℓ · σ⃗ ≡ exp

[
s

(
2π − |Λ|

3
aℓ

)
(−n̂ℓ(p)) · τ⃗

]
(134)

where |Λ|
6 aℓ ∈ [0, π]. Here τ⃗ = − i

2 σ⃗ ∈ su(2) and σ⃗ = {σ1, σ2, σ3} are the Pauli matrices. Although we can not decide
which geometry Hℓ(p) describes for a triangle by looking at this single expression, we will see later that for a convex
tetrahedron, either (aℓ, n̂ℓ) or ( 6π

|Λ| − aℓ,−n̂ℓ) would be single out uniquely.
Changing the base point corresponds to a conjugation action on Hℓ(p) by an PSU(2) group element, say g,

Hℓ(p) −→ Hℓ(p
′) = gHℓ(p)g

−1 , g ∈ PSU(2) . (135)

Changing the orientation of ℓ corresponds to changing Hℓ to its inverse, i.e. Hℓ−1 = H−1
ℓ . For each curved tetrahe-

dron, there exists a closure condition expressed as

H4H3H2H1 = I , Hℓ ∈ PSU(2) , (136)

where all four holonomies are defined at the same base point. Indeed, it is easy to find a common point for three
of the four holonomies. One then has to parallel transport the base point at least once through a specified path to
define all the holonomies properly. As one of the simplest examples, choosing vertex 4 in fig.9 as the base point,
H1(4),H2(4),H3(4) can all be defined directly by (134). To define H4(4), we first define H4(2) based on vertex 2 by
(134) and parallel transport it to vertex 4 through the edge e42.

A solution to (136) can be given by introducing the edge holonomy hv1v2
for each oriented edge ev1v2 with h−1

v1v2 =
hv2v1

. Then 
H1 = h43h32h24
H2 = h41h13h34
H3 = h42h21h14
H4 = h42H4(2)h24 = h42h23h31h12h24

(137)

is indeed a solution to (136). The paths for the solution (137) are illustrated in fig.10 for a spherical tetrahedron
as an example and are the same for a hyperbolic tetrahedron. These paths are called the simple paths as they are
the simplest set of paths up to the choice of the base point and the special edge. They are the generators of the
fundamental group of a tetrahedron. That is

π1(tetra) = {ℓ1, ℓ2, ℓ3, ℓ4|ℓ4 ◦ ℓ3 ◦ ℓ2 ◦ ℓ1 = 1} . (138)
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(a) ℓ1.

4

3

2

1

(b) ℓ2.
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(c) ℓ3.
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(d) ℓ4.

FIG. 10: The set of simple paths (in red) for holonomies {H1,H2,H3,H4} defined in (137) with vertex 4 as
the base point and edge (42) as the special edge. They satisfy the closure condition (136).

It can be straightforwardly checked that, given a tetrahedron whose curvature is determined by Λ, the full geomet-
rical information can be described by the four holonomies Hℓ’s explicitly as

cos

(
Λ

6
aℓ

)
=

1

2
Tr(Hℓ) , nℓ = ϵℓ

iTr(Hℓσ⃗)√
4− Tr(Hℓ)2

, (139)

where ϵℓ = ± with the sign + corresponding to nℓ = n̂ℓ and − corresponding to nℓ = −n̂ℓ. Then one can calculate
e.g. the dihedral angle θℓ1ℓ2 between two faces in a tetrahedron by

cos θℓ1 := nℓ1(p
′) · nℓ2(p′) = ϵℓ1ϵℓ2 n̂ℓ1(p

′) · n̂ℓ2(p′) , (140)

where p′ is any point on the edge shared by the two faces. As the faces of the tetrahedron are flatly embedded in E3,s,
these dot products are invariant along the edge shared by two faces and hence the dihedral angles are well defined. For
simplicity, one can choose one of the two endpoints of the edge, which is a vertex of the tetrahedron. Note that (139)
is valid only when n̂ℓ is defined at the base point of the loops, which is chosen to be the vertex 4 in our convention,
i.e. n̂ℓ = n̂ℓ(4). Then, to calculate the dihedral angle θ14, θ24, θ34, one has to parallel transport nℓ to another vertex.
For instance, using the simple solution (137),

θ24 = ϵ2ϵ4n̂2(3) · n̂4(3) = ϵ2ϵ4 [h34n̂2(4)] · [h32h24n̂4(4)] = ϵ2ϵ4n̂2(4) ·H1n̂4(4) . (141)

Another way is to define θ24 at vertex 1 which gives an equivalent result θ24 = ϵ2ϵ4n̂2(1) · n̂4(1) = ϵ2ϵ4n̂2(4) ·H−1
3 n̂4(4).

One can also calculate the triple product of normals of three faces, which is calculated at the vertex where the three
faces meet. We require that the tetrahedron be convex. Then the triple product must satisfy

[n1(4)× n2(4)] · n3(4) > 0 , at vertex 4
[n1(2)× n3(2)] · n4(2) > 0 , at vertex 2
[n2(3)× n1(3)] · n4(3) > 0 , at vertex 3
[n3(1)× n2(1)] · n4(1) > 0 , at vertex 1

, (142)

which can also be parallel transport to vertex 4 and give
ϵ1ϵ2ϵ3 (n̂1 × n̂2) · n̂3 > 0

ϵ1ϵ3ϵ4 (n̂1 × n̂3) · n̂4 > 0

ϵ2ϵ1ϵ4 (n̂2 × n̂1) ·H1n̂4 > 0

ϵ3ϵ2ϵ4 (n̂3 × n̂2) ·H−1
3 n̂4 > 0

. (143)

The four inequalities can uniquely fix the four signs ϵ1, ϵ2, ϵ3, ϵ4 and resolve the ambiguity for the areas and outgoing
normals of all the faces in a tetrahedron.
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Interlude: Explicit expressions for the gauge invariant observables.
The explicit expressions for the gauge invariant observables, namely the areas, dihedral angles and the normal triple
products have been given in [10], which we summarize here.
For convenience, let us first introduce the half-traces of the products of one, two and three holonomies, respectively.

⟨Hℓ⟩ =
1

2
Tr(Hℓ) , (144a)

⟨Hℓ1Hℓ2⟩ =
1

2
Tr(Hℓ1Hℓ2)−

1

4
Tr(Hℓ1)Tr(Hℓ2) , (144b)

⟨Hℓ1Hℓ2Hℓ3⟩ =
1

2
Tr(Hℓ1Hℓ2Hℓ3)−

1

4
[Tr(Hℓ1)Tr(Hℓ2Hℓ3) + cyclic] + 1

4
Tr(Hℓ1)Tr(Hℓ2)Tr(Hℓ3) . (144c)

The half-trace (144a) of one holonomy Hℓ around a face ℓ encodes the area aℓ of the face; the half-trace (144b) of
two holonomies Hℓ1 and Hℓ2 encodes the dihedral angle θℓ1ℓ2 of the two faces ℓ1 and ℓ2; the half-trace (144c) of three
holonomies Hℓ1 ,Hℓ2 and Hℓ3 encodes the triple product of the normals (n̂ℓ1 × n̂ℓ2) · n̂ℓ3 to the three faces ℓ1, ℓ2, ℓ3
calculated at the common vertex of the three faces. Explicitly,

cos(s
Λ

6
aℓ) = ⟨Hℓ⟩ , (145)

cos θℓ1ℓ2 :=n̂ℓ1 · n̂ℓ2 = − ϵℓ1ϵℓ2⟨Hℓ1Hℓ2⟩√
1− ⟨Hℓ1⟩2

√
1− ⟨Hℓ2⟩2

, ∀ {ℓ1, ℓ2} ̸= {2, 4} , (146)

(n̂ℓ1 × n̂ℓ2) · n̂ℓ3 = − ϵℓ1ϵℓ2ϵℓ3⟨Hℓ1Hℓ2Hℓ3⟩√
1− ⟨Hℓ1⟩2

√
1− ⟨Hℓ2⟩2

√
1− ⟨Hℓ3⟩2

, {ℓ1, ℓ2, ℓ3} = {1, 2, 3} or {1, 3, 4} . (147)

On the other hand,

cos θ24 := n̂2 ·H1n̂4 ≡ n̂2 ·H−1
3 n̂4 (148)

as well as (n̂2 × n̂1) ·H1n̂4 and (n̂3 × n̂2) ·H−1
3 n̂4 can also be calculated using the explicit expressions (132) or (133)

for all the holonomies but the expressions are more involved and we omit here.
Define the Gram matrix, denoted as Gram(Hℓ), of the set of four holonomies {H1H2,H3,H4} as Gram(Hℓ) :=

Gram(cos θℓ1ℓ2) with dihedral angles computed in terms of the holonomies using (139) and (140). With these ingre-
dient, the curved Minkowski theorem is stated as follows.

Theorem V.1 (The curved Minkowski theorem for tetrahedron). [10] Given four PSU(2) holonomies Hℓ’s satisfying
the non-degeneracy condition detGram(Hℓ) ̸= 0 and the closure condition H4H3H2H1 = I, one can uniquely determine
a non-degenerate homogeneously curved tetrahedron in the following way7.

1. Label the sub-simplices of the tetrahedron as in fig.9. The tetrahedron is flatly embedded in S3 if
sgn(detGram(Hℓ)) > 0 and flatly embedded in H3 if sgn(detGram(Hℓ)) < 0;

2. The holonomies Hℓ’s are associated to a set of simple paths with either the base point at vertex 4 and special
edge (42) or the base point at vertex 3 and special edge (31) and the orientation of the paths determine the
orientation of the face surrounded by the path;

3. Each holonomy Hℓ encodes the area aℓ of face ℓ and the outward direction normal nℓ (when parallel transported
to the base point) in its parametrization Hℓ = exp

(
s |Λ|

6 aℓnℓ · τ⃗
)

with s := sgn(detGram(Hℓ)).

B. Flat connection on 3-manifold and curved 4-simplex geometry

By the definition of Mflat(Σ0,4,PSU(2)) (131) and the curved Minkowski theorem V.1, we conclude that, given four
PSU(2) holonomies {H1,H2,H3,H4} satisfying the closure condition H4H3H2H1 = 1 which define a flat connection

7 The original theorem in [10] is written in terms of SO(3) holonomies. However, due to the isomorphism SO(3) ∼= PSU(2), we can write
the whole theorem in terms of PSU(2) holonomies, which is more suited for connecting it to Mflat(Sa,PSU(2)) and the FG coordinates
therein.
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in Mflat(Σ0,4,PSU(2)), one can identify a (non-degenerate convex) tetrahedron. In other words, there is a one-to-one
correspondence between the flat connection in Mflat(Σ0,4,PSU(2)) and the geometry of a tetrahedron. This can be
summarized in the following diagram.

π1(tetra) X−−−−−−−→ π1(Σ0,4)

ωLC ↘ ↙ ωflat

{H1,H2,H3,H4 ∈ PSU(2)|H4H3H2H1 = ISU(2)}/PSU(2) ,

(149)

where X is an isomorphism, ωLC is the Levi-Civita connection and ωflat is the flat connection, the quotient by the
conjugate action of PSU(2).

It is electrifying that such an isomorphism can be generalized to a one-higher dimensional case [33]. To rephrase,
(149) relates the fundamental groups of a 3-simplex, i.e. a tetrahedron, and of the nodes-complement of its topological
boundary S2 where the nodes are the (3-3=) 0-subcomplexes of dual 2-complex of the boundary of the 3-simplex. Its
generalization gives the isomorphism between the fundamental groups of a 4-simplex and of the graph-complement
of its topological boundary S3 where the graph is the (4-3=)1-subcomplex – Γ5 graph – of the dual 3-complex of the
boundary of the 4-simplex.

To write this isomorphism exactly, let us specify the fundamental groups of a 4-simplex and S3\Γ5 separately. The
generators of the former are the closed paths based at the same vertex along the 1-skeleton and circling around a
triangle. We refer to fig.11 and fix the notations as follows. We use numbers 1̄, · · · , 5̄ with bars to denote the vertices
of the 4-simplex and (āb̄) to denote the oriented edge that connects (source) b̄ to (target) ā. Then (b̄ā) = (āb̄)−1.
tetraa denotes the tetrahedron that does not contain the vertex ā. Each pair of tetrahedra tetraa and tetrab share a
triangle fab (or fba), which is the one does not contain vertices ā and b̄.

FIG. 11: A 4-simplex projected on R2. Numbers 1̄, · · · , 5̄ denote the vertices. tetraa denotes the tetrahedron
that does not contain the vertex ā. fab or fba denotes the triangle shared by tetraa and tetrab. The over- and

under-crossing specify the correct relative positions of vertices in each tetrahedron.

We choose 1̄ to be the base point and pab denotes the oriented closed path based at 1̄ that circles fab and whose
orientation matches the outgoing normal of fab in tetraa. To fix the path for triangles not attached to 1̄, which is
the case for all triangles in tetra1, we need to additionally specify a “special edge” that connects 1̄ to a vertex on the
boundary of the triangle. Two special edges are needed at the minimum. We choose (3̄1̄) to be the special edge for
triangles f12, f14, f15 and choose (5̄1̄) to be the special edge for triangle f13. For instance, p12 = (1̄3̄) ◦ (3̄5̄) ◦ (5̄4̄) ◦
(4̄3̄) ◦ (3̄1̄). pba = p−1

ab holds for all (āb̄) ̸= (1̄3̄) or (3̄1̄). Specially,

p13 := (1̄3̄) ◦ (3̄5̄) ◦ (5̄2̄) ◦ (2̄4̄) ◦ (4̄5̄) ◦ (5̄3̄) ◦ (3̄1̄)
p31 := (1̄5̄) ◦ (5̄4̄) ◦ (4̄2̄) ◦ (2̄5̄) ◦ (5̄1̄) .

(150)

Therefore, p13 and p31 are related by

p13 = p24 ◦ p−1
31 ◦ p−1

24 . (151)

The generators of the fundamental group π1(sk1(4-simplex)) of the 1-skeleton of a 4-simplex are then given by the
following 5 relations.

tetra1 : p13 ◦ p12 ◦ p15 ◦ p14 = 1 , (152a)
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tetra2 : p−1
12 ◦ p24 ◦ p23 ◦ p25 = 1 , (152b)

tetra3 : p31 ◦ p34 ◦ p35 ◦ p−1
23 = 1 , (152c)

tetra4 : p−1
14 ◦ p45 ◦ p−1

34 ◦ p−1
24 = 1 , (152d)

tetra5 : p−1
15 ◦ p−1

12 ◦ p−1
35 ◦ p−1

45 = 1 . (152e)

That is, π1(sk1(4-simplex)) = {{pab}a ̸=b|Eqns.(151) − (152)}. On the other hand, the fundamental group of S3\Γ5

can be computed by a generalized Wirtinger representation [34]. It is done in the following steps. Firstly, project Γ5

onto a plane as in fig.1. Denote the nodes of Γ5 by numbers 1, · · · , 5 (with no bars) and the oriented link connecting
the target node a and source node b by eab. There is one crossing that breaks link e13 into two links, denoted as e(1)13

for the one attached to vertex 1 and e
(3)
13 for the one attached to vertex 3, so there are totally 11 links under this

projection, each is associated with a fundamental group generator of S3\Γ5. Choose a base point b in S3\Γ5. The
generator associated to eab is given by a non-contractible closed loop lab based at b circling eab whose orientation
matches that of eab. Specifically, the generators associated to e

(1)
13 and e

(3)
13 respectively are denoted as l

(1)
13 and l

(3)
13

respectively. We associate an orientation to each lab such that it matches the orientation of eab. Then lba = l−1
ab for

(a, b) ̸= (1, 3) or (3, 1). The 11 generators are subject to the following relations, one for each node or crossing.

node 1 : l
(1)
13 ◦ l12 ◦ l15 ◦ l14 = 1 , (153a)

node 2 : l−1
12 ◦ l24 ◦ l23 ◦ l25 = 1 , (153b)

node 3 : l
(3)−1
13 ◦ l34 ◦ l35 ◦ l−1

23 = 1 , (153c)
node 4 : l−1

14 ◦ l45 ◦ l−1
34 ◦ l−1

24 = 1 , (153d)
node 5 : l−1

15 ◦ l−1
12 ◦ l−1

35 ◦ l−1
45 = 1 , (153e)

crossing : l
(1)
13 = l24 ◦ l(3)13 ◦ l−1

24 . (153f)

Therefore, π1(S3\Γ5) = {{lab}a ̸=b|Eqn.(153)}.
Already from the definitions, one can immediately notice an isomorphism Y : π1(sk1(4-simplex)) → π1(S

3\Γ5) that
maps Y (pab) = lab for (āb̄) ̸= (1̄3̄) or (3̄1̄) and Y (p13) = l

(1)
13 , Y (p31) = l

(3)−1
13 .

We are interested in Lorentzian 4-simplex geometry so we represent the fundamental group in PSL(2,C) ∼=
SO+(3, 1). This corresponds to the case when all the tetrahedra in the 4-simplex are future-pointing [25]. Given
a representation ρ = Hom(π1(S

3\Γ5),PSL(2,C)) such that ρ(lab) = H̃ab and that ρ(l−1
ab ) = H̃−1

ab , (153) gives 5 closure
conditions on the holonomies and a conjugate relation to H̃(1)

13 and H̃
(3)
13 :

H̃
(1)
13 H̃12H̃15H̃14 = 1 , (154a)

H̃−1
12 H̃24H̃23H̃25 = 1 , (154b)

H̃
(3)−1
13 H̃34H̃35H̃

−1
23 = 1 , (154c)

H̃−1
14 H̃45H̃

−1
34 H̃

−1
24 = 1 , (154d)

H̃−1
15 H̃

−1
25 H̃

−1
35 H̃

−1
45 = 1 , (154e)

H̃
(1)
13 = H̃24H̃

(3)
13 H̃

−1
24 . (154f)

H̃ba = H̃−1
ab for (a, b) ̸= (1, 3) or (3, 1). Representing π1(4-simplex) also in PSL(2,C) by ρ′ =

Hom(π1(4-simplex),PSL(2,C)) and identifying ρ′(pab) = ρ(lab) for all (a, b) ̸= (1, 3) or (1, 3) while ρ′(p13) = ρ(l
(1)
13 )

and ρ′(p31) = ρ(l
(3)−1
13 ), (154a)–(154e) are nothing but the 5 copies of closure conditions as in (136) but now rep-

resented in PSL(2,C), each corresponds to a tetrahedron on the boundary of the 4-simplex and (154f) relates the
holonomy H(1)

13 around f13 as the boundary of tetra1 and the holonomy H(3)
13 around the same triangle as the boundary

of tetra3. ρ and ρ′ effectively associate flat connection ωflat to S3\Γ5 and Levi-Civita connection ωLC to the 4-simplex.
We then have a similar commuting map as (149) but in one higher dimension represented in PSL(2,C).

π1(sk1(4-simplex)) Y−−−−−−−→ π1(S
3\Γ5)

ωLC ↘ ↙ ωflat

{{H̃ab} ∈ PSL(2,C)|Eqn.(154)}/PSL(2,C) ,

(155)
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where the quotient by the conjugate action of PSL(2,C).
However, ωLC as a representation of π1(sk1(4-simplex)) does not contain enough information about the geometry

on the 4-simplex unless there is additional input. We ask that the 4-simplex be embedded in the constant curvature
spacetime so that all the triangles are flatly embedded surfaces. The geometry of such a 4-simplex is uniquely
determined by 10 areas. Indeed, given 5 tetrahedra of the same constant curvature, their faces can be glued pairwise
in an organized pattern (so that no handles are formed) to form a 4-simplex if each of the 10 pairs of faces shares the
same area.

Recall the proposed discrete simplicity constraint (129). It can be implemented as an extra structure on (155) by
gauge fixing {H̃ab}b that satisfy each of the closure conditions (154) to a common PSU(2) subgroup of PSL(2,C).
More precisely, let

H̃ab = gaHabg
−1
a = gbH

−1
ba g

−1
b , (a, b) ̸= (1, 3), (3, 1) ,

H̃
(1)
13 = g1H13g

−1
1 , H̃

(3)−1
13 = g3H31g

−1
3 .

(156)

where ga, gb ∈ PSL(2,C) and Hab,Hba ∈ PSU(2). ga can be geometrically interpreted as parallel transport the
base point b in S3\Γ5 to the base point ba on the 4-holed sphere Sa ⊂ ∂(S3\Γ5). For different a, the gauge fixing
group element ga can be chosen differently. That is, the PSU(2) closure condition can be written in different PSU(2)
subgroups of PSL(2,C). In this way, the gauge fixed version of (154a) – (154e)

H13H12H15H14 = 1 , (157a)
H21H24H23H25 = 1 , (157b)
H31H34H35H32 = 1 , (157c)
H41H45H43H42 = 1 , (157d)
H51H52H53H54 = 1 (157e)

describe 5 tetrahedra, each corresponding to PSU(2) flat connection on a 4-holed sphere.
These PSU(2) holonomies be subject to the constraints

Hab = GabH
−1
ba Gba , Gba = G−1

ab ∈ PSL(2,C) , ∀ (a, b) (158)

where

Gab := g−1
a gb , ∀ (a, b) ̸= (1, 3), (3, 1) ,

G13 := g−1
1

(
g2H24g

−1
2

)
g3 = G−1

31 .
(159)

Gab then represents the parallel transport from bb to ba along a path passing through the common base point b
in ∂(S3\Γ5). In other words, it changes the local frame from tetrab to tetraa and thus we call it a frame-changing
holonomy. The second line of (159) together with (158) is the constrained version of (154f). Indeed, (158) implies
that Tr(Hab) = Tr(Hba), which geometrically means the two triangles these two holonomies surround have the same
area if using the parametrization (134), which is exactly what we asked. Therefore, (156) together with (155) describe
the geometry of a 4-simplex.

C. Impose the simplicity constraints

With the geometrical discussion above, we define the simplicity constraints of the Chern-Simons theory on S3\Γ5

as restricting the moduli spaces of PSL(2,C) connections on 4-holed spheres to the ones that can be gauge-transformed
to PSU(2) flat connections. This restriction should be imposed on the coordinates (Q⃗, P⃗) (94) which, in turn, impose
constraints on the partition function. We borrow the idea in the EPRL model that the first-class constraints are
imposed strongly while the second-class constraints are imposed weakly.

1. The first-class simplicity constraints

We have introduced in Section IV 3 that the 6 FG coordinates {χ(a)
ij }i̸=j (see Table II) are the coordinates of

Mflat(Sa,PSL(2,C)). Then one can impose restrictions on these coordinates to implement the simplicity constraints.
Recall that linear combinations of these FG coordinates, giving rise to the FN coordinates {2Lab}b ̸=a (91) commute
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with all the {χ(a)
ij }i ̸=j . The first-class constraints are then given by the function of 2Lab’s. Each 2Lab is the logarithm

of the eigenvalue λ2p ≡ λ2ab = e2Lab of the holonomy Hab around the hole p of Sa. Hp(τa) ∈ PSU(2) implies that
λ2p = ei2θab with some θab ∈ R. From the geometrical interpretation in the previous subsection,

θab = −|Λ|
6
ap or θab =

|Λ|
6
ap − π , (160)

where the choice of the expression from the two is selected using the convexity criterion (143) after constructing the
PSU(2) holonomies. Therefore, the first-class simplicity constraints can be formulated as

2Lab :=
2πi

k
(−ibµab −mab) ∈ iR ⇐⇒ µab = 0

quantization−−−−−−−−→ Re(µab)ZS3\Γ5
(µ⃗|m⃗) = 0 , (161)

where the right-most quantum constraint is written in terms of Re(µab) as the analytic continuation of µab to C is
allowed at the quantum level. We allow Im(µab) ≡ αab ̸= 0 as only the real part is quantized. Then e2Lab ∈ U(1) is
realized only at the classical (k → ∞) level. Define the “spin” jab such that

2jab = mab → jab = 0,
1

2
, · · · , k − 1

2
. (162)

jab encodes the area ap of the triangle fp in a tetrahedron (when we fix the orientation of fp) by

|Λ|
3
ap =

4π

k
jab or 2π − |Λ|

3
ap =

4π

k
jab . (163)

Whether to choose the first or the second expression depends on the outgoing normals of the faces, which are encoded
in FG coordinates on Sa as we will see later. We label the partition function for S3\Γ5 satisfying the constraint (161)
as

ZS3\Γ5
({iαab}(ab), {µa} | {jab}(ab), {ma}) . (164)

Effectively, the first-class simplicity constraints can be seen to be imposed on the FN coordinates on the annulus
cusps on the triangulation of ∂(S3\Γ5). The remaining (second-class) simplicity constraints will be imposed on each
Sa.

2. The second-class simplicity constraints and the Chern-Simons coherent states

The moduli space Mflat(Sa,PSL(2,C)) is not a symplectic manifold but a Poisson manifold, due to the presence
of Poisson commutative {λ2p}4p=1. Fixing {λ2p}4p=1 by (163) reduces the moduli space Mflat(Sa,PSL(2,C)) to a two-
complex-dimensional symplectic space Mλ⃗ with coordinates (Xa,Ya), on which we should impose the second-class
simplicity constraints.

The implementation of (161) results in the factorization of Hab as follows.

Hab =M(ξab)diag(λab, λ−1
ab )M(ξab)

−1 , λab = e−2πi
jab
k , M(ξab) ∈ SU(2) , (165)

where jab = 0, 12 , · · · ,
k−1
2 and M(ξab) is defined in terms of a spinor |ξab⟩ = (ξ0ab, ξ

1
ab)

⊤ ∈ C2 and its dual spinor
|ξab] = (−ξ̄1ab, ξ̄0ab)⊤ assigned on the hole of Sa that connects to Sb (sometimes it is more convenient to use the
notation ξab = |ξab⟩ and Jξab = |ξab]). |ξab] is dual to |ξab⟩ in the sense that [ξab|ξab⟩ = ⟨ξab|ξab] = 0 (by definition).
They further satisfy the normalization property ⟨ξab|ξab⟩ := ξ̄0abξ

0
ab + ξ̄1abξ

1
ab = 1 = [ξab|ξab] which guarantees that

M(ξab) ∈ SU(2) by the following definition.

M(ξab) :=
(
|ξab⟩ , |ξab]

)
=

(
ξ0ab −ξ̄1ab
ξ1ab ξ̄0ab

)
. (166)

More precisely, |ξab⟩ is the normalized eigenvector of Hab at ba so it can be treated as a framing flag of the hole
of Sa connected to Sb parallel transported to ba. Recalling the isomorphism (149) between the moduli space of flat
connection on a 4-holed sphere and the geometry of a tetrahedron, the geometry of tetraa is encoded in {Hab}b ̸=a.
More precisely, in the decomposition (165), λab encodes the area aab = aba of fab by (163) and |ξab⟩ encodes the 3D
normal vector to fab in the local frame of tetraa by

n̂ab = ⟨ξab|σ⃗|ξab⟩ or n̂ab = −⟨ξab|σ⃗|ξab⟩ (167)
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where σ⃗ = (σ1, σ2, σ3) is a vector of Pauli matrices. The outward-pointing normal n̂ab to fab is different from n̂ab by
a sign factor s = sgn(Λ), namely

n̂ab = sn̂ab . (168)

This is because the normalized eigenvector |ξab⟩ is the same for holonomies around a spherical triangle (corresponding
to s = +) with eigenvalue, say λ, and a hyperbolic one (corresponding to s = −) with eigenvalue λ−1 (recall
Hℓ = exp

(
s |Λ|

6 aℓnℓ · τ⃗
)

). For each of all four triangles in a tetrahedron, either the area is related to jab in the first

or the second option in (163) is determined by the triple product (n̂i × n̂j) · n̂k
!
= s for any set of three triangles in a

tetrahedron. On the other hand, (n̂i × n̂j) · n̂k > 0 for either s.
A similar factorization for Hba gives

Hba =M(ξba)diag(λba, λ−1
ba )M(ξba)

−1 , λba = e2πi
jba
k , (169)

where jba = k
2 − jab (hence λ2ba = λ−2

ab ) and M(ξba) is defined in the same way as M(ξab) but with spinors |ξba⟩ and
its dual |ξba⟩ on as eigenvector of Hba at bb on Sb. Importantly, the 3D normal vector to fab in the local frame of
tetrab defined as

n̂ba = ⟨ξba|σ⃗|ξba⟩ or n̂ba = −⟨ξba|σ⃗|ξba⟩ (170)

is different from n̂ab in general as the two spinors are different. Indeed, n̂ab and n̂ab are related by the dihedral angle,
denoted as Θab of tetraa and tetrab hinged by fab. Θab is encoded in the frame-changing holonomy Gab and the pair
of spinors (|ξab⟩, |ξba⟩) (or (|ξab], |ξba])):

Gab =M(ξab)

(
γab 0
0 γ−1

ab

)
M(ξba)

−1 , γab = e−s sgn(V4)
Θab
2 +iθab , (171)

where Θab, θab ∈ R [9]. The calculation calculating the amplitude of γab = e−s sgn(V4)
Θab
2 is rather lengthy and we

omit here. See [9], or Appendix B of [13]. Therefore, given the 4-simplex geometry, including the areas and normals
of all triangles in different tetrahedron frames and the dihedral angles hinged by the triangles, one can reconstruct
all the Gab’s up to some phases {θab}a̸=b determined by the boundary condition (as all edges of a 4-simplex are on
the boundary). Further, flat connection holonomies {H̃ab} on S3\Γ5 can be determined by {Gab} through (156) up
to a PSL(2,C) gauge as Gab is invariant under the gauge transformation from the left ga → hga , ∀h ∈ PSL(2,C) (r.f.
(159)). Such a gauge transformation corresponds to changing the common base point for defining {H̃ab}.

As the spinor ξab is the eigenvector of PSU(2) holonomy Hab, it can be treated as a normalized framing flag
ξab =

si
||si|| of, say, hole i parallel transported to the base point pa, which is a coordinate in Mflat(Sa,PSU(2)). Recall

the definition (39) of an FG coordinate in terms of framing flag, the constrained coordinates, denoted as x̂a ≡ eX̂a

and ŷa ≡ eŶa , referring to the labelling of holes in fig.12, can be defined as

x̂a =
[ξ1|ξ2⟩[ξ3|ξ4⟩
[ξ1|ξ3⟩[ξ2|ξ4⟩

, ŷ−1
a =

[ξ4|H2ξ2⟩[ξ1|ξ3⟩
[ξ4|H2ξ1⟩[ξ2|ξ3⟩

, (172)

where H2 is the PSU(2) holonomy around hole 2 given by

H2 =M(ξ2)diag(λ2, λ−1
2 )M(ξ2)

−1 , λ2 = exp

[
πi

k
(bαab − 2jab)

]
, with some b ̸= a . (173)

Parametrize
(
X̂a, Ŷa

)
as

X̂a =
2πi

k
(−ibµ̂a − m̂a) , Ŷa =

2πi

k
(−ibν̂a − n̂a) , (174)

where (µ̂a, ν̂a) ∈ R2.
(
X̂a, Ŷa

)
live in the two-real-dimensional compact symplectic space Mλ⃗ and there is a pair of

Darboux coordinate (θa, ϕa) ∈ [0, π)2 spanning the space Mλ⃗ [35]. Then one can define the integral of any function
f on Mλ⃗ as ∫

M
λ⃗

dξ f :=

∫
M

λ⃗

dθa ∧ ϕa f . (175)
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s2 s4

s3s1

x̂aŷ−1
a

FIG. 12: Constrained FG coordinates on Sa corresponding to the definitions (172).

Any integration on Mj⃗ is finite as long as the integrand is bounded.

As second-class constraints, we will impose them weakly by using Chern-Simons coherent states, which we define in
the following. By definition, coherent states are peaked at the classical phase space points hence the labels of coherent
states are given by both the position variables {Xa} and the momentum variables {Ya}. Recall the notations

Xa =
2πi

k
(−ibµa −ma) , Ya =

2πi

k
(−ibνa − na) . (176)

Chern-Simons coherent states on Sa. After fixing the FN coordinates {Lab}(ab) to be given by the spins
{jab}(ab), the Hilbert space of each 4-holed sphere Sa is locally C2. We also fix Im(µa) = αa and consider the degrees
of freedom Re(µa) ∈ R and ma ∈ Z/kZ. To simplify the notation, we will denote Re(µa) by µa ∈ R in the rest of this
subsection. The Hilbert space for Sa is

HSa = L2(R)⊗C Ck .

Firstly, the coherent state ψ0
za(µ) on L2(R) is defined as the solution to

1√
2

(√
2π

k
µ+ i

√
2π

k
ν

)
ψ0
za(µ) =

√
k

2π
zaψ

0
za(µ) , (177)

which solves

ψ0
za(µ) =

(
2

k

)1/4

e
−π

k

(
µ− k

π
√

2
Re(za)

)2

e−i
√
2µIm(za) , (178)

with the over-completeness property

k

2π2

∫
C
dRe(za)dIm(za)ψ

0
za(µ)ψ̄

0
za(µ

′) = δµ,µ′ . (179)

The coherent state label za ∈ C parameterizing a complex plane is related to the constrained coordinates (174) by

za =

√
2π

k
(µ̂a + iν̂a) . (180)

For the finiteness of the vertex amplitude given any boundary condition, we add a prefactor to this coherent state
and define

ψza (µ) = e−
√
2βa Re(za)ψ0

za (µ) , (181)

where βa is the component in (α⃗, β⃗) ∈ PS3\Γ5
. The prefactor is subdominant at large k so it does not affect the

semiclassical behaviour of ψza .
Secondly, the coherent state ζ(xa,ya)(m) on Ck is labelled by (xa, ya) ∈ [0, 2π)× [0, 2π), which can be viewed as the

angle coordinates on a torus T2. It is defined as [36]

ζ(xa,ya)(m) =

(
2

k

)1/4

e
ikxaya

4π

∑
pa∈Z

e−
k
4π (

2πm
k −2πpa−xa)

2

e
ik
2π ya( 2πm

k −2πpa−xa) . (182)
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xa, ya are related to the constrained coordinates (174) by

xa = mod(2π
k
m̂a, 2π) , ya = mod(2π

k
n̂a, 2π) . (183)

The over-completeness property of ζ(xa,ya)(m) reads

k

4π2

∫
T2

dxadya ζ(xa,ya)(m)ζ̄(xa,ya)(m
′) = δ

e
2πi
k

(m−m′),1
. (184)

The coherent state in HSa
is the tensor product of these two coherent states

Ψρa(µ|m) := ψza ⊗ ζ(xa,ya) ∈ HSa , ρa = (za, xa, ya) . (185)

It is easy to confirm that the expectation values of the operators µ,ν,m,n calculated by the coherent state Ψρa
(µ|m)

are given by the coherent state labels, or the classical phase space coordinate at large k limit, i.e.

⟨µ⟩ k→∞−−−−→ µ̂a , ⟨ν⟩ k→∞−−−−→ ν̂a , ⟨exp(2πi
k

m)⟩ k→∞−−−−→ exp(
2πi

k
m̂a) , ⟨exp(2πi

k
n)⟩ = exp(

2πi

k
n̂a) . (186)

It is only valid at the large k limit since the torus part of the coherent state ζ(x,y)(m) is normalized only at this limit.
With the second-class simplicity constraints imposed on the coherent state labels, one can define the vertex ampli-

tude by the inner product of partition function (164) and five coherent states (185), each associated to one Sa. That
is

Av(ι) := ⟨
5∏

a=1

Ψ̄ρa
|ZS3\Γ5

⟩ =
∑

{ma}∈(Z/kZ)5

∫
R5

d5µa ZS3\Γ5
({iαab}a<b, {µa + iαa} | {jab}a<b, {ma})

5∏
a=1

Ψρa
(µa|ma) ,

(187)
where ι = ({αab, jab}a<b, {ρa}5a=1, {αa, βa}5a=1). It will also be convenient to denote the measure (175) in terms of
the coherent sate label: ∫

M
λ⃗

dρ f ≡
∫
M

λ⃗

dξ f . (188)

One of the most important features of the vertex amplitude Av(ι) is boundedness for any {ρ̂a}5a=1, which we now
explain. Firstly, the partition function ZS3\Γ5

∈ F (k)
PS3\Γ5

so, hence

5∏
a=1

e−
2π
k βaµaZS3\Γ5

(µ⃗+ iα⃗|m⃗) ∈ S(R5) =⇒

∣∣∣∣∣
5∏

a=1

e−
2π
k βaµaZS3\Γ5

(µ⃗+ iα⃗|m⃗)

∣∣∣∣∣ ≤ C1 with some 0 < C1 <∞ .

(189)
Secondly, ζ(xa,ya) is bounded∣∣∣∣∣∑

ma

ξ(xa,ya)(ma)

∣∣∣∣∣ ≤∑
ma

∣∣ζ(xa,ya)(ma)
∣∣ ≤ C2 with some 0 < C2 <∞ . (190)

Lastly, we need to evaluate the integration over the bounded function ψza(µa), which is a Gaussian integral:∣∣∣∣∫
R
dµa e

2π
k βaµaψza(µa)

∣∣∣∣ ≤ ∫
R
dµa

∣∣∣e 2π
k βaµaψza(µa)

∣∣∣ = (2

k

) 1
4
∫
R
dµa e

−π
k

(
µa− k

π
√

2
Re(za)

)2
+ 2π

k βa

(
µa− k

π
√

2
Re(za)

)

= (2k)
1
4 e

π
k β2

a .

(191)

Combing the results (189) – (191), we conclude that the vertex amplitude Av(ι) is finite. From the expression (191),
we have also seen the reason for the introduction of the prefactor e−

√
2βaRe(za) in defining ψza (181). If this term is

missing, we can only conclude that Av(ι) is finite given finite {Re(za)}.
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VI. SEMICLASSICAL ANALYSIS OF THE VERTEX AMPLITUDE

To see that Av(ι) is a good definition of a spinfoam amplitude for a 4-simplex, one should extract the geometry
encoded in the vertex amplitude. This can be done by looking at the semiclassical limit of Av(ι). The semiclassical
limit here refers to taking k → ∞, jab → ∞ while keeping their ratio jab/k fixed. Recalling that k = 12π

ℓ2pγ|Λ| and that
a = 12π

|Λ|
jab

k (or the other option of (163)), this means ℓp → 0 while the geometrical quantities e.g. a, n,Λ as well as
the Barbero-Immirzi parameter γ are kept fixed. It turns out that the Regge action with a cosmological constant
term is reproduced at the semiclassical limit of Av. We only summarize the idea of how to get it and refer to [9, 11]
for details.

The large-k asymptotics of the vertex amplitude can be analyzed by the stationary phase approximation. That is
to express Av(ι) into an integral of an exponentiated action:

Av(ι)
k→∞−−−−→

∫
dµ(X) ekS(X) , (192)

where X is a set of k-invariant variables, µ(X) is its measure and S(X) is the action. Let X = Xα
0 be the α-th

stationary point of S(X) such that

∂S

∂X

∣∣∣∣
Xα

0

= 0 , (193)

then the integral (192) can be approximated as∫
dµ(X) ekS(X) ∼

∑
α

1√
det (−Hα/2π)

ekS(Xα
0 ) , (194)

where Hα = ∂2(kS)
∂X2

∣∣∣
Xα

0

is the Hessian matrix evaluated at the α-th critical point.

Under this scheme, we first express the integration and summation variables µ⃗, ν⃗, m⃗, n⃗ back to Q⃗, ⃗̃Q, P⃗, ⃗̃P as they
are jab/k-dependent hence are scaleless:

µI =
kb

2π(b2 + 1)

(
QI + Q̃I

)
, mI =

ik

2π(b2 + 1)

(
QI − b2Q̃I

)
, (195a)

νI =
kb

2π(b2 + 1)

(
PI + P̃I

)
, nI =

ik

2π(b2 + 1)

(
PI − b2P̃I

)
, (195b)

The summations over ma and na also need to be altered to integrals for the stationary analysis. The trick is to use
the Poisson resummation formula∑

n∈Z/kZ

f(n) =

k−1∑
n=0

f(n) =
∑
p∈Z

∫ k−δ

−δ

dn f(n)e2πipn =
k

2π

∑
p∈Z

∫ 2π−δ/k

−δ/k

dJ f

(
k

2π
J
)
eikpJ . (196)

Putting these ingredients together, Av(ι) can be written into the form of (192) with∫
dµ(X) = N

∑
p⃗∈Z15

∑
u⃗∈Z5

∫
C×30

15∧
I=1

(
−i dPI ∧ dP̃I

)∫
C×10

5∧
a=1

(
−idQa ∧ dQ̃a

)
, S(X) = S(Q⃗, ⃗̃Q, P⃗, ⃗̃P) , (197)

where N is some k-dependent numerical factor, p⃗ comes from the Poisson resummation of n⃗ and u⃗ comes from the
Poisson resummation of ma. The positive angle α⃗ does not scale with k so it is not seen at the large-k limit of the
action.

The critical equations are given by the partial derivative with respect to the integration variables P⃗, ⃗̃P and Qa, Q̃a. A
direct calculation (see more details in [11]) shows that ∂S/∂PI = 0 and ∂S/∂P̃I = 0 are nothing but the reformulation
of the algebraic curve equations z−1 + z′′ − 1 = 0 and z̃−1 + z̃′′ − 1 = 0 respectively in terms of the new coordinates,
which solves P⃗α(Q⃗),

⃗̃P
α

(
⃗̃Q) in terms of Q⃗ and ⃗̃Q with α labelling the branches of LS3\Γ5

.
On the other hand, ∂S/∂Qa = 0 and ∂S/∂Q̃a = 0 relates the FG coordinates on the 4-holed sphere Sa to the labels

of the coherent state Ψρa in a natural way:

µa = µ̂a , νa = ν̂a , ma = m̂a , na = n̂a . (198)
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Note that after imposing the first-class constraints, 2Lab = − 4πi
k jab = −2L̃ab. The action evaluated at the critical

point is then

S(Xα
0 ) = S({2Lab, T α

ab({2Lab}), T̃ α
ab({2Lab})}, {ρa}) (199)

The derivative of S with respect to 2Lab is

∂S

∂(2Lab)
= − ik

2π(1 + b2)

(
T α
ab({2Lab})− b2T̃ α

ab({2Lab})
)
, (200)

which implies that

S(Xα
0 ) = − ik

2π(1 + b2)

∑
a<b

∫ 2Lab

T α
ab d(2L

′
ab) + c.c.+ Cα , (201)

where Cα is an integration constant. T α
ab can be calculated using framing flags [33] and it gives

T α
ab = −1

2
s sgn(V4)Θab + iπNab + f(θab, {ξ}, Lab) , Nab ∈ Z , (202)

where {ξ} denotes a set of spinors, Nab corresponds to a lift of T α
ab from ταab = eT

α
ab , and f(θab, {ξ}, Lab) is a function

depending on the boundary condition.
The result (201) can be improved by taking into account another critical solution as follows. Given boundary

conditions corresponding to boundary tetrahedra of a non-degenerate 4-simplex, there are exactly two critical points
A and A. They are called the parity pair, which also exist in the EPRL model [37]. Intuitively, the Chern-Simons
action (26) involves the self-dual and the anti-self-dual parts of the SL(2,C) connection in the same footing, it is not
hard to realize that the transformation

P : A = (A, Ā) −→ A = (Ā, A) (203)

is a symmetry of the equations of motion. The main consequence of such transformation is that the FN twist

P : T α
ab|A = −1

2
s sgn(V4)Θab + iπ Nα

ab|A + f −→ T α
ab|A =

1

2
s sgn(V4)Θab + iπ Nα

ab|A + f . (204)

This means the two solutions of the parity pair correspond to opposite 4D orientation of the 4-simplex. The difference
between the two solutions is

T α
ab|A − T α

ab|A = sgn(V4) (−sΘab + 2πiNab) , 2Nab = sgn(V4) (N
α
ab|A − Nα

ab|A) ∈ 2Z . (205)

Taking into the parity pair, we rewrite (201) and calculate its variation

δS = − ik

2π(1 + b2)
sgn(V4)

∑
a<b

(−sΘab + 2πiNab) δ(2Lab) + c.c.

= − kΛ

6π(1 + b2)
sgn(V4)

∑
a<b

(Θab − 2πiNab) δaab + c.c.

= −kγΛi
6π

sgn(V4)
∑
a<b

Θabδaab −
iΛk

3

∑
a<b

Nabδaab .

(206)

By the Schläfli identity of constant curvature 4-simplex [38]∑
a<B

δΘabaab = Λ|V4| , (207)

δS can be integrated and gives

S = − ikγΛ
6π

sgn(V4)

(∑
a<b

Θabaab − Λ|V4|

)
− iΛk

3

∑
a<b

Nabaab . (208)
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Recalling that aab = 12πjab

k|Λ| , the second term can be ignored in the exponential. We then conclude that the large-k
limit of the vertex amplitude does give the Regge action with a cosmological constant term:

Av
k→∞−−−−→= N+e

ikSRegge+C +N−e
−ikSRegge−C , (209)

where N± encode the Hessian, C is a geometry independent integration constant, and

SRegge =
γΛ

12π

(∑
a<b

Θabaab − Λ|V4|

)
. (210)

Now, we see the second main feature of the spinfoam vertex amplitude – reproducing the 4D Lorentzian Regge action
with Λ for a homogeneously curved 4-simplex.

A. Edge amplitude, face amplitude and the full amplitude

After a long journey, we have only defined and analyzed the spinfoam amplitude for a single 4-simplex. What about
a 4-complex? A straightforward way is to define edge amplitudes Ae’s and face amplitudes Af ’s for spinfoam edges
and spinfoam faces respectively, and then the amplitude for a 4-complex can be formally written as an integral and
sum of the product of vertex, edge and face amplitudes, i.e.

A4-complex =
∑
{j}

∫
dµ(Y )

∏
f

Af

∏
e

Ae

∏
v

Av , (211)

where Y is a set of internal configurations, so as the spins {j}. The edge amplitude describes the gluing of 4-simplices
through their 3D boundaries. As the vertex amplitude is defined relying on the 3-manifold S3\Γ5, such gluing can be
represented by gluing S3\Γ5’s through their 2D boundaries. On the other hand, the face amplitude is related to the
boundary Hilbert space [39]. We refer to [12, 13] for recent proposals of edge and face amplitudes and only formally
write the general spinfoam amplitude as follows.

The spinfoam amplitude for a spinfoam 2-complex consisting of V spinfoam vertices, Ein internal spinfoam edges
and Fin internal spinfoam faces takes the form

Z⃗̂ρ∂
(α⃗|⃗jb) =

(k−1)/2∑
jf=0

∫
Mj⃗va

dρv∈e
a

∫
M

j⃗v
′

b

dρ̂v
′∈e

b

 Fin∏
f=1

Af (2jf )

[Ein∏
e=1

Ae(ρ
v∈e
a , ρv

′∈e
b |{jv∈e

ac , jv
′∈e

bd }c,d)

][
V∏

v=1

Av(α⃗
v, j⃗v, ρ⃗v)

]
,

(212)
where v ∈ e denotes that v is at the (source or target) end of e, α⃗ contains all the positive angles, ρ⃗∂ contains all the
coherent state labels on the boundary, the summations in jf are for all the internal spinfoam faces and the integrations
over coherent state labels are for all the internal spinfoam edges.

We require that the vertex amplitudes, edge amplitudes and face amplitudes are all bounded and that the integra-
tions over the coherent state labels are over compact domains, then the spinfoam amplitude defined in (212) for any
spinfoam 2-complex is finite given finite boundary spins j⃗b and finite Chern-Simons level k.

VII. DISCUSSION, CURRENT STATUS AND FUTURE DEVELOPMENTS

In this note, we have illustrated the construction of the spinfoam amplitude for 4D Lorentzian quantum gravity
with a non-vanishing Λ, which combines the techniques from the existing spinfoam model with Λ = 0 (mainly the
EPRL model) and the geometrical quantization of the Chern-Simons theory on a graph-complement 3-manifold. The
spinfoam amplitude is finite by construction and it reproduces Regge action with a Λ term as desired. These robust
features enhance the capability of this spinfoam model to address Lorentzian quantum gravity problems at hand.

• A “moduli-space field theory” (MFT) formalism of the spinfoam model – a possible UV complete, triangulation-
independent quantum gravity theory with order-by-order finite amplitudes.
A MFT is an analogy of the Group Field Theory (GFT). The rough idea of group field theory is to express
quantum gravity in the action of a group-dependent field ϕ : Gd → C and compute the amplitudes, or correlation
functions, for different spinfoam graphs using the path-integral method.
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Here, we can use the coherent state defined in Section V C 2. Ψρ which is a field on the coherent state label ρ. Re-
call that ρ = (Re(z), Im(z), x, y) labels the phase space coordinates X = 2πi

k (−ibµ−m) , Y = 2πi
k (−ibν − n)

with the relation (treating µ, ν ∈ R as the positive angles do not encode the geometrical information of the
4-simplex)

µ =
k√
2π

Re(z) , ν =
k√
2π

Im(z) , m =
k

2π
x , n =

k

2π
y . (213)

Group them into two complex variables

u =
2π

k
(µ+ iν) , v =

2π

k
(m+ in) , (214)

and define the configuration for a tetrahedron (or equivalently a 4-holed sphere)

ι = ({jp}4p=1, u, v) , ι∗ = ({jp}4p=1, ū, v̄) . (215)

For notation consistency, the measure (188) can now be denoted as∫
M

λ⃗

dι ≡
∫
M

λ⃗

dρ . (216)

The coherent state Ψ(ι) is then viewed as a function on the moduli space Mflat(Σ0,4,PSU(2)) of PSU(2) flat
connection. Require that Ψ(ι) satisfies the reality condition

Ψ(ι) = Ψ(ι∗) . (217)

The generalized moduli-space field action

S[Ψ] = K[Ψ] + V [Ψ] (218)

contains a kinetic term K[Ψ] ∼ Ψ2 and an interaction term V [Ψ] ∼ Ψ5. The kinetic term is defined as

K[Ψ] =
∑

{jp}∈(Z/kZ)4

∫
M

λ⃗

dιΨ[ι∗]Ψ[ι] , (219)

where the sum is only for the admissible spins satisfying the triangular inequalities. The potential term should
reproduce the vertex amplitude hence we define it to be

V [Ψ] =
g

5!

∑
{jab}a<b

5∏
a=1

∫
M

λ⃗a

dιa Av({ιa}5a=1)

5∏
a=1

Ψ[ιa] , (220)

where g is the coupling constant. Since the measure is over a compact space and the integrands we encounter are
all bounded functions, it is not hard to expect that the path integral of the action (218) gives finite amplitude
order-by-order. Such a formalism includes a sum over all the triangulation hence it is triangulation-independent.
The cutoff on spins renders UV completeness of the theory under this formalism.

• We have seen in Section V C 2 that the framing flags on Σ0,4 can be replaced by the spinors when
Mflat(Σ0,4,PSU(2)) is concerned, i.e. when the simplicity constraints are imposed to implement 4-simplex
geometry on the Chern-Simons partition function. These spinors (together with the spins {jab}) can be used
to reconstruct the phase space coordinates (including the FN lengths and FG coordinates on 4-holed spheres)
that correspond to a (real) critical point of the spinfoam amplitude. This provides an algorithm, which is ready
to be used for numerical development, to compute the critical behaviour of the spinfoam model, starting from
which one can study e.g. the complex critical points and perturbation theory of the spinfoam model. This is
similar to the strategy of the numerical study of the EPRL model [40–42, 42].

• One can also potentially tackle physical questions with this spinfoam model: What is the physical Hamiltonian
corresponding to the spinfoam model? How do we couple matter field to the spinfoam model to define physical
time? How does it apply to reduced model e.g. cosmology and black holes? What are the boundary symmetries
and charges encoded in the spinfoam model for a general 4-complex?
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Apart from the above plausible directions of development, the spinfoam itself could still be modified or improved.

1. Firstly, the spinfoam amplitude for a general 4-complex is so far constructed by gluing spinfoam vertices together
with edge and face amplitudes using the spinfoam ansatz (211). Chern-Simons partition functions are only used
to define the vertex amplitude. However, when a more complicated 4-complex is concerned, one can in principle
construct the Chern-Simons partition function for the graph-compliment of the boundary of the 4-complex in
the same way as how we construct the Chern-Simons partition function on a single 4-simplex. One can then
impose simplicity constraints all at once on such a more-volumed partition function, which could potentially
simplify the construction. We also need to check if such construction gives the same result as gluing vertex
amplitudes.

2. The way to impose the second-class simplicity constraints is flexible as we only require weak imposition. It is
also possible to choose another coherent state that peaks at the same phase space configuration but lives in a
different Hilbert space, which would potentially change the construction of the GFT.

3. The simplest way to glue vertex amplitude is to identify FG coordinates X v
a = Yv′

b , Yv
a = X v′

b if Sa from 3-
manifold corresponding to spinfoam vertex v is glued to Sb from 3-manifold corresponding to spinfoam vertex
v′ (this way of gluing was used in [13]). It potentially imposes constraints on the topology of the 4-complex,
because such requirement is rather strong. It is better to define a gluing for any pair of edges on the ideal
triangulation of the 4-holed spheres. This would involve some local symplectic transformation which leads to
unitary transformation of the vertex Chern-Simons partition function. There is evidence that one may have to
lift Mflat(Σ0,4,PSL(2,C)) to Mflat(Σ0,4,SL(2,C)). Nevertheless, this allows us to generalize the construction
of the spinfoam model to be more adaptive for different 4-complexes.
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