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This series of lectures with a total length of 3 hours aims to give a (hopefully) comprehensive introduction to the 4D
Lorentzian spinfoam model with a cosmological constant to the level of frontier research based on this spinfoam model.
This lecture note includes all the content in the lectures and provides additional details. We assume the readers have
prior knowledge of the canonical Loop Quantum Gravity and Spinfoam model with vanishing cosmological constant,
especially the EPRL model, which were introduced during the summer school before this mini-lecture. We refer to
[1-4] for an elaborate introduction for these preparing content and excellent review articles [5—8] for an overview on
the field of LQG and spinfoam, as well as 2021 Loop Quantum Gravity online Summer School for recorded lectures
in a previous Loops’ summer school.

Readers may find this lecture note overlaps with [9-13], to which we refer for more details.
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II. PREPARATION: THE IDEA OF SPINFOAM

Before we dig into the spinfoam construction for quantum gravity with A = 0, we first briefly review the construction
of spinfoam with A = 0, mainly the EPRL spinfoam model, whose formalism will be deformed to include a non-
vanishing A.

We work on the Lorentzian signature n := diag(—1,1,1,1). The conventions of the completely anti-symmetric
symbol is

60123 = 1, €0123 — —1. (1)

The first-order gravity action is in terms of the tetrad e and connection A, which are both sl(2, C) valued one-forms.
The action on a 4-manifold M, takes the form

R

Scrle, A= /M (e Nen F(A), ()

where F(A) = dA+ [A A A] is the curvature 2-form of A. The invariant non-degenerate bilinear form over s((2, C)
evaluates as (X AY) := %e 1 EX T Y5 for two forms X and Y. We will work in units where the reduced gravitational

constant  := 87G = 1 in the rest of the note.
The equations of motion are not altered when one adds the so-called Holst term to the action in terms of an
additional constant called the Barbero-Immirzi parameter «y, giving rise to the Holst action of general relativity:

St = /M4 <e Ae A F(A) — % w(ehe) A }‘(A)> , 3)

where « is the Hodge star operator that acts on the internal indices as (xX)r; = %GUKLXKL and satisfies ¥ = —1.

Here, we require v € R.
The actions (2) can be formulated into a constrained sl(2,C) BF action

Sur[B. Al = /M (B AF(A)) (4)

where the B-field is constrained to take a simple form

Bézlze/\e. (5)

This is, therefore, called the simplicity constraint. Similarly, (3) can also be formulated into BF-type:

Supr[B, A] = /M4 <(1 — i*> B A ]-'(A)> = /M4 Tr K* + i) B A }'(A)} : (6)

where Tr(XY) = X!7Y;; for two forms X,Y. The momentum conjugate to A is simply

1 1
IT:= % (1 — *) B= (*—i— ) B, equivalently B = (1 —~*)II. (7)
Y Y

g
1+92

Apparently, if v = +4, the relation between B and II is not invertible. When one separates the action into the self-dual

part and anti-self-dual part, v =4 (resp. v = —i) corresponds to projecting out the self-dual part (resp. anti-self-dual
part) of B.
The constraint B = ®e A e implies that
1 1
1€ B BT = det(e)e " = peryicre T BBk = — det(e) . (8)

When ~ # i, which is the case in our setting, integration over B is equivalent to integration over II as they are
linearly dependent. Quantization of the BF theory with action (6) is given by the functional integration

/dA/dBeéSHBF[B’A] _ /dA/dHeé Jaag s B2 /dAé(}'(A)), (9)

where £, = v8rGh/c3 is Planck length.



Given My with boundary OMy, let [ As] be a gauge-invariant state on My as a function of boundary connection
Ay = Algm,. We define a BF amplitude of the state as

(BF[4[Ag]) = / AAG(F (A As) . (10)

In spinfoam model, we choose such boundary states, denoted as vr that has support only on a graph I' € 9M, and
that depends on Ay through holonomies G;[Ap] along links of I'. That is, ¢¥r[As] = ¥r[Gs[As]]. Such states are
called the SL(2,C) spin network states.

The building block of the spinfoam amplitude for a general 4-manifold is given by the BF amplitude associated to
a 4-ball M4 = By, whose boundary is a 3-sphere S3. In this case, it is natural to consider the boundary graph to be
I's which is dual to the boundary of a 4-simplex o (which is composed by 5 tetrahedra sharing 10 faces pairwise).

To encode gravity in this topological theory, following the EPRL spinfoam model construction, one imposes the
simplicity constraints (quantumly) on the BF amplitude (BF|¢r,). In particular, the simplicity constraint (5) is
quantized to an operator and it acts on tr,, which restricts the validity of boundary states.

Let us look more into how the quantum simplicity constraints are implemented. We first observe that the constraint
(5) can be decomposed into 3 parts:

diagonal part: (*B),, - Buw =0
off-diagonal part: (xB),, - Bu, =0 (11)
dynamical part:  (xB),, - Bpy = 2V euon

where the indices u, v, p,n are all different. Upon triangulation, these constraints are promoted to constraints on a

4-simplex as follows. Define the discretized B-field in the frame of tetrahedron t associated to a boundary triangle f
as By/(t) = [, B"’(t) with I, J = 0,1, 2,3 being the internal labels, then the discrete versions of (11) are [14-16]

diagonal constraints: eIJKLBJIcJ(t)BJIfL(t) =0, Vfet, (12a)
off-diagonal constraints: eIJKLBlfJ(t)B;{,L(t) =0, Vi, fet, f#f, (12b)
dynamical constraints: eUKLBJIcJ(t)B;gL(t') =+12Vy(0), Vfet, ffet £ttt o, (12¢)

where f, t and o denote a triangle, a tetrahedron and a 4-simplex respectively. V(o) denotes the 4-volume of o,
f €t denotes that f is on the boundary of ¢, and ¢t € o denotes that ¢ is on the boundary of o. (12¢) can be implied
from (12a) and (12b) hence is redundant. There are two sets of solutions to the constraints (12):

B}J(t) = :l:eI(t) A e‘](t) or * B}{J(t) = :l:eI(t) A e‘](t) , (13)

where ef(t) is a tetrad 1-form in a Cartesian coordinate patch covering t. The first solution can be viewed as the
discretized version of (5). The two quadratic constraints (12a) and (12b) can be strengthened to a single set of linear
constraints

linear constraints: 3 N; such that NJBJIcJ(t) =0, Vfet, (14)

which selects the first solutions from (13) as wanted. We will treat (14) as the full set of simplicity constraints and
generalize it in the new spinfoam model.

The simplicity constraints then imply that the discretized B-field B}J(t) measures the area ay = |%6[JKLNJB;(L ®)]
of the triangle f. One can gauge fix the vector Ny = Ny to be timelike, then (14) is equivalent to the statement that
the tetrahedron ¢ is spacelike. Moreover, not B]{J (t)’s of all the 4 triangles are independent for a given tetrahedron ¢
but they are subject to the closure constraint that generates the SU(2) gauge symmetry:

Y B()=0 <« > am;=0, (15)

fet fet

where nfp is the normal vector to f satisfying |ny| = 1. By Minkowski’s theorem, the simplicity constraint (14) together
with the closure condition (15) allows us to identify a convex tetrahedron whose face areas and normals are given by
ay’s and nf’s.

In the quantum theory, the constraint (14) will be promoted to constraint operator which acts on the partition
function. The above classical description is enough for us to introduce the spinfoam model with a cosmological
constant by generalization while the construction of the partition functions in the new spinfoam model is relatively
different from the EPRL model. For this reason, we will not describe in detail the quantum theory of the EPRL
model here but only mention the necessary ingredients thereinafter. We refer interested readers to the original series
of papers [14, 15, 17].



III. FROM 4D GRAVITY WITH A TO CHERN-SIMONS PATH INTEGRAL

As above, the starting point of the spinfoam model with a cosmological constant is the Holst action adding a
cosmological term. The corresponding topological BF action, denoted as Sapr, is

Sapr(B, Al = /M4 Tr [(*+ i) BA (]—'(A) _ %B)} . (16)

The trace is taken in the sl(2,C) Lie algebra and it evaluates as Tr[X A Y] = X!/Y;;. Slightly different from some
literature, we let Sapr depend on the absolute value of the cosmological constant |A| so that the sign is encoded in
the simplicity constraint:

B=sgn(A)eAe, (17)

imposing which one recovers the first-order action of general relativity with a cosmological constant A, written in
terms of the cotetrad e and the connection A

Sarle, Al :/ 4Tr K*+ i) (ene)A <f(A) - jg(e/\e))} . (18)

M

The equations of motion of (16) from varying the B field leads to a linear relation between the F field and the B field,
which transfers to the equation between the curvature and the cotetrad after imposing the simplicity constraints.

aSABF |A| B22sgn(A)ene
A =0 = Foifp O

]:gge/\e. (19)

The right-most equation above is the simplicity constraint that we will implement to the theory.
The path integral of the action (16) contains a Gaussian integral for the B field, performing which is equivalent to

imposing the solution F = %B. It leads to

/ dAdB % — / dA exp (%;A' [ m K* + i) F(A) A ]-‘(A)D . (20)

We separate F into its self-dual part ' and anti-self-dual part F w.r.t. the x operation, i.e.

F=F+F, F=-(1-ix)F, F=-(1+ixF, *xF=iF, xF=-iF. (21)

N |
N

As %2 = —1 in the Lorentzian signature, the above was done by first complexifying the s[(2, C)-valued variables before
the separation (see (33)). (20) can then be written as

/ dAdA exp < 5 (1 - 1) Te[F(A) A F(A)] — (1 + ;) Tr[F(A) A F(A)]) , (22)

222|A| J m, y

where A and A are the self-dual and anti-self-dual parts of A respectively and £, is the Planck length. As the exponent
is a total derivative term, (22) becomes a path integral of SL(2,C) Chern-Simons action with complex level on the
boundary OM4. When My is topologically trivial, (22) takes the form as

/ dAdA e—iSeslAl—iSesA] / dA e iSeslAl (23)
where
t 3 - t - _ 3.
Scs[4] = — Tr [ANdA+ -ANANA|, Scsld]=— Tr |[ANdA+ -ANANA]| . (24)
87T OMy 2 87T OMy 2

The level ¢ and its complex conjugate ¢ can be separated into real and imaginary parts as

127

t=k+is, t=k—is, wherek=—-¢
A

Zy, s=~keR. (25)



k € Z, is required for the gauge invariance of the partition function (23). Therefore, the quantization of gravity on a
4-manifold M4 with a cosmological constant A now relates to quantization of the SL(2, C) Chern-Simons theory with
complex coupling constant on the 3D boundary dM, of the manifold:

t t

- 3 _ 3. -
SCS[A,A]:—/ ’IT{A/\dA—l—A/\A/\A}—i-/ Tr[AAdA+AAAAA . (26)
8 OMy 2 8 OMy 2

The connection A (as well as A) is now restricted to the 3-boundary dM,.

Following the same spirit as in the EPRL model, the spinfoam amplitude can be defined as the inner product of the
CS partition function coupled with a gauge-invariant state ¥[.A] on M, that encodes the information of quantum
geometry, formally written as

Asp = (CS[[A]) = / dA e iSEs My ), (27)

on which we impose the (quantized) simplicity constraint. Since the simplicity constraint requires non-trivial magnetic
flux by (19), certain defect has to be introduced to the Chern-Simons theory (otherwise the Chern-Simons theory
would imply F = 0 by the equation of motion). Therefore, the construction of spinfoam model with a non-vanishing
cosmological constant on a spacetime manifold M relies on the quantization of the SL(2, C) CS theory with a complex
level t on its boundary M, with defects, which we describe in detail in the next section.



Interlude: Self-dual and anti-self-dual decomposition for s[(2,C)¢

This part of the note consults mostly Appendix B of [9]. The real generators {77/} ;(I,J =0,---,3) of Lie algebra
5[(2,C) have components

JU=K', JY=¢JF, i k=123, (28)
which satisfy the commutation relations
[T, =7 g% KK =~ JF, K] =€ K" (29)

Decompose X = X;;J" € sl(2,C)c into its self-dual part X, := (1 —ix) X and anti-self-dual part X_ :=
1 (14 ix) X which satisfy xX4 = +iX, whose components are

1

1
(Xi)u = B} <XIJ + 2€1JKLXKL) . (30)

Define the self-dual basis T for s[(2,C) and anti-self-dual basis T as

k + 'Kk:
pk = EET (31)
2
Then any (anti-)self-dual component of X can be written under the (anti-)self-dual basis as
. 1 45 .
Xi = (X1), TE, with (Xi), = € 1 Xij FiXop . (32)

The (anti-)self-dual basis satisfy the commutation relation of an su(2) Lie algebra separately and they mutually
commute:

[TL,TL) = €7, Tk, [TL, T4 =0, (33)
And their bilinear form is chosen to be

(T3, 1) = %5”‘ , (T4, T2) =0, (34)
which gives (X,Y) = 2e!7 ) X; ;YKL The self-dual generators (resp. (anti-)self-dual generators) satisfying (33) and

(31) can be represented in Weyl’s left-handed (3,0) representation (resp. Weyl’s right-handed (0, §) representation)
as

1 k . k k
z0: F=2 =" — =7
0,2): g A A
"2 20 2 - 2%
Then the bilinear form (341) is realized by
Ty, 1) = FiTr (TLTL) (36)

For real-valued X, we have X_ = X, with the bar denoting the complex conjugate.

IV. CHERN-SIMONS PARTITION FUNCTION ON THE TRIANGULATED 3-MANIFOLD

The building block of the spinfoam amplitude is the vertex amplitude A,,. To construct A,,, we consider My to be
a 4-simplex which is topologically equivalent to a 4-ball B4, and quantize the Chern-Simons theory on its boundary
which is topologically isomorphic to a 3-sphere S3.

The triangulation T3 of S3 is the boundary of a 4-simplex. It contains 5 tetrahedra sharing 10 triangles. Their



duality is summarized in Table I. The dual graph of a 4-simplex ¢ contains 5 nodes connected by 10 links and is
denoted as I's (See fig.1).

triangulation T3 of S®[I's graph
tetrahedron ¢ node v
triangle f link e
edge F face

TABLE I: The one-to-one correspondence of the triangulation of 52 and its dual graph I's. We will use the same
terminologies and notations throughout this note.

Upon triangulation, one should smear the simplicity constraint (19) over the sub-simplices of the 4-simplex, the
quantization of which will define an operator on the wave functions on the 4-simplex. As the constraint takes the form
of 2-forms, it is natural to smear it over 2-simplices — triangles, then the curvature is smeared as F{’(t) = [, F'7(t).
In the dual picture, the violation of flatness occurs only on the links of I's. In other words, the simplicity constraint
operators are only inserted on the links of I's. Let us now view I's as a graph embedded in S3. A key idea of
constructing this spinfoam model is to utilize the following equivalent treatment:

operator insertion along a graph

remove the graph and its open tubular neighbourhood then impose boundary condition on the graph complement .

Therefore, instead of inserting a simplicity operator to I's, we will remove I'5; and define a CS quantum state on the
graph complement S3\I's which is the complement of an open tubular neighbourhood of I's in S% and then impose
boundary conditions on 9(S*\I's).

W1

FIG. 1: The I'; graph (projected on R?) as the dual graph of the triangulation T3 of S3.

We first perform the former step — to define a CS partition function on S®\I's applying the method developed in a
series of works [18-23]. The quantization of complex Chern-Simons theory uses the ideal triangulation of the graph-
complement 3-manifold, say T'-complement of M3 denoted as M3\I". The building blocks of the ideal triangulation
are the ideal tetrahedra /\’s, which are tetrahedra with vertices truncated into triangles as shown in fig.2a . The
original boundaries of an /A before truncation are called the geodesic boundaries of /A and the truncated vertices are
called the cusp boundaries (or disc cusp) of A. The boundaries of M3\I" can also separated into two types:

e geodesic boundaries — boundaries created by removing open balls around nodes of I', which are holed spheres,
and

e cusp boundaries or annulus cusp — boundaries created by removing the tubular neighbourhood of links of T,
which are annuli.

An ideal triangulation decomposes M3\I" into a set of ideal tetrahedra such that the geodesic boundaries are tri-
angulated by the geodesic boundaries of A’s while the annulus cusps are triangulated by the disc cusps of A’s. An
example of the ideal triangulation of a four-valent-node-complement of 52 is illustrated in fig.3. It is part of the ideal
triangulation of S®\I's.

The triangulation of S*\I's can be decomposed into 5 ideal octahedra (see fig.1), then each ideal octahedron can
be further decomposed into 4 ideal tetrahedra by adding an internal edge (see fig.2b). As a result, the triangulation



FIG. 2: (a) An ideal tetrahedron whose edges are dressed with edge coordinates (z,2’,2"”). Each pair of

opposite edges are dressed with the same coordinate. The disc cusps are filled in gray. (b) An ideal octahedron.

Choose the equator to be edges dressed with z,y, z,w. Adding an internal edge (in red) orthogonal to the

equator separates the ideal octahedron into four ideal tetrahedra, each of which is dressed with different copies

of coordinates (x,2',z"), (v,y',y"), (z,2',2"), (w,w',w"). For edges shared by different ideal tetrahedra,
coordinates are multiplied together.

contains 20 ideal tetrahedra in total. (One should not confuse the ideal tetrahedra from triangulating S3\I's with
the tetrahedra from triangulating S® as the boundary of the 4-simplex.) The boundary d(S3\I's) of S3\I's is made
of five 4-holed spheres {S,}>_; and 10 annuli {(ab)|a < b, a,b =1,--- ,5} connecting these holes. The triangulation
of S3\I's induces the ideal triangulation on its boundary 9(S3\I's). The ideal triangulation of a 4-holed sphere S,
contains four triangles located at the holes and four hexagons as illustrated in fig.3b. On the other hand, an annulus
is triangulated into the boundary of a triangular prism whose two triangles are identified with the cusp discs the
annulus connects and the four parallelograms are either split into two triangles or four triangles depending on the
choice of equator of each ideal octahedron. Combinatorially, d(S3\I's) is triangulated into 20 hexagonal geodesic
boundaries and 30 quadrangular cusp boundaries.

The purpose of such ideal triangulation is to construct the partition function Zgs\p, with the building blocks given
by the SL(2,C) Chern-Simons partition function for an ideal tetrahedron A, which has been well studied in the
literature (see e.g. [19, 21, 24]) and we review in the coming subsection.

1. Step 1: Ideal tetrahedron partition function

As is well-known, the phase space of CS theory with gauge group G on a 3-manifold Mj is the moduli space of
flat connection valued in the Lie algebra g of G on the boundary M3 of Mg which is an oriented surface, denoted
as Maa: (OMs3, G). Tt is defined as

Mot (OMs3, G) := {g-valued connection A on IM3 |dA+ ANA=0}/G, (37)

1 An ideal tetrahedron can be lifted to the hyperbolic 3-plane H? with all the vertices located at infinity and all faces along geodesic
surfaces of H3, on which one can describe hyperbolic geometry. See more details in e.g. [24]. We will, however, not use this picture in
our construction.



Uq

(a) ®)

FIG. 3: (a) lllustration of part of the S3\I's. A four-valent node v, € I's and its neighbourhood is removed

from 52 and generates a part of the boundary as a 4-holed sphere S, whose holes are connected to annuli.

(b) The ideal triangulation of (a). Vertices created by edges of the graph piercing through the sphere are

truncated into triangles. Each such triangle is connected to the boundary of a triangular prism which is the

ideal triangulation of an annulus in (a). (The triangulation of the parallelograms in triangular prisms is not

shown for a clear visual effect.) In the full triangulation of S3\I's, each triangular prism is connected to a pair
of truncated vertices from two different triangulated 4-holed spheres.

where the quotient is by the conjugate action of G. For dMs, it is isomorphic to the homomorphism from the
fundamental group of M3 to group G up to conjugate action, i.e.

Mt (OMs, G) = Hom(m (9Ms3), ) /G. (38)

We will take it as the definition of Ma,:(OM3,G) in this note. It is a symplectic space endowed with an Atiayh-
Bott-Goldmann symplectic structure Qcs = [, M, 1T (BAAGA) (up to constant) for the holomorphic connection with
d denoting the variation on field. Indeed, Mg, (M3, G) is a subspace of Mgat(0Ms,G). More importantly, it is a
Lagrangian submanifold of the latter. This means we can first construct functions on the phase space Mgt (OM3s, G),
which is a more natural starting point for quantization, and then restrict to its subspace Mgt (M3, G). This is the
strategy we take in constructing this spinfoam model. In particular, we consider G = PSL(2,C) = SL(2,C)/Zy and
M3 being an ideal tetrahedron A. (We will later lift the gauge group to SL(2,C) in the quantization step.) To get a
non-trivial moduli space for A, we add, on top of that, an extra structure — a framing flag — to each cusp boundary of
A2 A framing flag s is a flat section in an associated CP' bundle over the cusp boundary. It can be viewed as a C2
vector field on a cusp boundary, defined up to a complex scaling by the flatness equation ds = As. In other words,
the vector s(p) at a point p of the cusp boundary is the eigenvector of the holonomy around the cusp boundary based
at p. A flat connection with a choice of framing flags on cusp boundaries is called a framed flat connection.

The phase space of PSL(2,C) Chern-Simons theory on the boundary 0A of an ideal tetrahedron A is the moduli
space of framed flat PSL(2,C) connection on 9A, which we denote as Pya. It can be spanned by the so-called
Fock-Goncharov (FG) coordinates dressing the edges of the geodesic boundary of dA, which we now describe [26].
Consider the ideal triangulation of a 4-holed sphere as shown in fig.3b. Label the holes with number 1,2,3,4. Each hole
1 is triangulated into a disc cusp and is associated with a framing flag. Each edge E can be viewed as the diagonal of
a quadrilateral as in fig.5. Parallel transport the framing flag from hole i to a common point inside the quadrilateral
and denote the parallel transported framing flag as s;. Referring to the relative locations of the holes and edge FE, the
FG coordinate g associated to E is defined by the cross-ratio of framing flags as

<51 /\82><83/\S4> . T
Tg = (51 A 52 (52 A 5a) where (s; A s;) = S?s; - 8%89, with s; = (s?,s]) . (39)

2 The introduction of a framing flag is related to avoiding singularity when the Kéhler mass parameters associated to the cusp boundaries
are zero. See e.g. [21] for a more detailed discussion.
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oct(1) | oct(2)

IN]

oct(5)

FIG. 4: The decomposition of the ideal triangulation of M3 = S3\I's into 5 ideal octahedra (in red), each

of which can be decomposed into 4 ideal tetrahedra. The cusp boundaries of the ideal octahedra are shrunk

to vertices in this figure. (See fig.2b) for the ideal octahedron with un-shrunk cusp boundaries.) Numbers

and each is on a boundary triangle of the tetrahedron in gray) are the faces where a pair of octahedra are

glued. Two ideal octahedra are glued through pairs of faces having the same label (with different subscripts).

In each ideal octahedron, z,y, z,w (labelled in red) are chosen to form the equator of the octahedron. The
same figure appears in [11, 25].

It is apparent that such a definition is invariant under the complex rescaling of any framing flag and SL(2, C) gauge
transformation of all s;’s as the inner product (-, -) is SL(2, C) invariant. The definition (39) can be extended to define
the FG coordinates on an n-holed (n > 4) sphere.

The PSL(2,C) holonomies on 9A can be written as 2 X 2 matrices whose matrix elements are in terms of the edge
coordinates dressing the edges they cross. This is called the “snake rule”. There are three rules for transporting
a snake — an arrow pointing from one vertex of the triangle to another with a fin facing inside the triangle, each
corresponds to a matrix as follows. (The inverse transportation of each type corresponds to the inverse of the relevant
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FIG. 5: A quadrilateral in a 2D ideal triangulation to define FG coordinate xg in terms of the framing flags
{8i}i=1,...,4 by (39).

matrix.
type I: type II: 1 type III: 1
(40)
Type I and II correspond to transporting a snake within a triangle and III correspond to moving a snake from one
triangle to its adjacent triangle. Any holonomy of a closed loop can be calculated by multiplying the transportation

matrices from the left corresponding to moving a snake along the holonomy.
For a holonomy along a disc cusp with eigenvalue A = e”, we use Type I and Type III snake rules to calculate that

h = 11 [((1) _2E> <} ?)} e PGL(2,C). (41)

E around disc cusp

Its normalization defines a PSL(2, C) holonomy whose eigenvalue gives

11 (—ap) = A2 > (xg —im) = 2L, (42)

E around disc cusp E around disc cusp

where xg is the logarithmic of zg with a chosen branch. One immediately realizes that the edge coordinates are not
sensitive to the sign of the eigenvalue A. This reflects the fact that the gauge group the FG coordinates describe is
PSL(2, C) rather than SL(2,C). One can easily choose a lift \/—zg or —/—z g of the edge coordinates, in which case
the gauge group is lifted to SL(2,C). When the eigenvalues are all fixed for holonomies around the four disc cusps of
0/, the moduli space of flat connection on A is a symplectic space with the Poisson structure given by

{Xe,XE'} = €ER", (43)

where egpg: = 0,41 counts the oriented triangles shared by E, E’ and egp = 1 if E’ occurs to the left of E in the
triangle?.

The FG coordinates on 9/ are obtained from those for a 4-holed sphere by setting the eigenvalue A = 1 for
holonomy around any of the disc cusp. Consequently, Pya is given by three FG coordinates {z,z', 2"} € C* each
labelling a pair of opposite edges of A as shown in fig.2a and it is defined as

Pon = {2,7,2" € C*|22'2" = —1} € (C*)?. (44)

The corresponding holonomy calculated by the snake rule is

A R TC) TR TER) N (RS B

3 For degenerate triangles, e could be 2, which we do not encounter here.
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is a PSL(2,C) element as A = 1 hence det(h) = 1. The constraint zz'z”" = —1 eliminates one edge coordinate, say z’,
then the holomorphic part of the Atiyah-Bott-Goldman symplectic form can be written as

dz" dz
/\ _

1"

Q:

A (46)

Taking the anti-holomorphic coordinates into account, the symplectic form for the Chern-Simons action (26) is:

79 79 47
Whys = 4 + 4 (47)
Lift these coordinates to their logarithmic correspondence, Z :=log(z), Z’ :=log(z’), Z" := log(z") and similarly for
the anti-holomorphic counterparts, the constraint of the edge coordinates and the Poisson structure induced by (47)
are

Z+2' +2"=in=2+2 +2 , {2,2Va=1={Z,7"}5. (48)
Therefore, (Z,Z") and (Z, 7”) form two canonical pairs. The quantization is based on another equivalent canonical
pairs (u,v) € R? and (m,n) € (Z/kZ)? defined as

211 211 — 2m v 2me

Z== (—iby —m) , Z”:T(—iby—n), Z=— (=ib"'p+m), Z = - (=ib™'v+n) , (49)
where b is a phase parameter related to the Barbero-Immirzi parameter:
1—iy 2k _ 2k
b = Re(d) >0, Im(b)#0, [b|=1 = t=—"— &= 50
o Re®)>0. Im()#£0. Py s = (50)

— =,
Conversely, one can express Z,Z"”, 7,7 in terms of (u,v,m,n) as

k ik — k ik —n
7+7 - 7 -v’7) (Z“ Z) - (Z”—b2z), — b4+t
n=g.gZt2), m=gos( ). v=g50 7 ) @=0b+

(51)

The symplectic form in terms of the new variables and the Poisson brackets it generates are

27 k
Whys = 7 (dvAdp—dnAdm), {pvi,={nm}l, = 7 {p,n}o ={v,m}, =0. (52)
To promote to the quantum theory, we introduce quantum parameters
47 271 47 271 P

e () o] <o amon () e [Fuvs] b o

Here, h := 47/t (or equivalently h := 4mi/t) is a (non-standard) complex quantum parameter related to the Chern-
Simons level. It is called a quantum parameter because it is proportional to the Planck constant A with a complex
coefficient (taking convention G = ¢ = 1):

8mi|Aly

h= A
3(1+iv)

(54)
Indeed, the limit h — 0 corresponds to the classical limit. A Poisson bracket {z,y}. is quantized to a commutator
by [Z,9] := @w /i. We allow the analytic continuation of u,v to be in C by adding imaginary parts, and define
Z,7".Z and Z" in the same way as in (51) with these complex variables. Then Z (resp. Z”) is not necessarily
the complex conjugate of Z (resp. Z"). The exponential of Z and Z" are denoted as Z and 7 respectively. The
quantization of Py promotes p,m (resp. Z, Z) to be multiplication operators p, m (resp. z,i) and v,n (resp.
zZ", 2”) to be derivative operators v,n (resp. Z”, i”) with the commutators

[Z'.Z)=h, [2'Z)=h <= [p,v]=[nm]= [,n] = [v,m] = 0. (55)

2’
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Upon quantization, we require the imaginary parts of u and v remain to be c-numbers. Projecting the commutators
to the exponential operators z,z"”,z,z”, one finds ¢g-Weyl and ¢-Weyl algebras

" 1 ~I~ ~~~/] ~I ~1 "~ ~_ I
7'z =qzz", 72"'z2=qzz", Z'z=27", 2"'72=122". (56)

Due to the discreteness and periodicity of m,n, the spectra of m,n are discrete and bounded to be Z/kZ. On the
other hand, the spectra of u, v are real. The kinematical Hilbert space is hence

Hils = L*(R) @c C, (57)
where CF is a k-dimensional vector space. The quantum operators p, v, m,n act on a wave function f(u|m) € ’Hl,;“;

as

27 27 27

pf(plm) = pf(ulm),  vf(plm) = *%%f(ulm)v e * M f(ulm) = eF " f(ulm),  eTF P f(plm) = f(plm +1).
(58)

or a re-parameterized version
2f(2,2) = 2f(2,2), 2'f(2,2) = f(az,2), 2f(22)=%2f(22), 2'f(z2)=f(2§2). (59)
Another equivalent way to write it is
zf(ulm) = zf(ulm), 2f(u,m)=Z2f(ulm), 2"f(ulm) = f(p+iblm=1), 2"f(ulm)=f(u+ib~*|lm+1) . (60)

(z,2") are holomorphic coordinates on Py . The moduli space of flat PSL(2, C) connection on an ideal tetrahedron,
denoted as L, is a holomorphic Lagrange submanifold of Py determined by further requiring the holonomy h defined
in (45) to be trivial. In other words, La is an algebraic curve given by

Lan={(22"2,7")ePor |27 +2"-1=0,2"" 47" -1=0}. (61)
Quantization promotes the algebraic curve to the quantum constraints whose solution WA (u|m) satisfying
(z ' +2" —1)Up =z +2"—1)Ua(u/m) =0 (62)

defines the Chern-Simons partition function. WA (u|m) is the quantum dilogarithm function [22, 27-29] *:

rr l—@tiz!
U (plm) = H T_qiz 1 (63)
=0

The name “quantum dilogarithm” comes from the fact that its classical limit at ¢,§ — 1 reproduce the dilogarithm
function Liy(2) defined as

“In(1 — 2k
Lig(z)::—/o %duzz%, 2eC, (64)
k=1

which is the generalization of the logarithm function whose Taylor expansion around 1 gives

o0
x

—In(1—2) = —. (65)
ok

E

For each m € Z/kZ, ¥ a(p|m) defines a meromorphic function of p and is analytic. ¥ has poles on the real line and
in the lower half-plane Im(x) < 0 but is holomorphic in the upper half-plane Im(u) > 0. More precisely, its zeros and
poles are at

: >1
Hzero/pole = 1ibu + b |uw€EZ, u—v=-m+kZ} with {Zeros o= (66)

poles:  u,v <0’

4 The result (63) is due to the choice of k € Z4 hence v > 0 and |g| > 1. For k € Z_ and hence || < 1, the expression of the quantum

I . 0 | itl, -1
dilogarithm function is ¥ A (u|m) = [] T g7 -T"
Jj=0
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Ty
ok Tub b b
A
xRl x
* bk »
% w%3kb < X

FIG. 6: Distributions of poles (in red) of WA (u|m).

The poles are illustrated in fig.6.
An important aspect of ¥a (u|m) is its asymptotic behaviour at Re(u) — £oo. Fixing Im(p), U (p|m) asymptot-
ically behaves as

O(1), Re 0
wm—{() () =+ (67)

exp [% (n— %Q)2 + O(l)] , Re(p) = —o0’

where Q = b+ b~! > 0. This follows from the integration expression of the quantum dilogarithm function equivalent
to (63) (see e.g. [22]). Indeed, U (u|m) diverges when Re(u) — —oo so it is not a squared integrable state in the
“naive” Hilbert space H¥" defined in (57). However, we can find a functional space where WA (uz|m) can be naturally
valued and which renders all integrals well-defined.

Consider a 2N-dimensional symplectic space (P,w) with Darboux coordinates (u;,m;)i=1,... v and (v, n;)i=1,...
with symplectic structure

N

)

N
2
w= %Z(dm/\dui—dm/\mi) ) (68)
i=1

This symplectic space is naturally endowed with an “angle space” (Pan,wan) =~ T*RY ~ R2Y which is a symplectic
space with Darboux coordinate and the symplectic form wa,y,

N
a; :=Im(p;), Bi:=Im(v;), wan= Z ds; Adog . (69)
i=1
Denote vectors @ = (ay,--+ ,ay) ' and E = (B1,--+,Bn)". R?N can be thought of the universal covering of the angle

space. We define a 2N-dimensional open convex symplectic polytope (or simply polytope) P to be an open subset
of (R?N w,,) cut out of a set of strict linear inequalities, and 7(B) to be its projection on the base of T*RY with
coordinates @. Also define strip(8) € CV to be

strip(P) == {ji € CV | Im(7i) € 7(P)} . (70)

Then we can define the functional space

Ql

F = { holomorphic functions f : strip(P) — C s.t. ¥(&, 3) € B, the function e —E f(i+iad) e S(RY)}, (1)
where S(RY) denotes the Schwarz class in RY. This means e*%ﬁ'gf(ﬁ + id) decays exponentially when |u| — oo.
Recall the quantization of fi, 7 to operator as in (58), Fq contains exactly the holomorphic functions f such that

a3 -,

HETIN () e S(RY), V(@) eP. (72)

as e (@0- B“)f(,u) — o F(-F8) 20 z)? &‘3(25;1)Nf(/7) o2 r)Va (_5"7)f([j+io7). In this form, it
is easy to see that the Fourle r_transform of a Schwarz function is also a Schwarz function. In other words, the
action of the operator e % (a-0-F-h) simultaneously bounds the the decay of a holomorphic function f and its Fourier
transformation. We say that (@, ) € B is a positive angle structure of f.
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To be explicit, consider the case for ¥a. As mentioned above, ¥ (u|m) is holomorphic when Im(u) > 0, so we
first take a > 0. Then (the absolute value of) the function e= % W A (1 4 iam) with p € R has limits

exp [~ Bu] j— +00

oxp [~ p(a+B-Q/2)] , p— —oo (%)

€™ % 1WA (p + iam)| — {

which can be directly derived from the asymptotic behaviour (67). Therefore, e Fhny Al + ia|m) is a Schwartz
function when («, 8) € P satisfy the positive angle structure of W, or of A for short, defined as

Pa ={(a,B) ER?*la, 3> 0,00+ B < Q/2}. (74)

Recall that Q@ =b+b~" = 2Re(b) > 0, P, is an open triangle. Let a = Im(p), f = Im(v), then [, du e VR (pm)
is absolutely convergent when the integration contour C is shift above the real axis while remains in Ba.

2. Step 2: Ideal octahedron partition function

Now that we have the Chern-Simons partition function ¥ o on an ideal tetrahedron as the building block, the next
step is to construct the partition function on an ideal octahedron. Each ideal octahedron can be decomposed into 4
ideal tetrahedra by adding an internal edge (see fig.2b). We then have 4 copies of edge coordinates {x,y, z,w} (or
considering the logarithmic coordinates {X,Y, Z, W}) subject to the constraint

= C=X+Y+Z+W =2mi =
w } — +Y+272+ ™o kxthytpztaw =0

C=X+Y+Z+W =2ni mx +my +mzg +my =0" (75)

Here, we have chosen a branch for C' and C. We define a set of symplectic coordinates (X, Px), (Y, Py), (Z, Pz), (C,T")
where

PX — X// _ W//, PY — Y// _ W//, PZ — Z// _ W//, F — W// , (76)

and similarly for the tilde sectors. It is indeed a U-type symplectic transformation with a symplectic matrix

U 0
( ), with U =

0
0
0 (UT)~ 1
1

= O oo

10
01
00
11



16

Interlude: Symplectic matrices and generators A symplectic matrix is an 2N x 2N matrix M with real entries

that satisfies

T _ _( 0 Iy
M OM =Q, Q<]IN O)' (78)
They are representations of the symplectic group Sp(2NNV,R), which is the group of symplectic transformations. The
generators of Sp(2N,R) are given by € and the set of matrices in the following form

D(U):{([OI (US)_1> :UEGL(N;R)}, T(B):{(Hg H‘L) :BESym(N;R)}, (79)

where Sym(V; R) is the set of N x N symmetric matrices. This means any symplectic matrix M can be written as the
multiplication of elements in D(U), T(B) and some power of €. The symplectic transformations corresponding to
D(U) can be understood as “rotations” in the position space and momentum space separately, and we call them the U-
type transformations. The symplectic transformations corresponding to T(B) are denoted as T-type transformations
as they represent the translations of the momentum space. 2 represents an exchange of position and momentum and
is an involution. We denote such type of symplectic transformation as the S-type transformation.

Let a symplectic matrix M be given by a 2N x 2N block matrix

(&5) (80

with B being invertible, then M can be decomposed as follows

(88)= (o ) (%8 (anr ) (B 2). .

Performing the symplectic reduction of the four copies of phase space Py associated to the four ideal tetrahedra by
imposing the constraint C' = 27i as well as quotient out the gauge orbit variable I', we obtain the phase space Pgoct
of the boundary of the ideal octahedron with the following symplectic form and Poisson structure.

Wit = 2% S (v Adgsy — dng Admyy, | PPt = it = =05 oxvz. (82)
: {pisnjte ={vi;m;}u =0
Quantization of the constraint C' and C adds a quantum correction as
c=1 — (E:q — €:2m‘ - €:2m‘+i~z, (83)
c=1 — ¢=q¢q <= C=2m — C=2mi+h.

Here, the addition of h or h is necessary for the partition function to be invariant under 3D Pachner moves of ideal
triangulation [19], which we want so that the amplitude so-constructed can have some ideal triangulation independence.
In terms of {p;, m;};—x y,zw which are the quantization of {u;, m;}i=x,v,zw, the quantum constraints read

Each octahedron partition function can hence be written in terms of the position variables (z,y,z;%,9,2) =
exp[(X,Y, Z; X, Y, Z)] as

Zoet(1ixs oy, prz|mx, my ,mz) = Wa(ux|mx)Va(uy |[my )Wa(pzlmz)Va(iQ—px —py —pz|—mx —my —mz) (85)

where we have imposed the constraint (84) to eliminate the variables py and my . Equivalently, one can write

1— qz—‘,-lm—l 1— q'l+1y_1 1— qk+1z—1 1— qlxyz
ZOCt<x7yuz;i'7g72) = | I ~ i~a—1 ~_i~_1 ~ fe~—1 ~ 1775 " (86)
i,5,k,1=0 1= g 1= 'y 1= I 1= q Y=

Let us also study its asymptotic behaviour. Denote gﬁ = fBxpx+Pypy +Bzuz. Then e_QTﬂg'ﬁZOCt({,ui +iag H{m;})
has the following asymptotic behavior

=27 pi(ax+ay+az+Bi—Q/2) L — 400

—2rg.n ) . ) N e s .
e * 7 Zoce ({ s + icei {ms})| {emi(aiwicz/z), s —00 Vi=X,Y,Z. (87)
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It is obtained by using both limits in (73) as WA (pym;) and WA (iQ — pux — py — pz| — mx — my — myz) always
approach the opposite limits. This function is a Schwartz function of ux, uy and pz if (ax, ay,az, Bx, By, Bz) € RS
is inside the open polytope P (oct) defined by the following inequalities

a; >0, ax+ayt+az <@, ai+6i<Q/2, ax+ay+az+6i>Q/2, Vi=X,Y,Z. (88)

-,

(@, B8) € P(oct) is the positive angle of an ideal octahedron. We need to make sure that (oct) is non-empty, otherwise

the boundedness of e_%g'ﬁzoct({ui + i }|{m;}) is not guaranteed. We can check this by taking special values for
a;, Bi. Let ax = ay = az = a and Bx = By = Bz = 3, then (88) is simplified to

0<a<Q/3, a+p<Q/2, 3a+8>Q/2, (89)

which is indeed non-empty as illustrated in fig.7. We then conclude that Z,.4 € ]-"ggf()oct).

FIG. 7: Positive angle of an ideal octahedron when ax = ay = az = a and Bx = By = 8z = 5.

3. Step 3: phase space coordinales of Pygs\ry) and partition function on S3\I's

As shown in fig.4, the triangulation of S®\I's contains 5 ideal octahedra with all edges on the boundary 9(S®\I's).
Therefore, the Chern-Simons phase space Py gs\ry) is simply the 5 copies of Paoct with no more constraints to be
imposed. Label the octahedra as Oct(i), i = 1,---,5 (see fig.4). The phase space Py(gs\r,) has 15 position coordinates
P = (Xi,Y:, Z;)i=1,... 5 and 15 momentum coordinates = (Px,,Py,, Pz,)i=1,.. 5 where each triple (Px,, Py,, Pz,)
is defined in the same way as (76). Then the partition function on S®\I's is nothing but the product of 5 Z,.’s as
defined in (86). We write

5

Zy (flm) == H Zoct(Tas Yas Za; Tas Yas Za) » (90)
a=1
where f17 2.3... and mq 2 3... are parameters of x1, 1, 21, - - - respectively. Indeed, Z4 € ‘F‘gg()oct)XE"

On the other hand, the geodesic boundaries of S3\I's (recall the definition at the beginning of this section) are
five 4-holed spheres and the cusp boundaries are 10 annuli. The ideal triangulation of a 4-holed sphere S, contains
6 edges on the geodesic boundaries, each shared by two edges from two different ideal octahedra, so the correspond-
ing logarithmic edge coordinate, denoted as Xz('_?) when it is shared by Oct(¢) and Oct(j), is the sum of two edge
coordinates on ideal octahedra, which is, in turn, the sum of edge coordinates on ideal tetrahdera (from the set
{X.,,Y,, Z; Wi, XY/ ZI W X! Y Z W] im0 5)- X(‘%) is called a (logarithmic) Fock-Goncharov (FG) coordi-

]
(a)

nate on S, [26]. The precise relations are shown in Table II. Apparently, each x; ;' 1s also a linear combination of

elements in ® and I.

These 30 FG coordinates are not mutually independent but are subject to 10 constraints. This is because every
two 4-holed spheres, say S, and S, are connected to an annulus cusp through one hole, say hole p, of S, and
another hole, say hole ¢, of Sy hence the eigenvalue )\ib = e2Lev of the holonomy around hole p is the same as the
inverse of the eigenvalue )\b_aQ = e 2lva of the holonomy around hole q. (They are related by an inverse because the
holonomies around holes p and ¢ are oriented oppositely relative to the annulus.) The variable 2L, is called the
complex (logarithmic) Fenchel-Nielsen (FN) length. Recall the result (42) from the snake rule, 2L is the sum of
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Si:| X8y = Zo + Zs X8 =Y+ 25+ 2+ Wi XSy =28+ Wi+ 2,
XS§ = ZY + W+ Y + 25 XY = Y8+ 24+ Zs X5s = Yi'+ Zi+ 2§ + W
Sa:| X3 = XU+ Y + X3 X = X5+ Vi + Wi+ Xy = X0+ Xa
X2 = Wi+ X5+ X¢ + Y XD =W+ X{ + Xs X2 = XU+ Yi + Wi+ XS
S |x) = 21 + Wi + X X5 = Wi+ X5+ Vi + 2 X =W+ X7 + X4+ Y/
XS = XY+ Y+ Z5+ Wi XD =W+ Wi+ XY X5 = Ya + Ws
Su|X3 =21+ X5+ Y4 Xoy =Y+ 28 + Zs + Wi X =Y + 2 + Wi + XY
X5y = Yo + Y4 + 24 XD =20+ Wi+ X5+ Y () =W+ Vs
Ss: X3 =Y+ 20 + Wi+ X4 X = Z5+ Wi + Y+ 25 X3 =Y+ X5+ Y]
X2 = Wa + Zy + WY X = X{ Y+ W+ XY A = Ya 4+ W

TABLE II: FG coordinates Xg;-l) of 4-holed spheres in terms of the edge coordinates in {Oct(i)}.

three coordinates Xz(‘?) — 4m’s with dressing the three edges connecting to hole p. Similarly for 2L;,. The precise

relations are given as follows.

St 2L1s =X + ¥ +x0 —3ir,  2L15 = 8 +x8 + XY — 3in, (91a)
2L1a = X585 + x5 xSy — 3im, 2Lis = xSy + x5) + a8y — i, (91b)
Sot 2Lon = x57 +x52 + X85 —3im, 2L = x17 +x{F + x4 - 3im, (91c)
2Las = X3 +X12 + x5 = 3im,  2Las = x5 + xF +x§7 - 3, (91d)
Ssi 2Ls =X 4+ x@ +x® —3im,  2Lgs = + v + 1P - 3ir, (91e)
2L34 = X%) + X535) + X535) —3im, 2L35 = Xg) + Xﬁ) + Xgi) — 3, (91f)
Sit 2Lg = x5 + x84 = 3im,  2Las = 28 13D —3ir (91g)
2Las = X2 + 15 +xbs — 3im,  2Las = x{3 + X135 + by — 3o, (91h)
Ss: 2Ls = ng) + xéi) + Xgi) —3im, 2Ls = xﬁ? + Xﬁ) + X:(si) — dim, (91i)
2Lss = x\3 + 137 + a8y = 3im,  2Lsa = X33 + X3 + x5 — 3. (91j)

(a)s

It is easy to check, that Lq, commute with all the x;;

constraints are admitted:

s and that, using the relations in Table 11, the 10 following

Lab = _Lba s \ (ab) . (92)

Therefore, one can understand 2Lq,(a < b) as a coordinate dressing the annulus cusp (ab). We can choose the 10 FN
lengths {2L4p }a<p to be part of the position variables of the 30-dimensional phase space Py(gs\r;). The remaining 5
position variables X,(a = 1,--- ,5) are FG coordinates each on one 4-holed sphere S, on 9(S3\I's). We choose these
variables as follows.

X=xs, =x, =P, a=\P, a=x. (93)

The conjugate variable of 2L,;, denoted as T, is called the (logarithmic) FN twist. We also denote the conjugate
variable of X, as ),. Then a new set of phase space variables equivalent to (®,1II) is

O = ({2Lavtact: {Xa}oss) s P = ({Tabtacr {Vatoms) (94)

which satisfies the Poisson brackets

{QI7PJ}:61J7 VIaJ:17715 (95)
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Here, the order of the annuli (ab)’s is fixed to be {(12), (13), (14), (15), (23),(24), (25), (34), (35), (45)}. We will see
later that it is easier to impose the quantum simplicity constraints on the new set of coordinates (94) rather than

(ff),ﬁ), which urges us to express the partition function in terms of (é) To do that, we first fix the expression for
P. As the only requirement is (95), there are freedoms to choose the expression of P in terms of the old coordinates
(®,1II). For simplicity, we choose the symplectic transformation to be the following form.

(7%):(—(5)1]3)(2)*(%{)7 (96)

where A and B are 15 x 15 matrices with integer entries and ¢ is a vector with integer elements. We have taken the
advantage that B is invertible (while A is not). They are determined by (91) and (93) with the following explicit
expressions.

00 000 0O0-1-10 —-1-120 —-1-1
0 0 00-1-100 0 0 —-11 0 0 0
0 0 00-11000 0 0 0 0 —11
0 0 00O 00-11 0 00 0 0 0
2 1. 100 000 0 0 0 0 2 1 1
01 100 021 1 0 0 0 0 0 0
00 00O 0O0OTO0O 2 1 1 0 0 0
A=l 0 0 000 00O O O 0O 0 O 1 1 [, (97a)
0 1 121 100 0 0 —-1-120 0 0
0 -110-1-101 1 0 0 0 0 0 0
0 0 00-1000T0T0 00 0 0 1
1 1100 000 0 0 0 0 1 0 0
-1-1-100 000 0 0 0 0 —10 0
0 0 -100 000 0O 0 0 0 0 —-10
0 -1 000 00O O0-10 00 0 0
00 00000 —-10 0-10 0-10
0o 0 00 -10 00 0 0-11 0 0 -1
00 00 -11 0 0-10 00 0 —11
00 00 0 -1 0 —-11 00-10 00
1 0 000 00O 0 0-11 01 0 0
0 1.0 0 0 0 1 0 0 00 0-110
-11 0 0 0 0 -11 0 1 0 0 0 0 0
B=|0 0 1 -11 0 0 0 0 0 0 0 -0 1|, (97D)
-10 1. 1.0 0 0 0 0 1 0 —-10 0 0
0 -11 1 0 -1-10 1 0 0 0 0 0 0
00 00 -11 00 000 0 0 0 0
1 0 000 0OO 0 0O O0 0 0 0 0
00 0000 O 0O 0 0 0 0—-10 0
0 0 -1 0 0 0 0O 0 0O 0 1 —-10
1 -10 0 0 0 0 0 0 —-10 00 0 0
t=(3,1,0,0,—4,-3,-2,—-1,-2,0,1,-1,3,2,2) " . (97c)

The fact that A,B and ¢ have only integer entries means that the components of 0 are all coordinates of
Mg (0(S3\I's), PSL(2,C)). However, the matrix — (B—r)f1 has half-integer entries. In particular, each T is a
linear combination of elements of ® with half-integer coefficients. This means the FN twist 74, := e7* is a lift
to a coordinate of Maga(8(S3\I's),SL(2,C)). Combinatorially, we should view (3, P) as a set of coordinates of
Mt (0(S3\I's), SL(2, C)).

Thanks to our careful choice of {X,} (93), each momenta ), is also given by an FG coordinate on S, up to a sign
and £2mi:

Vi=—xsy, Vo=—x, V=X —2mi, vy =X —2mi, V5= x4 +2mi. (98)

We also parametrize the new set of variables and their tilde sectors in terms of continuous and discrete parameters
as before, i.e.

— -

= ), Q=T (W), =TT (b ad), (99)
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and the inverse relations are

R T W L e I O S N | S
u—%Q(Q—&-Q),m—%bQ(Q bQ),V—27TQ(P+P>,n—2WbQ<P bP). (100)

We will also use the notations pigp, Map (resp. Vab, nap) to denote the coordinates corresponding to 2Lgp (resp. Tap)
and use g, mg (resp. v, ng) to denote the coordinates corresponding to X, (resp. )V,). The Atiyah-Bott-Goldman
symplectic form for the Chern-Simons phase space Py(gs\r,) = ®?:17330Ct(i) and the Poisson structure are

15
0= ZPI ANQr, {9nPrta=46rs, {9 Qsta={Pr,Ps}a=0, I,J=1,---,15. (101)

I=1

The new coordinate parameters (100) are quantized to operators fgi,m,” and 1 respectively (we also use
Paps Mab, Vab, Nap as well as p,, mg, V., n, to denote the components).

The symplectic transformation on the phase space coordinates gives rise to a unitary transformation on the wave
function Z4 (and the operators). To express the unitary transformation clearly, one separates the transformation
matrix into generator matrices of the symplectic transformations (recall (81)):

(—(BAF)‘1 13) - (51) _OH) (A1H3T g) (_(BO_I)T _OB> : (102)

The three matrices on the right-hand side correspond to different types of unitary transformations, which we denote
as the S-type, T-type and U-type transformations respectively using the terminology in [11, 22]. The addition of int

on O asin (96) corresponds to the affine translation. In general, the unitary transformation of a wave function 1) and
an operator O given by a (time-independent) unitary operator U is defined as

V=Y =Usy, 00 =U0U" = Oby—=Ub(O'>y). (103)

importantly, we want the wave function after the unitary transformation to be in functional space (71) with a non-
empty positive angle structure so that the boundedness is not lost. Therefore, after each unitary transformation, we
will also need to keep track of the positive angle structure for the new variables.

1. U-type transformation:
The U-type transformation is controlled by the matrix

U= ( *(Bofl)T —OB ) | (104)

and it corresponds to a “rotation” on the vector of position variables and the vector of momentum variables “in an
opposite direction”. We only need to express the old variables in the original wave function in terms of the new
variables times a scaling factor. That is,

21(fil) = (Up Zx) (fil) = /det(-B) 2 (-B il = BT), (105)

where /det(—B) = 4i. Since —(B~!)T has half-integer entries, the new position variables can only be viewed as
coordinates of Mg, (9(S*\I's), SL(2,C)).

In addition, that Z, € f%k(Lct)xs implies that, when (&, 5y) € B(oct)*® and i € R,
e F(BIA) Pz (“BTjitidy|-BTm)=e FACB )z (BT (ji+i(—(B)Td))|-BTm) € S(R®). (106)
It is easy to see that the new positive angle structure is
P = {(@, ) = (~B)Tdo, ~B A | (@, fo) € Ploct)*} . (107)

We conclude that Z; € ‘7:‘§3k1)'

2. T-type transformation:
the T-type transformation is controlled by the matrix

v (b ) =
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where ABT is a symmetric matrix with integer entries. It corresponds to a change of momenta keeping the position
variables unchanged. The partition function after this transformation is

Zo(@li) = (T 2,) (i) = (—1)WABT e (CAABT A mABTT) 7, (717) (109)

where the sign (—l)ﬁ'ABT'm is there for the cyclic symmetry that Z, is unchanged the transformation m; — my + k

for any my.
To be convinced that (109) is true. Let us consider a 1-dimensional example of the T-type transformation on the
wave function f(u|m) given by the unitary operator U = e (-#Trt(k+1)mTm) with T ¢ 7

Flulm) = f'(plm) = (U s £) (ulm) = e& CHTHEE0mTm) £ () (110)
The new operators ', m’ are transformed to be multiplicity operators :
et et =UelUt =, o™ = e™ =Ue™UT =™, (111)
while v/, n’ are shift operators:
eV tTH oV — et THT = ¥ , entm e = UenrtTmyt = et (112)
as desired. To derive (112), we have used the Baker-Campbell-Hausdorff formula:

eXeY —exp [X+Y + %[XaY} + 1*12[X, X, Y]] - %[Y, X, Y]]+ (113)

Note that although (110) — (112) is still true when the sign factor is (—1)™7™ removed from U, but require the cyclic
symmetry f'(ulm + k) = f/'(u|m) for the function be true for any integers m and k. Explicitly,

i

Flulm+ k) = (71)T(m+k)26 - (7uT,u+T(m+k)2)f(‘u|m tk) = (71)Tk2+2Tkme7ri(2ka+Tk2)f/('u|m)' (114)
If the sign (—1)™T™ were dropped, the sign of f’(u|m + k) in (114) would have changed when k, T are both odd.
Z € fgcl) implies that, when (071,51) € P, and ji € R1?,
e~ %M 2, (fili) = phase e_QTWF"(EﬁABT&l)Zz(ﬁ-&- idi|m) € 2, € ffl(;3k1) - (115)

Therefore, the new positive angle structure is
P2 = {(&2,52) = (&1,51 +ABT071) | (61, 81) € ‘Bl} ; (116)

and 2, € Fiy).

3. S-type transformation:
the S-type transformation given by the matrix

0 —I
s= (0 ) -
exchanges the position and momentum operators and it corresponds to the Fourier transform of the partition function.
That is,

27

TileE L > — i1 -
Za() = 1 ) / Q1 T T 2, (5 (118)
me@/kzyrs Y€

where the integration contour is along R'5 + iﬁg where 53 satisfies the new positive angle structure
Bs = {(073753) = (—f2,d3) | (a2, B2) € ‘132} : (119)

Indeed, 23 € Fyy).
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4. Affine shift translation: . .

Finally, as shown in (96), to arrive at the partition function Zgs\r, for S3\I's in terms of parameters of Q and P,
one needs to perform an affine shift transformation o given by a vector t (97¢) on the position variables. It shifts a
classical position variables X — X + int with ¢t € Z, and it adds a quantum deformation

X—>X+<m+g>t (120)

when entering the partition function. It has been argued in the literature (see e.g. [19]) that such a deformation
is more suited for a state-integral (e.g. it is necessary for the invariance of state-integral under 2-3 Pachner move)
Indeed, it breaks the periodicity when X — X +2mi. But it can be understood as a quantum effect and the periodicity
is recovered at that classical A — 0 limit.

2me

Parametrize X = =* (—iby —m) as in (99), the affine shift (120) leads to shifts on the parameters

u%u—gt, m—m, Q=>b+bl. (121)

Therefore, the final partition function takes the form

I L Qn
Bsone, (i) = Za(7i — i 21lm). (122)
The positive angle structure for Zgs\p, (fi[n1) is
Q75
Psars = 5@5 5) | (a3, 53) € P (123)

and Z3\T's € fg?\r

Combing all the steps above, Zgs\r, (ji|771) can be written as finite sums and convergence integrals in terms of new
coordinates (100). The partition takes the following expression.

Zgo\r, (filM) = (070 S0 T o U) > Z,)(jilm)

- ﬂ Z / d15~ n ABT.it %(7*-ABT-ﬁ+ﬁ-ABT-ﬁ)62gi [*ﬁ-(ﬂ*§5§+ﬁﬁ]zx(,BTﬁ| . BTﬁ)7
C>< 5

15
Re(Z/kZ)15
(124)
where the integration contour C*!% is chosen to be on the plane R'® + ids.
Observe that ABT is a symmetric matrix with integer entries, (—1)™ AB 7 iy (124) can be simplified to be (— )D'ﬁ

where D := diag(ABT) is a vector whose elements are the diagonal elements of ABT. The sign (—1)™ “ABT-7 depends

on the parity of elements in D and 7. Also notice that the parity of Dy is the same as the parity of t;, VI = 1,-- - , 155,
Combining these facts, we can rewrite the sign factor (—1)ﬁ'ABT'" in (125) to be (— )t'ﬁ and simplify the expression
(124) to
Zso\r, (71]11) = 4725 > / A7 (~1)F e F (PABT TR ABTE) B [ (i 2D+l 7 (BT - BTi).
CX%x15

€(Z/kZ)15
(125)
It was checked in [12] that such a change does not alter the equations of motion compared to the ones computed with
the c()iriginal one (124) [11]. The positive angle structure P(S3\I's) for S3\I's in terms of the new variables (ji,7) is
[11]

P(S*\I's) = op0SoTolU o P(oct)*®

=3 x5 = 3 = g Q- —IN\T = 3 (126)
= 1f (do, fo) € Ploct)™,  then (d, §) = (Ado +Bfo + 5 ¢, —(B™") ' do) € P(5"\I's).

5 One can check using the explicit expressions (97) of matrices A, B and vector £ that the odd elements of D and f are both the 1th, 2nd,
6th, 8th, 11th, 12th and 13th elements.
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Inversely,

(G, Bo) = (BTAB™a+ AT~ 21) € ploct) . (127)

The symplectic transformations ensure that JB(S3\I's) is non-empty since B(oct)*> is non-empty, which concludes
that Zgs\p, € fsi;k()y\rs) = Fypsa\rs) @c (CF)®1. In other words, Z3\I's is absolute convergent hence the finiteness
of the Chern-Simons partition function on S3\I's is manifest. More generally, the Chern-Simons partition function
constructed in terms of ideal triangulation converges absolutely as long as the 3-manifold admits a non-empty positive
angle structure [22, 30, 31]. This means, given any (&, ﬁ) € P(S3\I'5) and let Im(ji) = @, the integration contours

C*15 satisfying Im(7) = 3 renders the finiteness of Zga\ry (f]m).

V. FROM CHERN-SIMONS PARTITION FUNCTION TO SPINFOAM AMPLITUDE

The partition function Zgs\p, is for Chern-Simons theory on S3\I's but does not yet encode the quantum gravity
information. To define a vertex amplitude associated to a 4-simplex, one needs to impose the quantized version of
the simplicity constraint F = %e Aeon Zgar,. The way to implement this is motivated by the EPRL model. Recall
that, in the EPRL model, the simplicity constraint at the classical and discrete level can be implemented by (14)
and (15). In other words, the simplicity constraint is to require the discretized B}{J (t)-field to encode the geometry of
tetrahedra in a 4-simplex by satisfying two requirements:

(a) For each tetrahedron ¢ in the 4-simplex, there exists a common normal to the four discretized B}J (t)-fields each
associated to a triangle f;

(b) B}J (t) encodes the area and normal of the triangle by satisfying the closure condition.

This can be generalized to the A # 0 case as follows. Consider the (non-ideal) triangulation, denoted as 7,, of a
4-holed sphere Xy 4 such that each hole, denoted by p, is inside a triangle f,. See the red lines in fig.8. Define the

1

3

FIG. 8: The ideal triangulation (én black) and the (normal) triangulation 7, (in red) of a 4-holed sphere X 4.
Numbers 1,2, 3,4 label the holes of X 4.

discretized B-field associated to f;, as in the EPRL model, i.e. By, (7,) = ffp B(7,). On the other hand, let us recall

the relation F = %B discussed in (19). Consider a local coordinate (z!,z?) on one patch of S, with the hole p at
the origin. Then the discretization of this relation gives F,(S,) = %B £, (7a)0@) (Z)dz! Adz?. This allows us to write

6 The operator &'% for the positive angle structure is different from the affine transformation & acting on the wave functions. The latter
is given in (96) while the former is defined as: E%: (@, B) — (& + %f; B) [11].
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the simplicity constraints in the same form as (14) in terms of the Chern-Simons curvature. That is, for all holes p’s
of S,

AN, such that N;F}7(S.) =0. (128)

LAl
By the non-abelian Stokes’ theorem, the holonomy around each triangle f, of 7, takes the form Hy, (7,) = es Brp(1a) ¢

PSL(2,C). The reason for Hy,(7,) € PSL(2,C) instead of Hy, (7,) € SL(2,C) is because this holonomy can be
computed using the FG coordinates on Mgat(S,, PSL(2, C)) which we will see later. Eq.(128) can be translated into
constraints in terms of {Hy, (74)}p=1:

3Ny such that (Hy,);”(,)N;y = N;, Vfy €71,. (129)

Similar to the EPRL case, (128) (or (129)) means that the 4-holed sphere S,, or its triangulation 7,, is orthogonal
to a common vector N’ € R*. Gauge fixing N; = (1,0,0,0) implements that all the holonomies {Hy, (74)}p—; are
in a common PSU(2) subgroup of PSL(2,C). In other words, the simplicity constraints restrict the moduli space
Mat(Sa, PSL(2,C)) of flat PSL(2,C) connection to a moduli space Mgat(S,, PSU(2)) of flat PSU(2) connection.

The flat connection in Mg, (Sq, PSU(2)) defines a representation of the fundamental group of S, into PSU(2)
modulo gauge transformations. Let the holonomies {Hy, (7,)} have the same base point b € S,. Then they satisfy
the non-linear closure condition (we fix the ordering of the holonomies here and for the rest of this note)

Hf4 (Ta)Hfs (Ta)Hfz (Ta)Hfl (Ta) = HPSU(Q) (130)
due to the isomorphism
Maai(Sa, PSU(2)) = {Hy, Ha, H3, Hy € PSU(2) : HyH3HoHy = Ipgu(a) }/PSU(2) , (131)

which is a special case of (38). An interesting fact is that the expression in the bracket on the right-hand side of
(131) can determine uniquely a (convex) homogeneously curved tetrahedron, whose faces are flatly embedded in a
three-sphere S3 or hyperbolic three-space H? (See fig.9). That is, a curved tetrahedron with constant curvature can

4

(a)
(b)

FIG. 9: (a) A tetrahedron flatly embedded in S3. (b) A tetrahedron flatly embedded in H3.

be identified by four PSU(2) holonomies Hy, Ha, H3, Hy satisfying the closure condition HyH3zHoHy = Ipgy(2) with
a few extra restrictions. This is called the “curved Minkowski theorem” for the tetrahedron, proven in [10], which we
will briefly summarize below. In the flat limit, it coincides with the well-known Minkowski theorem for flat tetrahedra
which was proven in 1897 [32].

A. curved Minkowski theorem for homogeneously curved tetrahedron

Before we describe the curved Minkowski theorem, let us first discuss the geometry of a homogeneously curved
tetrahedron, or tetrahedron for short.

We let the sign of the curvature s = sgn(A) be identified as the sign of the cosmological constant. To unify the
notations, we denote the n-dimensional homogeneously curved space as E™* hence E>+ = §3 and E>~ = H?. Each
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face of a tetrahedron is a triangle flatly embedded in a two-dimensional subspace E?* of E**. We only focus on the
convex tetrahedra. The convexity guarantees that each edge of the triangle is the shortest geodesic on E?** connecting
the two end vertices of the edge. For each face, we choose a base point p on the boundary and consider the oriented
loop ¢ along the boundary starting and ending at p whose orientation is counterclockwise when seen from the outside
of the tetrahedron. Such an orientation generates an outward direction normal 7(p) to the face at p (and any other
point within the face) by the right-hand rule, which is consistent with the topological orientation of the tetrahedron.
We also denote the same loop with the opposite orientation as ¢~ 1.

Indeed, a vector at p tangent to the face gets rotated after parallel transport along ¢. The rotation angle is
proportional to the area ay of the face enclosed by ¢. We denote the holonomy of the Levi-Civita connection along ¢
in the local frame of p as My(p). It is a group element of SO(3) for both tetrahedra embedded in S® and H® which
can be parametrized as

My(p) = exp |:S|[;a[flg(p) . f] € 50(3), %ae € [0, 27] (132)

where J = {J1, J2, J3} are the generators of s0(3) and the sign s determines in which space the tetrahedron is
embedded. However, the M,(p) can take another expression

A . J
My(p) = exp [s (271' — |3ag> (—ne(p)) - J] (133)
as SO(3) = S3/Zy. This means M(p) cannot distinguish the two triangles lying in the same great 2-spheres of S3
with area and outgoing normal (as,ng) = (ag, 2¢) and (ag,ng) = (% — ayg, —7ig) respectively. Due to the isomorphism
SO(3) = PSU(2) = SU(2)/Zs, given My(p) parametrized as (132) or (132), one can identify a PSU(2) group element
Hy(p):

Hy(p) = exp [s'?}'ame(p) -%’} = cos (s'lgag) I —isin (s'lgag) fig - & = exp {s (27r - [;'ag> (—7e(p)) ~%’] (134)

where %az € [0,7]. Here 7 = —1& € su(2) and G = {01, 02,03} are the Pauli matrices. Although we can not decide
which geometry Hy(p) describes for a triangle by looking at this single expression, we will see later that for a convex

tetrahedron, either (ag, 7ig) or (% — ag, —y) would be single out uniquely.
Changing the base point corresponds to a conjugation action on Hy(p) by an PSU(2) group element, say g,

Ho(p) — H(p')=gHip)g~', g€PSU?2). (135)

Changing the orientation of ¢ corresponds to changing H, to its inverse, i.e. Hy-1 = H, 1. For each curved tetrahe-
dron, there exists a closure condition expressed as

HyH3H,H, =1, H, € PSU(2), (136)

where all four holonomies are defined at the same base point. Indeed, it is easy to find a common point for three
of the four holonomies. One then has to parallel transport the base point at least once through a specified path to
define all the holonomies properly. As one of the simplest examples, choosing vertex 4 in fig.9 as the base point,
Hy(4),Hy(4), H3(4) can all be defined directly by (134). To define H4(4), we first define H4(2) based on vertex 2 by
(134) and parallel transport it to vertex 4 through the edge e4o.

A solution to (136) can be given by introducing the edge holonomy hy, ., for each oriented edge e,,,, with hy} =
Ryye, - Then

Hy = hyzhszhoa
Hy = hyyhizhsa
H3 = hyoha1hia
Hy = haoHy(2)hoa = hashoghsihizhos

(137)

is indeed a solution to (136). The paths for the solution (137) are illustrated in fig.10 for a spherical tetrahedron
as an example and are the same for a hyperbolic tetrahedron. These paths are called the simple paths as they are
the simplest set of paths up to the choice of the base point and the special edge. They are the generators of the
fundamental group of a tetrahedron. That is

wl(tetra) = {51,£27f3,€4|£4 9 63 9 fg o él = 1} . (138)
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FIG. 10: The set of simple paths (in red) for holonomies { Hy, Ho, H3, Hy} defined in (137) with vertex 4 as
the base point and edge (42) as the special edge. They satisfy the closure condition (136).

It can be straightforwardly checked that, given a tetrahedron whose curvature is determined by A, the full geomet-
rical information can be described by the four holonomies H,’s explicitly as

Z'TI‘(Hgé")

A 1
cos | —ay | = =Tr(Hy), ny=¢€—m=—or——, 139
(6 ) 2 (He) 4 — Tr(Hy)? (1%9)
where ¢, = + with the sign + corresponding to ny = ny and — corresponding to ny = —ny. Then one can calculate
e.g. the dihedral angle 6,,¢, between two faces in a tetrahedron by
cos 051 =Ny (pl) Ny, (p/) = €q, €010, (pl) < Ty (pl) ) (140)

where p’ is any point on the edge shared by the two faces. As the faces of the tetrahedron are flatly embedded in E3*,
these dot products are invariant along the edge shared by two faces and hence the dihedral angles are well defined. For
simplicity, one can choose one of the two endpoints of the edge, which is a vertex of the tetrahedron. Note that (139)
is valid only when 7, is defined at the base point of the loops, which is chosen to be the vertex 4 in our convention,
i.e. iy =ny(4). Then, to calculate the dihedral angle 614, 024, 634, one has to parallel transport n, to another vertex.
For instance, using the simple solution (137),

924 = 6264ﬁ2 (3) . ﬁ4(3) = €2€4 [h34ﬁ2 (4)] . [h32h24ﬁ4(4)] = 6264’?7,2 (4) . H1ﬁ4(4) . (141)

Another way is to define 24 at vertex 1 which gives an equivalent result foy = €2€4m2(1)-74(1) = €geania(4) - Hy 17%4(4).
One can also calculate the triple product of normals of three faces, which is calculated at the vertex where the three
faces meet. We require that the tetrahedron be convex. Then the triple product must satisfy

4) >0, at vertex 4
2) >0, at vertex 2

[n1(4) x n2(4)] - ns(4)
M1(2) x n3(2)] - na(2)
[n2(3) x n1(3)] -na(3) >0, at vertex 3’
[n3(1) x na(1)] - na(1)

(142)
ng(1l) X ng(1)] - ny(1) >0, at vertex 1
which can also be parallel transport to vertex 4 and give
€1€2€3 (ﬁl X ’ﬁg) . TAL3 >0
€1€3€4 (7?1 X T:L3) Ty A >0 . (143)
€9€1€4 (ng X nl) - Hing >0
€3€2€4 (ﬁg X ’ﬁg) . H§1ﬁ4 >0

The four inequalities can uniquely fix the four signs €1, €2, €3, €4 and resolve the ambiguity for the areas and outgoing
normals of all the faces in a tetrahedron.
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Interlude: Explicit expressions for the gauge invariant observables.

The explicit expressions for the gauge invariant observables, namely the areas, dihedral angles and the normal triple
products have been given in [10], which we summarize here.
For convenience, let us first introduce the half-traces of the products of one, two and three holonomies, respectively.

1
(He) = 5Tr(Hy), (144a)
1 1
<H€1H52> = §TI'(H51H52) - ETI'(H&)TI‘(H@)? (144b)
1 1 . 1
<H(1 Hg2Hgs> = §TI‘(H51 Hg2Hg3) v [TI‘(]‘I@1 )TI‘(H@ZHKS) + CyCllC] + ZTI‘(Hgl)TI'(HgZ)TI‘(HgS) . (1440)

The half-trace (144a) of one holonomy H, around a face ¢ encodes the area ay of the face; the half-trace (144b) of
two holonomies Hy, and Hy, encodes the dihedral angle 0y, 4, of the two faces ¢; and ¢3; the half-trace (144c) of three
holonomies Hy,, Hy, and Hy, encodes the triple product of the normals (fig, X 7ig,) - g, to the three faces €1, £a, {3
calculated at the common vertex of the three faces. Explicitly,

A
cos(sgag) = (Hy), (145)
L €0, €0, (Ho, Hy,)
cos 0, g, =g, - Top, = — L2 2 . V{0 £ {24}, (146)
\/1 - <H51>2\/1 - <H£2>2
H, Hy, H,
(e, X Tig,) - e, = €ttty (Hoy Hey He ) . {1, b, 05} = {1,2,3) or {1,3,4}. (147)

\/1 - <H€1>2\/1 - <H52>2\/1 - <H53>2
On the other hand,
COSs 924 = ’ﬁg . HlfL4 = TAlQ . H?)_lﬁzl (148)

as well as (g x 7y) - Hyfig and (7 x fg) - Hy 74 can also be calculated using the explicit expressions (132) or (133)
for all the holonomies but the expressions are more involved and we omit here.

Define the Gram matrix, denoted as Gram(Hy), of the set of four holonomies {HiHy, Hs, Hy} as Gram(Hy) =
Gram(cos 8¢, ¢,) with dihedral angles computed in terms of the holonomies using (139) and (140). With these ingre-
dient, the curved Minkowski theorem is stated as follows.

Theorem V.1 (The curved Minkowski theorem for tetrahedron). [10] Given four PSU(2) holonomies Hy’s satisfying
the non-degeneracy condition det Gram(H,) # 0 and the closure condition HyH3HoHy =1, one can uniquely determine
a non-degenerate homogeneously curved tetrahedron in the following way’ .

1. Label the sub-simplices of the tetrahedron as in fig.0.  The tetrahedron is flatly embedded in S° if
sgn(det Gram(Hy)) > 0 and flatly embedded in H? if sgn(det Gram(H,)) < 0;

2. The holonomies Hy'’s are associated to a set of simple paths with either the base point at vertex 4 and special
edge (42) or the base point at vertex 8 and special edge (31) and the orientation of the paths determine the
orientation of the face surrounded by the path;

3. Each holonomy Hy encodes the area a; of face £ and the outward direction normal ny (when parallel transported

to the base point) in its parametrization Hy = exp (3% aenyg - F) with s := sgn(det Gram(Hy)).

B. Flat connection on 3-manifold and curved 4-simplex geometry

By the definition of Mg, (20,4, PSU(2)) (131) and the curved Minkowski theorem V.1, we conclude that, given four
PSU(2) holonomies {H;, Ha, Hs, Hy} satisfying the closure condition HyH3HoHy, = 1 which define a flat connection

7 The original theorem in [10] is written in terms of SO(3) holonomies. However, due to the isomorphism SO(3) = PSU(2), we can write
the whole theorem in terms of PSU(2) holonomies, which is more suited for connecting it to Mg, (Sa, PSU(2)) and the FG coordinates
therein.
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in Maat (20,4, PSU(2)), one can identify a (non-degenerate convex) tetrahedron. In other words, there is a one-to-one
correspondence between the flat connection in Mg, (20,4, PSU(2)) and the geometry of a tetrahedron. This can be
summarized in the following diagram.

71 (tetra) X m1(Zo0,4)

WLC N\ v What (149)
{H:,Hy, H3, Hy € PSU(2)|HyH3Hy Hy = lgy(2)}/PSU(2),

where X is an isomorphism, wy,¢ is the Levi-Civita connection and wgat is the flat connection, the quotient by the
conjugate action of PSU(2).

It is electrifying that such an isomorphism can be generalized to a one-higher dimensional case [33]. To rephrase,
(149) relates the fundamental groups of a 3-simplex, i.e. a tetrahedron, and of the nodes-complement of its topological
boundary S? where the nodes are the (3-3=) 0-subcomplexes of dual 2-complex of the boundary of the 3-simplex. Its
generalization gives the isomorphism between the fundamental groups of a 4-simplex and of the graph-complement
of its topological boundary S® where the graph is the (4-3=)1-subcomplex — I's graph — of the dual 3-complex of the
boundary of the 4-simplex.

To write this isomorphism exactly, let us specify the fundamental groups of a 4-simplex and S®\I's separately. The
generators of the former are the closed paths based at the same vertex along the 1-skeleton and circling around a
triangle. We refer to fig.11 and fix the notations as follows. We use numbers 1,--- , 5 with bars to denote the vertices
of the 4-simplex and (ab) to denote the oriented edge that connects (source) b to (target) a. Then (ba) = (ab)~".
tetra, denotes the tetrahedron that does not contain the vertex a. Each pair of tetrahedra tetra, and tetra, share a
triangle fuy (or fpe), which is the one does not contain vertices @ and b.

2

=
w

&
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FIG. 11: A 4-simplex projected on R%Z. Numbers 1,--- ,5 denote the vertices. tetra, denotes the tetrahedron
that does not contain the vertex a. f,p or fp, denotes the triangle shared by tetra, and tetra;. The over- and
under-crossing specify the correct relative positions of vertices in each tetrahedron.

We choose 1 to be the base point and p,; denotes the oriented closed path based at 1 that circles f,; and whose
orientation matches the outgoing normal of fu, in tetra,. To fix the path for triangles not attached to 1, which is
the case for all triangles in tetra;, we need to additionally specify a “special edge” that connects 1 to a vertex on the
boundary of the triangle. Two special edges are needed at the minimum. We choose (31) to be the special edge for
triangles fi2, f14, fi5 and choose (51) to be the special edge for triangle fi3. For instance, pia = (13) o (35) o (54) o
(43) 0 (31). poa = p,,; holds for all (ab) # (13) or (31). Specially,

p13 = (13) 0 (35) 0 (52) o (24) o (45) o (53) o (31) (150)
p31 = (15) o (54) o (42) o (25) o (51).
Therefore, p13 and p3; are related by
P13 = P24 © P31 © Pay - (151)

The generators of the fundamental group m (sky (4-simplex)) of the 1-skeleton of a 4-simplex are then given by the
following 5 relations.

tetra; : pigopizopisopiy =1, (152a)
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tetrag : Py OPas OPaz O Py = 1, (152b)
tetrag : P31 0 P3a 0 P35 0 Pay = 1, (152¢)
tetray : ]01_41 0 Py5 O p§41 01)2_41 =1, (152d)
tetras : pls ©Pyg OPas OPys = 1. (152e)

That is, m(sky (4-simplex)) = {{pab }azs|Eqns.(151) — (152)}. On the other hand, the fundamental group of S*\I's
can be computed by a generalized Wirtinger representation [34]. It is done in the following steps. Firstly, project I's
onto a plane as in fig.1. Denote the nodes of I's by numbers 1,--- ;|5 (with no bars) and the oriented link connecting

the target node a and source node b by ey,. There is one crossing that breaks link e;3 into two links, denoted as e%)

for the one attached to vertex 1 and eg? for the one attached to vertex 3, so there are totally 11 links under this
projection, each is associated with a fundamental group generator of S®\I's. Choose a base point b in S3\I's. The

generator associated to ey is given by a non-contractible closed loop [, based at b circling e, whose orientation

matches that of ey,. Specifically, the generators associated to e( ) and egs) respectively are denoted as [(3) and [(‘3)

respectively. We associate an orientation to each [, such that it matcheb the orientation of ey,. Then [, = [ab for
(a,b) # (1,3) or (3,1). The 11 generators are subject to the following relations, one for each node or crossing.

node 1 : [%) oljgolsoliy=1, (153a)
node 2: [, olggolpzolys =1, (153b)
node 3 : [g) “lolgolgsoly =1, (153c)
node 4: [ olyz0lz)o [—41 =1, (153d)
node 5: [f ol ol ol =1, (153¢)
crossing : [%) =y o0 [§3) ol (153f)

Therefore, m1(S%\I's) = {{lap }axzeo|Eaqn.(153)}.
Already from the definitions, one can immediately notice an isomorphism Y : 7 (sky (4-simplex)) — 71 (S%\I's) that

maps Y (pas) = Loy for (ab) # (I3) or (31) and Y (pys) = LY, Y (pg1) = (I 7
We are interested in Lorentzian 4-simplex geometry so we represent the fundamental group in PSL(2,C) =
SOT(3,1). This corresponds to the case when all the tetrahedra in the 4-simplex are future-pointing [25]. Given

a representation p = Hom(my (S?\I's), PSL(2, C)) such that p(la) = Hab and that p(I;,') = Hab , (153) gives 5 closure

conditions on the holonomies and a conjugate relation to H; A and H 3,

HYy HipHysHyy =1, (154a)

Hyp' HyyHysHos = 1, (154b)

HS 'HyyHysHyy =1, (154c)

Hyy'HisHy Hyy' = 1, (154d)

Hi'Hy Hyp ' Hgt =1, (154e)

a2Y = B, BHY H (154f)

Hyy, = I?((;l for (a,b) # (1,3) or (3,1). Representing m(4-simplex) also in PSL(2,C) by p =
Hom(m (4-simplex), PSL(2, C)) and identifying p'(pep) = p(lap) for all (a,d) # (1,3) or (1,3) while p'(p13) = p([%))
and p'(p31) = p([13)_1) (154a)—(154¢) are nothing but the 5 copies of closure conditions as in (136) but now rep-

resented in PSL(2,C), each corresponds to a tetrahedron on the boundary of the 4-simplex and (154f) relates the

holonomy H (3) around fi3 as the boundary of tetra; and the holonomy H 1(3) around the same triangle as the boundary

of tetrag. p and p’ effectively associate flat connection wga; to S3\I's and Levi-Civita connection wy,c to the 4-simplex.
We then have a similar commuting map as (149) but in one higher dimension represented in PSL(2, C).

m1(sky (4simplex)) ————  my(S3\T's)
wLC N\  What (155)

{{Ha} € PSL(2,C)|Eqn.(151)}/PSL(2,C),
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where the quotient by the conjugate action of PSL(2, C).

However, wr,c as a representation of 7 (skj (4-simplex)) does not contain enough information about the geometry
on the 4-simplex unless there is additional input. We ask that the 4-simplex be embedded in the constant curvature
spacetime so that all the triangles are flatly embedded surfaces. The geometry of such a 4-simplex is uniquely
determined by 10 areas. Indeed, given 5 tetrahedra of the same constant curvature, their faces can be glued pairwise
in an organized pattern (so that no handles are formed) to form a 4-simplex if each of the 10 pairs of faces shares the
same area.

Recall the proposed discrete simplicity constraint (129). It can be implemented as an extra structure on (155) by
gauge fixing {Hy,p}, that satisfy each of the closure conditions (151) to a common PSU(2) subgroup of PSL(2,C).
More precisely, let

Hap = guHavgs ' = goHyh gy " (a,0) # (1,3),(3,1) (156)
HY = giHizgr', HEY ' =gsHags "

where gq,g9, € PSL(2,C) and Hgy, Hp, € PSU(2). g, can be geometrically interpreted as parallel transport the
base point b in S?\I's to the base point b, on the 4-holed sphere S, C 9(S3\I's). For different a, the gauge fixing
group element g, can be chosen differently. That is, the PSU(2) closure condition can be written in different PSU(2)
subgroups of PSL(2,C). In this way, the gauge fixed version of (154a) — (154¢)

Hy3H12Hi5H14 =1, ( )
Ho1HoyHogHos =1, ( )
Hs1H3yHys Hyo = 1, (157¢)
Hy HysHyzHyz = 1, ( )
Hs1HsoHs3Hsq = 1 (157e)

describe 5 tetrahedra, each corresponding to PSU(2) flat connection on a 4-holed sphere.
These PSU(2) holonomies be subject to the constraints

Hap = GopH,;,'Gra,  Gro = G € PSL(2,C), Y (a,b) (158)

where

Gap = gcjlgbv V(a, b) # (17 3)’ (37 1) )

. i " (159)
Gi3 =g ! (92H2492 1) g3 = G311 :

Gap then represents the parallel transport from by to b, along a path passing through the common base point b
in 9(S3\I's). In other words, it changes the local frame from tetra; to tetra, and thus we call it a frame-changing
holonomy. The second line of (159) together with (158) is the constrained version of (154f). Indeed, (158) implies
that Tr(Hap) = Tr(Hp,), which geometrically means the two triangles these two holonomies surround have the same
area if using the parametrization (134), which is exactly what we asked. Therefore, (156) together with (155) describe
the geometry of a 4-simplex.

C. Impose the simplicity constraints

With the geometrical discussion above, we define the simplicity constraints of the Chern-Simons theory on S3\I's
as restricting the moduli spaces of PSL(2,C) connections on 4-holed spheres to the ones that can be gauge-transformed

to PSU(2) flat connections. This restriction should be imposed on the coordinates (9, P) (94) which, in turn, impose
constraints on the partition function. We borrow the idea in the EPRL model that the first-class constraints are
imposed strongly while the second-class constraints are imposed weakly.

1. The first-class simplicity constraints

We have introduced in Section IV 3 that the 6 FG coordinates {XE?)}iyéj (see Table IT) are the coordinates of
Mat(Sa, PSL(2,C)). Then one can impose restrictions on these coordinates to implement the simplicity constraints.
Recall that linear combinations of these FG coordinates, giving rise to the FN coordinates {2Lqp}p4 (91) commute
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with all the {Xz(';'l)}i#j- The first-class constraints are then given by the function of 2L,;’s. Each 2L, is the logarithm
of the eigenvalue A} = A2, = e** of the holonomy Hgj around the hole p of S,. Hp(7,) € PSU(2) implies that
)\‘23 = ¢*20av vith some 0, € R. From the geometrical interpretation in the previous subsection,

A
Ua,, —r, (160)

A
Gab:—uap or Gab: 6

6
where the choice of the expression from the two is selected using the convexity criterion (143) after constructing the
PSU(2) holonomies. Therefore, the first-class simplicity constraints can be formulated as

2mi antizati

2Lab — % (—ibuab . mab) c iR llap = 0 quantization

where the right-most quantum constraint is written in terms of Re(g,;) as the analytic continuation of ugp to C is

allowed at the quantum level. We allow Im(pap) = aup # 0 as only the real part is quantized. Then e2Fer € U(1) is
realized only at the classical (k — 00) level. Define the “spin” j,; such that

Re(pap) Zs3\rs (fi]M) = 0, (161)

1 k—1
2jab = Map — jab = 0,57"' 7T . (162)

Jab encodes the area a, of the triangle f, in a tetrahedron (when we fix the orientation of f,) by

A 4r A 4m

%ap - ?]ab or 2w — %ap = ?]ab . (163)
Whether to choose the first or the second expression depends on the outgoing normals of the faces, which are encoded
in FG coordinates on S, as we will see later. We label the partition function for S3\I's satisfying the constraint (161)
as

Zga\rs ({iab } abys {a} | {Jab}(abys {ma}) - (164)

Effectively, the first-class simplicity constraints can be seen to be imposed on the FN coordinates on the annulus
cusps on the triangulation of 9(S3\I's). The remaining (second-class) simplicity constraints will be imposed on each

Sa.

2. The second-class simplicity constraints and the Chern-Simons coherent states

The moduli space Mant(Sq, PSL(2,C)) is not a symplectic manifold but a Poisson manifold, due to the presence
of Poisson commutative {A2}5_;. Fixing {A\7},_; by (163) reduces the moduli space Mg, (Sa, PSL(2,C)) to a two-
complex-dimensional symplectic space My with coordinates (Xs,Y,), on which we should impose the second-class
simplicity constraints.

The implementation of (161) results in the factorization of H,y as follows.

Hop = M (€ay)ding O \g )M (€)™ Aap = e 278 M(€0p) € SU(), (165)
where ju = 0, %, cee kgl and M (&) is defined in terms of a spinor |£,) = (£9,,€L,)T € C? and its dual spinor

€] = (—€L,,€9,)T assigned on the hole of S, that connects to S, (sometimes it is more convenient to use the
notation & = [€ap) and JEap = |€ap]). [€ap) is dual to |yp) in the sense that [E4p|Eap) = (Ean|€an] = 0 (by definition).
They further satisfy the normalization property (£up|€ap) = €%,€0, + €L,€L, = 1 = [€4p|€ap] Which guarantees that
M (€qap) € SU(2) by the following definition.

0 £l
M) =l 1)) = (&0 50 ) (166)
é'ab é'ab

More precisely, |£45) is the normalized eigenvector of Hy,, at b, so it can be treated as a framing flag of the hole
of S, connected to S, parallel transported to b,. Recalling the isomorphism (149) between the moduli space of flat
connection on a 4-holed sphere and the geometry of a tetrahedron, the geometry of tetra, is encoded in {Hgap}p2a-
More precisely, in the decomposition (165), Aqp encodes the area aqp = ap, of fop by (163) and [€4) encodes the 3D
normal vector to f,p in the local frame of tetra, by

'ﬁ‘ab = <§ab|5|§ab> or 'ﬁ‘ab = _<§ab|5|£ab> (167)
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where ¢ = (01,02, 03) is a vector of Pauli matrices. The outward-pointing normal fig, to fup is different from 7, by

a sign factor s = sgn(A), namely
ﬁab = Sﬁab . (168)

This is because the normalized eigenvector |€,p) is the same for holonomies around a spherical triangle (corresponding
to s = +) with eigenvalue, say )\, and a hyperbolic one (corresponding to s = —) with eigenvalue A\=! (recall

—

H;, = exp (S%ﬂgﬂ[ . T)) For each of all four triangles in a tetrahedron, either the area is related to j,p in the first

or the second option in (163) is determined by the triple product (72; x 7;) - i < s for any set of three triangles in a
tetrahedron. On the other hand, (f; x #i;) - fiy > 0 for either s.
A similar factorization for Hp, gives

Jba

Hba = M(éba)diag(Abav )\bfal)M(fba)il y >\ba = 627”T ) (169)

where jp, = % — jab (hence A2, = )\;b2) and M (&) is defined in the same way as M (€,) but with spinors [£,) and
its dual |&,,) on as eigenvector of Hy, at by on Sp. Importantly, the 3D normal vector to fup in the local frame of
tetra, defined as

Npa = <§ba|&|€ba> or My, = 7<£ba|6|£ba> (170)

is different from 74, in general as the two spinors are different. Indeed, 74, and 7, are related by the dihedral angle,
denoted as O, of tetra, and tetray hinged by fup. Oup is encoded in the frame-changing holonomy G, and the pair

of spinors (|€4p), |€ba)) (or (|€as], |€bal)):

€]

a 0 — —ssgn 25 44
Gab = M(gab) (’yob ’7_1 ) M(fba) ! sy Yab — € g (V4) 2b+ fas I} (171)

ab

where ©up, 04 € R [9]. The calculation calculating the amplitude of 4 = e_ssg“(v“)% is rather lengthy and we
omit here. See [9], or Appendix B of [13]. Therefore, given the 4-simplex geometry, including the areas and normals
of all triangles in different tetrahedron frames and the dihedral angles hinged by the triangles, one can reconstruct
all the Ggp’s up to some phases {0qp}ap determined by the boundary condition (as all edges of a 4-simplex are on
the boundary). Further, flat connection holonomies {ﬁab} on S3\I's can be determined by {Gg} through (156) up
to a PSL(2,C) gauge as G is invariant under the gauge transformation from the left g, — hg, , Vh € PSL(2,C) (r.f.

(159)). Such a gauge transformation corresponds to changing the common base point for defining { Hgp}.

As the spinor &, is the eigenvector of PSU(2) holonomy H,p, it can be treated as a normalized framing flag
Eab = II%H of, say, hole i parallel transported to the base point p,, which is a coordinate in Mg (Sq, PSU(2)). Recall

the definition (39) of an FG coordinate in terms of framing flag, the constrained coordinates, denoted as &, = e

and g, = eY=, referring to the labelling of holes in fig.12, can be defined as

. [&1l€2)[€56a) gl = [€4]H2&2)[811€3) (172)

ma - ) a )
[£11€3)[€21€4) €4 H281)[€2(83)
where Hj is the PSU(2) holonomy around hole 2 given by

Hy = M(&)diag(Mo, Ay )M (€)™Y, Ay =exp [7: (bagy — 2]@1;)} , with some b # a. (173)

Parametrize ()/(\a, )A)a) as

5 2m o 2ms
Xy = =2 (=ibjia 1) . Jo=

k (7ibl;a - ﬁa) ) (174)

where (fiq,7,) € R?. (/'?a, 321) live in the two-real-dimensional compact symplectic space MX and there is a pair of

Darboux coordinate (64, ¢q) € [0,7)? spanning the space My [35]. Then one can define the integral of any function

f on ﬂx as

| der= [ dsnor. (175)

M;, M;;
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FIG. 12: Constrained FG coordinates on S, corresponding to the definitions (172).

Any integration on Mj is finite as long as the integrand is bounded.

As second-class constraints, we will impose them weakly by using Chern-Simons coherent states, which we define in
the following. By definition, coherent states are peaked at the classical phase space points hence the labels of coherent
states are given by both the position variables {X,} and the momentum variables {),}. Recall the notations

2w 2w

Xa - T3 (*Zb,ufa - ma) ) ya - k

A (—ibvg —ng) . (176)

Chern-Simons coherent states on S,. After fixing the FN coordinates {Lap}(ap) to be given by the spins
{Jab}(av), the Hilbert space of each 4-holed sphere S, is locally C2. We also fix Im(j14) = @, and consider the degrees
of freedom Re(p,) € R and m, € Z/kZ. To simplify the notation, we will denote Re(ps) by e € R in the rest of this
subsection. The Hilbert space for S, is

Hs, = L*(R) @c CF.

Firstly, the coherent state 1Y (1) on L?(R) is defined as the solution to

% (ﬁu+iﬁu> O (n) = \/izmga(u), (177)

1/4 2
2 —m(py——k_Re(z .
ga (M) _ () ek (N — 7 Re( a)) e ivV2puIm(z,) ’ (178)

which solves

with the over-completeness property

k

oo [ dRe(za)dlm(z) 92, ()92, (1) = Gy (179)
C

The coherent state label z, € C parameterizing a complex plane is related to the constrained coordinates (174) by

Vor
Ra = T(,ua + ZVa) . (180)
For the finiteness of the vertex amplitude given any boundary condition, we add a prefactor to this coherent state
and define
Vs, () = VPP RCIYl () (181)

-

where 3, is the component in (@, 3) € PBgs\r,. The prefactor is subdominant at large k so it does not affect the
semiclassical behaviour of ..

Secondly, the coherent state ((, ,.)(m) on C* is labelled by (z4,y,) € [0,27) x [0,27), which can be viewed as the
angle coordinates on a torus T2. It is defined as [30]

1/4
2 ikTaqya 2mm 2 ik 2wm
C(mmyn’)(m) = (k) e k47r E efﬁ( k 727Tpafwa) e%ya( k-**z‘frpa*ma) . (182)
Pa€Z
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Za, Yo are related to the constrained coordinates (174) by
2 2
T = mod(%ma, 27), Yo = mod(%ﬁa, 27). (183)

The over-completeness property of ((,, ,.)(m) reads

k -
m \/1T2 dzadya C(wa,ya)(m)C(wa,ya)(m/) = 6 2]79” ('m—'m’)’l . (184)

€
The coherent state in Hs, is the tensor product of these two coherent states

v,, (.U‘m) =1, ® C(wmya) €EHs,, Pa= (Zavxaaya) . (185)

It is easy to confirm that the expectation values of the operators u, v, m, n calculated by the coherent state ¥, (u|m)
are given by the coherent state labels, or the classical phase space coordinate at large k limit, i.e.

0o A 0o A 2mi o0 2 2mi 2mi
(1) 225 (@) S0, (exp(Som)) S exp(Sma) s (exp(Som)) = exp(5Ra) . (186)

It is only valid at the large k limit since the torus part of the coherent state ((, ,)(m) is normalized only at this limit.

With the second-class simplicity constraints imposed on the coherent state labels, one can define the vertex ampli-
tude by the inner product of partition function (164) and five coherent states (185), each associated to one S,. That
is

5 5
A = ([[ TpalZsrr) = > / d®pta Zgor, ({i0ab ta<v {tta + i} | {avta<o: {ma}) [ [ @ou (alma) ,
a=1 {mayez/kzys '’ a=1
(187)
where ¢ = ({Qabs Jab a<b, {Pato—1, {Qas Ba}>_1). It will also be convenient to denote the measure (175) in terms of
the coherent sate label:

| dps= /M# de f (188)

One of the most important features of the vertex amplitude A, (¢) is boundedness for any {p,}>5_;, which we now
explain. Firstly, the partition function Zgs\p, € F, (k;3\F5 so, hence

5 5
H 6_2%6‘1““233\115 (i +1idm) € S(R%) = H 6_2%'8“““253\115 (L+ialm)| < Cp;  with some 0 < Cy < 00.
a=1 a=1
(189)
Secondly, ((z,.y,) is bounded
Zf(wa,ya)(ma) < Z ‘C(%,ya)(maﬂ < (C, withsome 0<Cy < 00. (190)
Lastly, we need to evaluate the integration over the bounded function 1., (tq), which is a Gaussian integral:
T . 2, e
’/ dua e%ﬁauawza(ﬂa) < / d/l,a )62%6auawza(:ua) = (2> /dua 6_?(#(1_%‘/51)\8(2“)) +27ﬁ“(“a_%\/§Re(za))
R R k R (191)

= (2k)ierha

Combing the results (189) — (191), we conclude that the vertex amplitude A, (¢) is finite. From the expression (191),

we have also seen the reason for the introduction of the prefactor e~V2aRe(za) jp defining v, (181). If this term is
missing, we can only conclude that A, (¢) is finite given finite {Re(z4)}.
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VI. SEMICLASSICAL ANALYSIS OF THE VERTEX AMPLITUDE

To see that A,(¢) is a good definition of a spinfoam amplitude for a 4-simplex, one should extract the geometry
encoded in the vertex amplitude. This can be done by looking at the semiclassical limit of A, (¢). The semiclassical
limit here refers to taking k — 00, ju» — 00 while keeping their ratio ju;/k fixed. Recalling that k = % and that

P

a= 1‘/2\’|T jz” (or the other option of (163)), this means £, — 0 while the geometrical quantities e.g. a,n, A as well as

the Barbero-Immirzi parameter v are kept fixed. It turns out that the Regge action with a cosmological constant
term is reproduced at the semiclassical limit of A,. We only summarize the idea of how to get it and refer to [9, 11]
for details.

The large-k asymptotics of the vertex amplitude can be analyzed by the stationary phase approximation. That is
to express A,(t) into an integral of an exponentiated action:

Ay(0) E22% [ dpu(X) bSO | (192)

where X is a set of k-invariant variables, p(X) is its measure and S(X) is the action. Let X = X§ be the a-th
stationary point of S(X) such that

oS
— =0, (193)
X5
then the integral (192) can be approximated as
d okS(X) kS(X5) ; 194
/ X Z \/det (—H,/2m) (194)
where H, = % . is the Hessian matrix evaluated at the a-th critical point.

0

Under this scheme, we first express the integration and summation variables i, I/, m, 7 back to Q, @, 73,73 as they
are jqp/k-dependent hence are scaleless:

_ Kb = ik -

MI*m(QIJFQI) ) Wl]*moljfb Q]) , (195a)
kb ~ ik N

vr = m ((’BI +‘131) , ny= m (‘131 — bZ‘,BI) , (195b)

The summations over m, and n, also need to be altered to integrals for the stationary analysis. The trick is to use
the Poisson resummation formula

k 1

> fn) = Z/ 76dnf 2T = %Z/% v <2l:rj) etkrd (196)

n€L/kL pEL pez”’ —9/k

Putting these ingredients together, A, () can be written into the form of (192) with

/ =Ny Z/m/\ —idP; A dPy /C/\ ~idQ, ndQ,) , S(X) = S(

PEZIS GEZS

P,P), (197)

O
Qu

where NV is some k-dependent numerical factor, p comes from the Poisson resummation of 7 and @ comes from the
Poisson resummation of m,. The positive angle & does not scale with k so it is not seen at the large-k limit of the
action. )

The critical equations are given by the partial derivative with respect to the integration variables ﬁ, Pand Q,, Q4. A
direct calculation (see more details in [11]) shows that 9S/0P; = 0 and 05/9P; = 0 are nothing but the reformulation
of the algebraic curve equations 271 + 2" —1 =0 and 27! + 2’ — 1 = 0 respectively in terms of the new coordinates,

e

which solves P*(3),P (Q) in terms of @ and Q with « labelling the branches of Lga\r;-

On the other hand, 95/99Q, = 0 and 85/8@a = 0 relates the FG coordinates on the 4-holed sphere S, to the labels
of the coherent state ¥, in a natural way:

,ua:ﬂaa Va:ﬁaa ma:ma> Ng = g . (198)
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Note that after imposing the first-class constraints, 2L, = _%jab = —2Zab. The action evaluated at the critical
point is then

S(X5) = S({2Lav, T ({2La}), Ty ({2Lab )} {00}) (199)
The derivative of S with respect to 2L is
oS ik
= — 2Lap}) — BT ({2L, 200
5oL = oo (e{2hal) - PT5(2LaD) (200)
which implies that
2Lap
a\ __ @
S(X8) =— 1+b2 Z/ L) +ce +C (201)
where C” is an integration constant. 7. can be calculated using framing flags [33] and it gives
1
Ty = _535gn(v21)9ab + 47 Nap + f(Oab, {€}s Lav),  Nav €Z, (202)

where {£} denotes a set of spinors, N, corresponds to a lift of 7. from 78 = e’<b, and f(fap, {€}, Lap) is a function
depending on the boundary condition.

The result (201) can be improved by taking into account another critical solution as follows. Given boundary
conditions corresponding to boundary tetrahedra of a non-degenerate 4-simplex, there are exactly two critical points
A and A. They are called the parity pair, which also exist in the EPRL model [37]. Intuitively, the Chern-Simons
action (26) involves the self-dual and the anti-self-dual parts of the SL(2,C) connection in the same footing, it is not
hard to realize that the transformation

P:A=(AA) — A=(4,A4) (203)

is a symmetry of the equations of motion. The main consequence of such transformation is that the FN twist
1 N 1
P Tb|A——issgn(w)(%ab-kmNb\A—i-f — wblx = gssgn(‘/g)@ab-l-m]\fbu—&—f (204)

This means the two solutions of the parity pair correspond to opposite 4D orientation of the 4-simplex. The difference
between the two solutions is

Tavla — Taplg = sgn(Va) (—8Oap +2miNgy) ,  2Nap = sgn(Va) (Ngy| 4 — Naplz) € 2Z. (205)
Taking into the parity pair, we rewrite (201) and calculate its variation

ik .
58 = fmsgn(vz;) ; (=5 Oup + 2miNgp) 6(2Lgp) + c.c.

kA

= —msgn(v};) az;b (Oup — 2miNgp) dagp + c.c. (206)

k’yA
6

Ak
sen(Va) Y Oapdaiar — L > Napbatas -
a<b a<b

By the Schlafli identity of constant curvature 4-simplex [38]

Z (5@abaab = A‘V4| s (207)
a<B
05 can be integrated and gives
ik A Ak
S = 6/7 sgn VZL (;} @abaab A|V2; ) - — ngabaab. (208)
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Recalling that a,, = 1?@@{7”, the second term can be ignored in the exponential. We then conclude that the large-k

limit of the vertex amplitude does give the Regge action with a cosmological constant term:

k 1 —3 _
A, —o0 :N+e7/kSRegge+C +MN_e ikSRegge C’ (209)

where N encode the Hessian, C is a geometry independent integration constant, and

A
SRegge = ;27 (Z Oapay — A|V4|> . (210)

a<b

Now, we see the second main feature of the spinfoam vertex amplitude — reproducing the 4D Lorentzian Regge action
with A for a homogeneously curved 4-simplex.

A. Edge amplitude, face amplitude and the full amplitude

After a long journey, we have only defined and analyzed the spinfoam amplitude for a single 4-simplex. What about
a 4-complex? A straightforward way is to define edge amplitudes A.’s and face amplitudes Ay’s for spinfoam edges
and spinfoam faces respectively, and then the amplitude for a 4-complex can be formally written as an integral and
sum of the product of vertex, edge and face amplitudes, i.e.

A4-complex = Z/dﬂ(y) H Af HA@ HAU s (211)
f e v

{5}

where Y is a set of internal configurations, so as the spins {j}. The edge amplitude describes the gluing of 4-simplices
through their 3D boundaries. As the vertex amplitude is defined relying on the 3-manifold S3\I's, such gluing can be
represented by gluing S3\I's’s through their 2D boundaries. On the other hand, the face amplitude is related to the
boundary Hilbert space [39]. We refer to [12, 13] for recent proposals of edge and face amplitudes and only formally
write the general spinfoam amplitude as follows.

The spinfoam amplitude for a spinfoam 2-complex consisting of V' spinfoam vertices, Ej, internal spinfoam edges
and Fj, internal spinfoam faces takes the form

(k—1)/2 Fin Ein \4
Zs (@h) = Y /ﬁ dpyce /M dpy < [ T] Ar2idp) HAP,(pzeap;;€€|{jg§e,jgf€}c>d>] [HAU@W,W)]
ir=0 78 7’ f=1 e=1 v=1

(212)
where v € e denotes that v is at the (source or target) end of e, @ contains all the positive angles, gy contains all the
coherent state labels on the boundary, the summations in j¢ are for all the internal spinfoam faces and the integrations
over coherent state labels are for all the internal spinfoam edges.

We require that the vertex amplitudes, edge amplitudes and face amplitudes are all bounded and that the integra-
tions over the coherent state labels are over compact domains, then the spinfoam amplitude defined in (212) for any

spinfoam 2-complex is finite given finite boundary spins fb and finite Chern-Simons level k.

VII. DISCUSSION, CURRENT STATUS AND FUTURE DEVELOPMENTS

In this note, we have illustrated the construction of the spinfoam amplitude for 4D Lorentzian quantum gravity
with a non-vanishing A, which combines the techniques from the existing spinfoam model with A = 0 (mainly the
EPRL model) and the geometrical quantization of the Chern-Simons theory on a graph-complement 3-manifold. The
spinfoam amplitude is finite by construction and it reproduces Regge action with a A term as desired. These robust
features enhance the capability of this spinfoam model to address Lorentzian quantum gravity problems at hand.

o A “moduli-space field theory” (MFT) formalism of the spinfoam model — a possible UV complete, triangulation-
independent quantum gravity theory with order-by-order finite amplitudes.

A MFT is an analogy of the Group Field Theory (GFT). The rough idea of group field theory is to express
quantum gravity in the action of a group-dependent field ¢ : G¢ — C and compute the amplitudes, or correlation
functions, for different spinfoam graphs using the path-integral method.
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Here, we can use the coherent state defined in Section V (2. ¥, which is a field on the coherent state label p. Re-
call that p = (Re(z),Im(z), z,y) labels the phase space coordinates X = 2% (—iby —m) , Y = 2% (—ibv —n)
with the relation (treating p,v € R as the positive angles do not encode the geometrical information of the

4-simplex)

k k k
R =1 = = —v. 213
p= \fﬁ e(z), v G m(z), m=g-r, n=-y (213)
Group them into two complex variables
2 2
u:%(quiy), v:%(erin), (214)

and define the configuration for a tetrahedron (or equivalently a 4-holed sphere)

L= ({jp}ﬁzh uv), = ({jp}ﬁzla u,v). (215)

For notation consistency, the measure (188) can now be denoted as

/—_ de = /7_ dp. (216)

The coherent state W(:) is then viewed as a function on the moduli space Mg, (Xg.4, PSU(2)) of PSU(2) flat
connection. Require that W(:) satisfies the reality condition

T() = T("). (217)

The generalized moduli-space field action
S0 = K[¥] + V[Y] (218)

contains a kinetic term K|[¥] ~ U2 and an interaction term V[¥] ~ ¥, The kinetic term is defined as

KW= Y [ Ao, (219)
{inYe@/hyt

where the sum is only for the admissible spins satisfying the triangular inequalities. The potential term should
reproduce the vertex amplitude hence we define it to be

5

5N T ddtin T vkl 220)

{Jab}a<ba‘ 1 Aa a=1

where ¢ is the coupling constant. Since the measure is over a compact space and the integrands we encounter are
all bounded functions, it is not hard to expect that the path integral of the action (218) gives finite amplitude
order-by-order. Such a formalism includes a sum over all the triangulation hence it is triangulation-independent.
The cutoff on spins renders UV completeness of the theory under this formalism.

We have seen in Section V C2 that the framing flags on o4 can be replaced by the spinors when
M@t (20,4, PSU(2)) is concerned, i.e. when the simplicity constraints are imposed to implement 4-simplex
geometry on the Chern-Simons partition function. These spinors (together with the spins {j.5}) can be used
to reconstruct the phase space coordinates (including the FN lengths and FG coordinates on 4-holed spheres)
that correspond to a (real) critical point of the spinfoam amplitude. This provides an algorithm, which is ready
to be used for numerical development, to compute the critical behaviour of the spinfoam model, starting from
which one can study e.g. the complex critical points and perturbation theory of the spinfoam model. This is
similar to the strategy of the numerical study of the EPRL model [40-42, 42].

One can also potentially tackle physical questions with this spinfoam model: What is the physical Hamiltonian
corresponding to the spinfoam model? How do we couple matter field to the spinfoam model to define physical
time? How does it apply to reduced model e.g. cosmology and black holes? What are the boundary symmetries
and charges encoded in the spinfoam model for a general 4-complex?
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Apart from the above plausible directions of development, the spinfoam itself could still be modified or improved.

1. Firstly, the spinfoam amplitude for a general 4-complex is so far constructed by gluing spinfoam vertices together
with edge and face amplitudes using the spinfoam ansatz (211). Chern-Simons partition functions are only used
to define the vertex amplitude. However, when a more complicated 4-complex is concerned, one can in principle
construct the Chern-Simons partition function for the graph-compliment of the boundary of the 4-complex in
the same way as how we construct the Chern-Simons partition function on a single 4-simplex. One can then
impose simplicity constraints all at once on such a more-volumed partition function, which could potentially
simplify the construction. We also need to check if such construction gives the same result as gluing vertex
amplitudes.

2. The way to impose the second-class simplicity constraints is flexible as we only require weak imposition. It is
also possible to choose another coherent state that peaks at the same phase space configuration but lives in a
different Hilbert space, which would potentially change the construction of the GFT.

3. The simplest way to glue vertex amplitude is to identify FG coordinates X = yg”, Yo = Xg’/ if S, from 3-
manifold corresponding to spinfoam vertex v is glued to S, from 3-manifold corresponding to spinfoam vertex
v’ (this way of gluing was used in [13]). It potentially imposes constraints on the topology of the 4-complex,
because such requirement is rather strong. It is better to define a gluing for any pair of edges on the ideal
triangulation of the 4-holed spheres. This would involve some local symplectic transformation which leads to
unitary transformation of the vertex Chern-Simons partition function. There is evidence that one may have to
lift Mgt (30,4, PSL(2,C)) to Maat(E0,4,SL(2,C)). Nevertheless, this allows us to generalize the construction
of the spinfoam model to be more adaptive for different 4-complexes.
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