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Outline:

Two important developments 60 years ago: genericness of
singularities in GR and the cosmic microwave background

Part A: an overview of singularity resolution in LQC

Part B: Hamiltonian framework for cosmological perturbations
and how to explore quantum geometry effects in CMB?
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An almost complete history of our Universe
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The Expanding Universe

From the spectra emitted by the galaxies,
Hubble in 1920’s discovered that they are
moving farther from each other. Fainter
the galaxy, faster it recedes.

Friedmann and Lemaitre found a solution
in GR in which the universe was expand-
ing. Primevial Atom as the seed of the
Universe.

The expansion of the universe led to many
questions. How did the universe begin and
how did the galaxies form?

And the problem of initial singularity.

4 / 83



Universe without initial singularity

Eddington believed there is nothing
wrong with GR and there is no initial
singularity. It was believed to be an
artifact of simplifying assumptions of
isotropy and homogeneity.

“Philosophically, the notion of a beginning of the present order of
Nature is repugnant to me. I should like to find a genuine
loophole.” (Eddington, 1931)

Eddington’s ideas greatly influenced Hoyle who later pioneered the
Steady State Theory based on Perfect Cosmological Principle – the
universe looks same not only in space but also in time. No initial
singularity.
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The “Big Bang”

Gamow developed in detail Lemaitre’s
preliminary ideas and explored the
ultra dense state of matter from which
elements would originate. Predicted
the universe will have a very cold back-
ground radiation (CMB).
Big Bang was coined by (his arch rival)
Hoyle in a BBC interview in April 1949.
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Genericness of Singularities

In 1950’s Raychaudhuri proved Ed-
dington wrong by showing existence
of singularities in anisotropic and ho-
mogeneous spacetimes. Discovered
Raychaudhri equation which plays an
important role in understanding the at-
tractive nature of gravity and divergence
of geodesics.

In 1960’s Geroch, Penrose and Hawking proved that singularities
are generic in GR. Null energy condition must be violated to avoid
singularities; (ρ+ P ≥ 0)
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Something unexpected from geopolitics

1945: Arthur C Clarke conceptualized
communication satellites.

1957: Sputnik 1 launched.

1958: NASA born.

1959: Project Echo (balloon satellites)

1964: Penzias and Wilson found a mys-
terious noise coming from outside our
galaxy!
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Fundamental questions:

Is our universe described by the classical continuum spacetime at
all the scales?

What is the quantum nature of spacetime?

If the spacetime has an “atomic structure”, what is the fate of big
bang and black hole singularities?

How does a quantum spacetime affect the physics of very early
universe and in the interior of black holes?

Does quantum spacetime leave any signatures in the
phenomenology of very early universe in the CMB?
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Part A
An Overview of Singularity Resolution in LQC
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Motivation

Symmetry reduced spacetimes, such as cosmological, anisotropic
and black hole interiors provide a tractable, non-trivial and rich
setting to implement techniques of LQG. Kindergarten to learn
valuable lessons for quantization of spacetimes and to gain insights
on the physics at the Planck scale.

What can one learn in this quantum gravity playground?

Rigorous construction of self consistent model quantum
spacetimes. (Physical Hilbert space, observables).
Develop and rigorously test different tools and techniques to
extract reliable physics. (Bridges quantum gravity with other
areas such as numerical relativity).
How to rule out different quantizations using internal
consistency and physical predictions.
Understand potential quantum gravity implications for early
universe and test them using astronomical observations.
Provide insights on fundamental issues. (Consistent quantum
probabilities, Black hole information loss).
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Main Caveat: Quantization of homogeneous spacetimes is
“quantum mechanics of spacetime.” Where as full quantum
gravity is “QFT of spacetime.” Assuming homogeneity of
spacetime, various hurdles of the full quantum gravity can be
bypassed. Hope is that some qualitative aspects captured.
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Cosmological model: some preliminaries

Spatially flat homogeneous and isotropic FLRW spacetime

ds2 = −dt2 + a2(t)
(
dr2 + r2

(
dθ2 + sin2 θdφ2

))
(1)

where lapse N = 1 and a(t) is the scale factor. Consider this
universe filled with a perfect fluid

Tµν = (ρ+ P )uµuν + Pgµν (2)

where uµ is the velocity relative to the comoving observer (which
follows Hubble flow). Energy density ρ and pressure P = −∂Hm

∂a3

satisfy the conservation law obtained from Tµν;µ = 0

ρ̇+ 3H(ρ+ P ) = 0. (3)

For a fixed equation of state w = P/ρ, ρ ∝ a−3(1+w).

Pressurless dust: ρ ∝ a−3, w = 0

Relativistic matter/radiation: ρ ∝ a−4, w = −1/3

Stiff matter: ρ ∝ a−6, w = 1; Dark energy: ρ ∝ a0±ε, w ≈ −1
Cosmological constant: ρ = constt., w = −1.
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Cosmological model: some preliminaries

From the Einstein’s field equations

Gµν = 8πGTµν (4)

we can obtain the Friedmann equation:

H2 :=
ȧ2

a2
=

8πG

3
ρ, (5)

where H is the Hubble rate, and the Raichaudhuri equation:

ä

a
= −4πG

3
(ρ+ 3P ) (6)

Gravity is attractive when ρ+ 3P > 0. This is strong energy
condition (SEC). The Ricci scalar is

R = 6

(
H2 +

ä

a

)
= 8πG(ρ− 3P ) (7)

Integrating dynamical equations gives a ∝ t2/3(1+w) for w 6= −1,

and a ∝ e
√

Λt for w = −1 and Λ = constt..
When a→ 0, ρ→ 0 in finite time and big bang is reached.
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Big bang is not the only kind of cosmological singularity!

Depending on the equation of state there can be various types of
singularities which can be classified as strong and weak.

Big Bang/Crunch: ρ, P,R diverge when a→ 0 in finite time.
NEC: (ρ+ P ) ≥ 0, is always satisfied. Strong singularity.

Big Rip/Type I singularity: NEC violated. In finite time, a(t)→∞.
Accompanied with a divergence of ρ, P , R. Strong singularity.

Sudden or Type II singularity: At a finite value of the scale factor
and energy density, R diverges. Needs exoitic equation of state.
Weak singularity.

Type III singularity: Occurs at a finite value of scale factor. Both
the energy density and pressure diverge. Strong singularity.

Type IV singularity: Only curvature derivatives blow up. Weak
singularity.
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Horizon Problem and Inflation

Particle horizon: Maximum comoving distance light can travel in
given time. For fixed equation of state w = P/ρ:

η =

∫ tf

ti

dt

a(t)
=

∫ ln af

ln ai

d ln a

aH
= H−1

0

∫ ln af

ln ai

a(1+3w)/2 d ln a (8)

If strong energy condition (SEC) is satisfied, comoving Hubble
radius (aH)−1 increases during expansion. For dust, radiation,
massless scalar, the Hubble sphere grows.

Horizon Problem: How do we explain almost perfect isotropic
nature of CMB in standard big bang model? There are roughly
10000 disconnected patches! Any two points which are more than
a degree apart were never in causal contact.

If Hubble sphere decreases during expansion in the early universe,
it can explain causal connection between different points in CMB.

Implies violation of SEC. Results in necessity of inflation.
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Inflation

A phase of accelerated expansion in the early universe where SEC
is violated. Popular paradigm to explain observations by
introducing scalar field potentials.

ρ = φ̇2/2 + U, P = φ̇2/2− U (9)

Conservation law results in Klein-Gordon eq:

φ̈+ 3
ȧ

a
φ̇+ U,φ = 0 (10)

V(  )

φ

φ

Inflaton slow rolls down:
φ̇2 � U implying w ≈ −1
and causing an almost
exponential expansion
measured in number of
e-foldings N := ln(ae/ai).

Past incomplete (Borde, Guth, Vilenkin (03))
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Inflation

Comoving horizon shrinks allowing causal contact between
different points in the CMB. Inhomogenities arise from the
quantum fluctuations of the inflaton which freeze out on exiting
horizon and generate classical density perturbations on re-entry.

matter

inflation

radiation

ln(a)

ln(1/aH)

ln(a   )eq
ln(a    )end

In the Fourier space, the power spectrum of these primordial
perturbations turns out to be almost scale invariant – that is,
almost independent of the wavenumber of the Fourier modes in
the observational regime.
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Strategy to extract quantum cosmological effects

Quantize the classical system. Find physical Hilbert space:
inner product, Dirac observables, physical states.

Consider physical initial states (such as in the GR epoch) and
evolve using quantum Hamiltonian constraint. Almost on all
occasions, models not exactly solvable therefore numerical
simulations necessary.

Compute expectation values of observables (and their
fluctuations). Compare with the classical trajectory. Obtain
departures between GR and quantum model.

Make precise statements about how singularity resolution
occurs. Behavior of energy density, shear scalar etc.

Extract robust phenomenological predictions.
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Homogenous and isotropic universe with a massless scalar

Due to the underlying symmetries, spatial diffeomorphism
constraint is satisfied and the only non-trivial constraint is the
Hamiltonian constraint.
Matter Hamiltonian: Hφ = P 2

φ/2V

V = Vo a
3 where Vo is the volume of the fiducial cell introduced to

define symplectic structure.

Hamilton’s equations yield: Pφ = constant, φ ∼ log v, ρ ∝ a−6
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φ acts as a “clock.”
Two solutions: an
expanding and a
contracting universe
(both solutions are
singular).
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Wheeler-DeWitt quantization

Quantize geometry and matter for a homogeneous universe.
Only finite number of degrees of freedom, system can be treated
quantum mechanically.

Earlier attempts based on treating spatial metric and its conjugate
as phase space variables (Misner, Wheeler, DeWitt 1970’s):

Basic variables: v, pv ∝ v̇ (geometry), φ, pφ (matter).
Operators: v̂Ψ(v, φ) = vΨ(v, φ), p̂v Ψ(v, φ) = −i~ ∂

∂vΨ(v, φ)

Hamiltonian: (v̂ p̂v)
2 Ψ(v, φ) = Ĥφ Ψ(v, φ)

For a massless scalar, quantum Hamiltonian is:

∂2

∂α2
Ψ(α, φ) =

∂2

∂φ2
Ψ(α, φ), α = log v

Observables, inner product available.
To extract departures from General Relativity, consider a
semi-classical state at late times (present epoch) and evolve
backwards towards big bang.

Is singularity resolved in the backward evolution?
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Wheeler-DeWitt states just follow the classical trajectory, all the
way to the big bang.

Singularity is not resolved! What went wrong?

A straight forward union of quantum theory and gravity does
not work. No guidance from a full theory of quantum gravity.

Properties of spacetime same as in the classical theory.
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Towards loop quantization

Due to the symmetries of the isotropic and homogeneous
spacetime, the connection Aia and triad Eai can be written as

Aia = c V −1/3
o ω̊ia, Eai = p V −2/3

o

√
q̊ e̊ai , (11)

where c and p denote the isotropic connection and triad, and e̊ai
and ω̊ia are the fiducial triads and co-triads compatible with the
fiducial metric q̊ab. The pair (c, p) satisfies

{c, p} =
8πGγ

3
; γ ≈ 0.2375(from BH thermo) (12)

Related to the metric variables as

|p| = V 2/3
o a2 (13)

and (only in GR as)

c = γV 1/3
o

ȧ

N
. (14)
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Promote the classical phase variables and the classical Hamiltonian
constraint to their quantum operator analogs. Holonomies of the
connection Aia along edges, and the fluxes of the triads along
2-surfaces. Due to homogeneity the latter is proportioinal to triad.

The holonomy of the symmetry reduced connection Aia along a
straight edge e̊ak with fiducial length µ is,

h
(µ)
k = cos

(µc
2

)
I + 2 sin

(µc
2

)
τk (15)

I is a unit 2× 2 matrix and τk = −iσk/2, where σk are the Pauli
spin matrices.

Captured by functions Nµ(c) := eiµc/2. Since µ can take arbitrary
values, Nµ are almost periodic functions of the connection c.
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There exists a unique kinematical representation of algebra
generated by these functions (Ashtekar, Campiglia (12); Engle, Hanusch, Thiemann (16)).
Parallels existence of a unique irreducible representation of the
holonomy-flux algebra in full LQG (Lewandowski, Okolow, Sahlmann, Thiemann (06);

Fleishchack (09))

The gravitational sector of Hkin is L2(RBohr, dµBohr). The
kinematical Hilbert space in LQC is fundamentally different from
one in the Wheeler-DeWitt theory. von-Neumann theorem is
bypassed.

Action of operators:

N̂ζ Ψ(µ) = Ψ(µ+ ζ), (16)

where ζ is a constant

p̂Ψ(µ) =
8πγl2Pl

6
µΨ(µ) . (17)

Change in the orientation of the triads in absence of fermions is a
large gauge transformation by a parity operator: Π̂Ψ(µ) = Ψ(−µ).
We choose symmetric states satisfying Ψ(µ) = Ψ(−µ).
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The field strength F k
ab in the Hamiltonian constraint is expressed

in terms of the holonomies over a square plaquette �ij with length

µ̄V
1/3
o in the i− j plane spanned by fiducial triads:

F k
ab = −2 lim

Ar�→0
Tr

(
h�ij − I
Ar�

τk
)
ω̊ia ω̊

j
b . (18)

Ar� denotes the area of the square plaquette, and

h�ij = h
(µ̄)
i h

(µ̄)
j (hµ̄i )−1(hµ̄j )−1, with µ̄ denoting the edge length of

the plaquette.

Note that due to the underlying quantum geometry, the limit
Ar�→ 0 does not exist. Shrink the area of the loop to the
minimum non-zero eigenvalue of the area operator in LQG.

Denote this minimum area as ∆l2Pl where ∆ = 4
√

3πγ.

Using physical area of the loop equalling µ̄2|p| results in (Ashtekar, PS,

Pawlowski (06))

µ̄2 =
∆l2Pl

|p|
(19)

Action of Nµ̄ on the triad eigenstates is not by a simple translation. 27 / 83



More convenient to work with variables b and v which are defined
in terms of c and p as:

b :=
c

|p|
1
2

, v := sgn(p)
|p|

3
2

2πG
, (20)

which when promoted to operators have action:

̂exp(iλb) |ν〉 = |ν − 2λ〉, V̂ |ν〉 = 2πγl2Pl |ν| |ν〉 (21)

where ν = v/γ~. Quantum Hamiltonian constraint equation:

∂2
φ Ψ(ν, φ) = 3πGν

sinλb

λ
ν

sinλb

λ
Ψ(ν, φ) =: −ΘΨ(ν, φ) (22)

where Θ is a positive definite, second order difference operator:

ΘΨ(ν, φ) := −3πG

4λ2
ν ((ν + 2λ)Ψ(ν + 4λ)− 2νΨ(ν, φ) + (ν − 2λ)Ψ(ν − 4λ)) .

(23)

(Ashtekar, PS, Pawlowski (06); Ashtekar, Corichi, PS (08) )

Quantum difference equation resulting from quantum geometry
results in Wheeler-DeWitt differential equation at large volumes.
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Quantum constraint similar to the Klein-Gordon theory, φ plays the
role of time and Θ acts like a spatial Laplacian operator. Physical
states can be chosen as solutions of the positive frequency square
root of Θ:

−i ∂φΨ(ν, φ) =
√

Θ Ψ(ν, φ) . (24)

Inner product:

〈Ψ1|Ψ2〉 =
∑
ν

Ψ̄1(ν, φo)|ν|−1Ψ(ν2, φo) . (25)

Dirac observables:

V̂ |φoΨ(ν, φ) = 2πγl2Pl e
i
√

Θ(φ−φo)|ν|Ψ(ν, φo) (26)

and
p̂φΨ(ν, φ) = −i~ ∂φ Ψ(ν, φ) = ~

√
ΘΨ(ν, φ) . (27)
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Quantum Bounce

Due to quantum geometry effects in loop quantum gravity, big
bang is replaced by a quantum bounce! (Ashtekar, Pawlowski, PS, (06))
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For sharply peaked states universe bounces at a maximum of
energy density ρ = ρmax = 3/8πG∆2 ≈ 0.41ρPlanck
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Comparison of Classical and Quantum Evolution
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Universe follows classical trajectory till curvature is approximately a
percent of the Planck curvature. GR an excellent approximation
when gravity is weak. Singularity recovered when ∆→ 0.

Probability of bounce to occur is unity! (Craig, PS (2013))
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Robustness of singularity resolution: examples

Exactly solvable model (flat, isotropic with a massless scalar)
(Ashtekar, Corichi, PS (2008))

In presence of spatial curvature k = ±1 (Ashtekar, Pawlowski, PS,

Vandersloot (2007); Kaminski, Lewandowski, Szulc (2007); Vandersloot (2007); Szulc (2009))

Bianchi models (Ashtekar, Wilson-Ewing (2009-2010); Martin-Benito, Mena-Marugan,

Pawlowski (2009); Diener, Joe, Megevand, PS (2018))

Negative cosmological constant (Bentivegna, Pawlowski (2007))

Positive cosmological constant (Pawlowski, Ashtekar (2012))

φ2 inflationary potential (Ashtekar, Pawlowski, PS (unpublished); Giesel, Li, PS (2021))

Extremely wide states not corresponding to a classical
universe at late times (Diener, Gupt, PS (2014))

Non-gaussian and highly squeezed states corresponding to
highly quantum universes (Diener, Gupt, PS (2014))

Radiation (Pawlowski, Pierini, Wilson-Ewing (2014))
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Effective dynamics

For suitably chosen coherent states, following geometric
formulation of QM, one can obtain an effective description
(Taveras (2008); Taveras, Singh (unpublished))

C
(eff)
H = − 3~

4γλ2
ν sin2(λb) +

1

4πγl2Pl

P 2
φ

ν
. (28)

Vanishing of Hamiltonian constraint yields

3

8πGγ2λ2
V sin2(λb) =

P 2
φ

2V
. (29)

The modified Friedmann and Raychaudhuri equations can be found
using Hamilton’s equation for V and b

H2 =
8πG

3
ρ

(
1− ρ

ρmax

)
with ρmax =

3

8πGγ2λ2
. (30)

The quantum gravitational correction thus appears as a ρ2

modification to the classical Friedmann equation. Bounce occurs
when ρ = ρmax. Gravity becomes very repulsive for ρ > ρmax/2.
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An accurate test of recovering GR: k = 1 FLRW model

(Ashtekar, Pawlowski, PS, Vandersloot; Szulc, Kaminski, Lewandowski (2007))

The closed model has past and future singularities.
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Is quantum bounce a generic feature of states in the theory?
Bounce happens for all the states in the physical Hilbert space
for the spatially flat, isotropic model (Ashtekar, Corichi, PS (2008)).

What is the state of the universe on the other side? Is it a
quantum foam or a classical spacetime?
A macroscopic universe, such as ours, bounces from a
macroscopic universe similar to ours. Spacetime fluctuations
severely constrained on both sides of the bounce (Corichi, PS;

Kaminski, Pawlowski; Corichi, Montoya (2008-2010))

What about quantization ambiguities? Do they affect results?
Surprisingly, an enormous number of ‘possible’ quantizations
in LQC can be ruled out. Consistency conditions have been
proposed, which restrict many mathematically possible choices
(Corichi, PS (2008-2009)). Recently new regularizations studied where
bounce is asymmetric for massless scalar field
(mLQC-I (Li, PS, Wang (2020)))
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Does quantum gravity resolve problems of inflation?

Quantum gravity resolves the past singularity in inflation (Ashtekar,

Pawlowski, PS (unpublished)).

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1  1e+10  1e+20  1e+30  1e+40  1e+50  1e+60  1e+70  1e+80  1e+90  1e+100
-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1  1e+10  1e+20  1e+30  1e+40  1e+50  1e+60  1e+70  1e+80  1e+90  1e+100
-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1  1e+10  1e+20  1e+30  1e+40  1e+50  1e+60  1e+70  1e+80  1e+90  1e+100
-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1  1e+10  1e+20  1e+30  1e+40  1e+50  1e+60  1e+70  1e+80  1e+90  1e+100
-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1  1e+10  1e+20  1e+30  1e+40  1e+50  1e+60  1e+70  1e+80  1e+90  1e+100
-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1  1e+10  1e+20  1e+30  1e+40  1e+50  1e+60  1e+70  1e+80  1e+90  1e+100
-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1  1e+10  1e+20  1e+30  1e+40  1e+50  1e+60  1e+70  1e+80  1e+90  1e+100
-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1  1e+10  1e+20  1e+30  1e+40  1e+50  1e+60  1e+70  1e+80  1e+90  1e+100

v

φ

Loop quantum effects also help in setting right initial conditions
for inflation (PS, Vandersloot, Vereschagin (2007); Gupt, PS (2013); Ranken, PS (2012)) and
give valuable insights on the probability for inflation to occur
(Ashtekar, Sloan; Corichi, Karami (2009)). Kinetic dominated bounce only for
Starobinsky inflation (Bhardwaj, Copeland, Louko (2018))
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Bounce for highly quantum states

Bounce not restricted to any special states. Even occurs for states
which are highly non-Gaussian or squeezed.
(Diener, Gupt, Megevand, PS (2014))
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In the isotropic model, quantum fluctuations are found to always
lower the curvature scale at which the bounce occurs. Quantum
fluctuations in the state enhance the “repulsive nature of gravity”
in the quantum regime.
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Anisotropic quantum bounce

Computationally challenging and expensive. Limited early results
on bounce in Bianchi-I vacuum model (Martin-Benito, Mena Marugan, Pawlowski

(2008)). Using Cactus framework, physics of quantum bounce in
Bianchi-I vacuum spacetime rigorously understood
(Diener, Joe, Megevand, PS (2018))
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Anisotropic shear remains bounded throughout the evolution.
Effective description turns out to be a good approximation.
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Modifications of standard LQC

(Yang, Ding, Ma (09); Li, PS, Wang (18); Assanioussi, Dapor, Liegener, Pawlowski (18))

Hamiltonian constraint composed of Euclidean and Lorentzian terms:

Cgrav = C(E)
grav − (1 + γ2)C(L)

grav

where

C(E)
grav =

1

2

∫
d3x εijkF

i
ab

EajEbk√
det(q)

and

C(L)
grav =

∫
d3xKj

[aK
k
b]

EajEbk√
det(q)

In LQC, quantization of spatially flat models obtained after combining

C(E)
grav and C(L)

grav. If terms are treated distinct, then form of quantum
Hamiltonian constraint significantly different.

Two ambiguities at this level:

Quantize C(L)
grav as above after using identities on classical phase

space and expressing in terms of holonomies. Leads to mLQC-I.

Use Ki
a = γ−1Aia in C(L)

grav, and then quantize. Results in mLQC-II.
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Comparison of mLQC-I and mLQC-II with LQC

Non-trivial modifications to Friedmann dynamics for mLQC-I and
mLQC-II in comparison to LQC in Planck regime (Li, PS, Wang (18))

-20 -10 10 20
t
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v

In mLQC-I, spacetime curvature remains Planckian before the
bounce yet satisfies Einstein field equations but with a quantum
gravitational origin matter.

In mLQC-II, spacetime curvature decreases quickly on both sides of
the bounce as in LQC. No emergent matter or a rescaled G.

No cyclic models possible in mLQC-I (Li, PS (22))
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Does LQC resolve all the singularities?

Spacetime curvature invariants can in principle diverge for for
various spacetimes in loop quantum gravity (PS (09,11); Saini, PS (16-17))

Example: In the spatially flat isotropic model in loop quantum
cosmology, spacetime curvature captured by

R = 6
(
H2 + ä

a

)
= 8πGρ

(
1− 3w + 2 ρ

ρmax
(1 + 3w)

)
, w = p/ρ

Energy density and Hubble rate have upper bound in loop
quantum cosmology, but pressure is not bounded.

For highly exotic equations of state, pressure can diverge at a finite
value of energy density causing some special singularities
(Barrow, Tsagas (04))
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Resolution of all strong singularities in LQC

When is a singularity physically relevant? The singularity at τ = τo
is strong and physically relevant if

∫ τ
0 dτ

′|Ri
4j4
| diverges as τ → τo.

Else the singularity is weak.

For all the events where curvature invariants diverge in loop
quantum gravity, singularities are weak and geodesics can be
extended beyond such events. Interestingly, quantum geometry
effects ignore weak singularities.

Strong curvature singularities are forbidden in loop quantum
gravity at least for isotropic and anisotropic spacetimes.
(PS (09,11); Saini, PS (16-17))

As in LQC, in mLQC-I and mLQC-II scale factor remains finite and
non-zero for all finite time evolution. all strong singularities
resolved for mLQC-I and mLQC-II (Saini, PS (18))
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Summary for Part A

Loop quantum cosmology provides a glimpse on the origin of
the Universe in non-perturbative quantum gravity for
homogeneous universes. Emerging picture from simple
models: Big bang not the beginning, big crunch not the end.

Singularity resolution achieved in various isotropic and
anisotropic models. No need to introduce any exotic
matter/ad-hoc assumptions/fine tuning. Existence of bounce
tested for extreme conditions using high performance
computers.

Bounce occurs for states in a dense subspace of the physical
Hilbert space (not only for those which are semi-classical at
late times).

Discreteness of quantum geometry bounds the energy density,
anisotropic shear and curvature scalars.

Main open question: Is singularity resolution an artifact of
symmetry reduced models? Or do these results point towards
a generic resolution of singularities in LQG?
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Part B
Hamiltonian Framework for Cosmological Perturbations

and How to Explore Quantum Geometry Effects in CMB?
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Motivation

The homogeneity assumption allowed us to understand the
cosmological models as systems with a finite degrees of
freedom which makes their rigorous quantization achievable.
But the physical universe is not exactly homogeneous!
Astronomical observations show that small inhomogeneities in
the early universe serve as the seeds of LSS.

These inhomogenities arise from the quantum fluctuations of
the scalar fields in the very early universe. Quantum
fluctuations of the inflaton freeze out on exiting horizon and
generate classical density perturbations on re-entry.

CMB provides an important platform to understand quantum
geometric effects using high precision observations.

While inflationary paradigm predicts remarkable compatability
with observations, there are anomalies for largest angular
scales which provide a potential window for QG effects.
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Motivation

In LQC, due to the bounce comoving horizon has a different
behavior in pre-inflation regime.

ln(1/aH)

ln(a)

ln(a   )s on ln(a    )end ln(a   )eqln(a )

Modes can cross in and out of horizon even before inflation starts.
There can be departures from the vacuum state and the primordial
power spectrum. Nature of bounce depends on regularizations
(such as mLQC-I, mLQC-II) that can potentially leave an imprint.
Similarly, quantum ambiguities can affect the power spectrum too.
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CMB anomalies

Power suppression anomaly: Lack of two point correlations at
large angular scales or low multipoles in comparison to ΛCDM
model.

Dipolar modulation anomaly: Evidence of scale dependent
dipolar modulation (between multipoles ` and `+ 1).
Parity anomaly: ΛCDM predicts parity neutrality. But there is
excess power of odd multipoles for large angular scales.
Lensing anomaly: CMB undergoes lensing by intervening
matter. Incompatibility with ΛCDM model.
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Brief overview of main approaches

A pragmatic strategy is to consider Fock quantized
perturbations over a loop quantized background. Two main
approaches: Dressed metric (Agullo, Ashtekar, Nelson (12)) and Hybird
approach (Fernandez-Mendez, Mena Marguan, Olmedo (12)). Both approaches
result in modifications to Mukhanov-Sasaki equation albeit
following different routes.

Classical theory of dressed metric approach based on Langlois’
work on Hamiltonian method for perturbations (Langlois (94))

Classical theory of hybrid approach based on Halliwell and
Hawking’s work on cosmological perturbations (Halliwell, Hawking (85))

In classical theory, both the approaches lead to the same
Hamiltonian up to the second order in perturbations. At the
effective spacetime level, the difference in phenomenological
predictions between the two approaches in the Planck regime
can be traced to quantum ambiguities (Li, PS (22)).

49 / 83



Brief overview of results

Significant advances in last few years to connect quantum
geometry effects with precision CMB observations.

Agreement with observations at ultra-violet scales. Quantum
gravity effects encoded in the intermediate regime and
infra-red where there is power amplification.

Special choice of vacuum state (Ashtekar, Gupt (17) can potentially
alleviate power suppression and lensing anomalies (Ashtekar, Gupt,

Jeong, Sreenath (20))

Non-Gaussianities can play a role in alleviating anomalies,
including parity asymmetry anomaly (Agullo, Kranas, Sreenath (20))

Other vacuum choices such as non-oscillatory vaccum and
states of low energy can also alleviate anomalies (Martin-Benito,

Neves, Olmedo (21))

Modified versions of LQC can in principle leave an imprint in
CMB too (Li, PS, Wang (22))
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Hamiltonian framework

(Langlois (94))

Consider a massive scalar field φ minimally coupled in GR:

S =

∫
d4x
√
−g
(
R

2κ
− 1

2
gµν∂µφ∂νφ− U(φ)

)
(31)

In the ADM formalism, we use the lapse function, N(t, xi), and
the shift vector N i(t, xi) to foliate the 4-dimensional spacetime
into 3-dimensional space-like hypersurfaces labeled Σt.

The induced metric on the spatial hypersurfaces, γij , and its
conjugate momentum πij are the phase space variables for the
gravitational sector. On the other hand, the phase space variables
for the scalar field sector are φ and πφ. The conjugate variables
satisfy

{γij(x), πkl(y)} = δk(iδ
l
j) δ

3(x,y), {φ, πφ} = δ3(x,y) . (32)
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The action in terms of canonical variables can be written as

S =

∫
d4x

(
πij γ̇ij + πφφ̇−NH−N iHi

)
. (33)

It does not contain any time derivatives of lapse and shift. Thus,
these act as Lagrange multipliers. Extremization of action with
respect to the lapse results in the Hamiltonian constraint

H =
2κ
√
γ

(
πijπij −

πiπ
i

2

)
−
√
γ

2κ
(3)R+

√
γ

(
π2
φ

2γ
+

1

2
∂iφ∂

iφ+ U(φ)

)
≈ 0.

(34)

Here γ = detγij and π = πii.

Variation of action with respect to arbitrary shift vector leads to
the spatial diffeomorphism constraint

Hi = −2∂k(γijπ
jk) + πjk∂iγjk + πφ∂iφ ≈ 0. (35)

52 / 83



The dynamical evolution of the background and perturbations is
determined by the Hamiltonian:

H(γij , φ;πij , πφ) =

∫
d3x(NH+N iHi) . (36)

Physical solutions lie on the constrained phase space satisfying
H ≈ 0 and Hi ≈ 0. Since the Hamiltonian is composed entirely of
these constraints, which are first class, Hamiltonian evolution
preserves constrained dynamics.

Equations of motion (matter):

φ̇ = {φ,H} =
δH

δπφ
=

N
√
γ
πφ +N i∂iφ , (37)

π̇φ = {πφ,H} = −δH
δφ

= − N
√
γ
U,φ +∂i(N

iπφ) +∂i(N
√
γγij∂jφ) .

(38)
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Equations of motion (gravity):

γ̇ij =
δH

δπij
= DiNj +DjNi −

N
√
γ

(2πij − πiiγij) (39)

π̇ij = − δH
δγij

= −N√γ
(

(3)Rij − 1

2
γij(3)R

)
+

N

2
√
γ
γij
(
πmnπ

mn − 1

2
πmmπ

n
n

)
−2N
√
γ

(
πimπjm −

1

2
πmmπ

ij

)
+
√
γ
(
DiDjN − γijDmD

mN
)

+Dm(πijNm)− πimDmN
j − πjmDmN

i . (40)

Here Da is the covariant derivative on spatial hypersurfaces.
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The cosmological background in ADM variables

The spacetime metric for FLRW (spatially-flat) model

ds2 = −N2dt2 + e2α(t)δijdx
idxj , (41)

Background variables:

γ̄ij = e2αδij , π̄ij =
πα
6
γ̄ij with πα = −6α̇e3α

κN
(42)

which satisfy

{γ̄ij , π̄kl} =
1

Vo
δk(iδ

l
j) (43)

with Vo is the volume of the fiducial cell. In terms of scale factor,
a = eα and πa = e−απα, this translates to

{a, πa} =
1

Vo
. (44)

Similarly for matter,

{φ̄, π̄φ} =
1

Vo
. (45)
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The cosmological background: Hamiltonian

In the homogeneous background the spatial diffeomorphism
constraint vanishes, i.e.

H(0)
i = 0 . (46)

The intrinsic curvature (3)R vanishes for the spatially-flat
spacetime, hence, the Hamiltonian constraint is

H(0) = − κ

12

π2
a

a
+
π2
φ

2a3
+ U(φ)a3 ≈ 0. (47)

The zeroth order Hamiltonian becomes

H(0) =

∫
V

d3xH(0) = NVo

(
− κ

12

π2
a

a
+
π2
φ

2a3
+ U(φ)a3

)
. (48)
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The cosmological background equations

The dynamical evolution of the background phase variables can be
found using Hamilton’s equations. These are,

ȧ =
1

Vo

∂H(0)

∂πa
= −N κ

6

πa
a
, (49)

π̇a = − 1

Vo

∂H(0)

∂πa
= −N

(
κ

12

π2
a

a2
− 3

2

π̄2
φ

a4
+ 3a2U(φ̄)

)
, (50)

˙̄φ =
1

Vo

∂H(0)

∂π̄φ
= N

π̄φ
a3
, (51)

˙̄πφ = − 1

Vo

∂H(0)

∂φ̄
= Na3U(φ̄),φ̄ . (52)
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Classical Friedmann dynamics

Let us fix N = 1. Vanishing of zeroth order Hamiltonian gives

κ

12

π2
a

a
=

π2
φ

2a3
+ U(φ)a3 . (53)

Using the Hamilton’s equation for a we get the classical Friedmann
equation:

ȧ2

a2
=
κ

3
ρ, with ρ =

π2
φ

2a6
+ U(φ) (54)

Hamilton’s equation for πa gives the Raychaudhuri equation

ä

a
= −κ

6
(ρ+ 3P ), with P =

π2
φ

2a6
− U(φ) . (55)

Hamilton’s equations for φ and πφ yield the Klein-Gordon equation:

φ̈+ 3
ȧ

a
φ̇+ U,φ = 0 (56)

which is same as

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0 (57)
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Linear perturbations
Consider the linear perturbations of the spatial metric and its
canonical momentum

γij(~x, t) = γ̄ij(t) + δγij(~x, t), πij(~x, t) = π̄ij(t) + δπij(~x, t) (58)

and similarly of the scalar field and its momentum

φ(~x, t) = φ̄(t) + δφ(~x, t), πφ = π̄φ(t) + δπφ(~x, t) (59)

In Fourier space:

δφ(~x) =
1

(2π)3/2

∫
d3k δφ(~k) ei

~k.~x (60)

with the normalization condition∫
d3x ei(

~k+~k′).~x = (2π)3 δ(3)(~k + ~k′) . (61)

Real valued perturbations, i.e. δφ(~k) = δφ∗(−~k) etc.

Poisson brackets:
{δφ(~k), δπφ(~k′)} = δ(3)(~k + ~k′). (62)

{δγij(~k), δπkl(~k′)} = δ
(k
i δ

l)
j δ

(3)(~k + ~k′). (63)
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Orthogonal basis for SVT decomposition

Symmetric matrices δγij(~k) generate 6×∞3 dimensional vector

space. For each ~k the space can be decomposed into three
2-dimensional subspaces: scalar, vector and tensor subspaces.
Introduce an orthogonal basis in the Fourier space,

δγij(~k) = A
(n)
ij (~k) γ(n)(~k) n = 1..6 (64)

Let us identify A
(1)
ij (~k) and A

(2)
ij (~k) for scalar, A

(3)
ij (~k) and A

(4)
ij (~k)

for vector, and A
(5)
ij (~k) and A

(6)
ij (~k) for tensor.

Consider two orthogonal unit vectors χ̂ and ξ̂ which are also
orthogonal to k̂. Norm defined with respect to the background
metric γ̄ij . If ki denote components of ~k, then γ̄ijk

ikj = k2
phy

Scalar:

A
(1)
ij (~k) =

1√
3
γ̄ij , A

(2)
ij (~k) =

√
3

2

(
k̂ik̂j −

γ̄ij
3

)
. (65)

(Similarly for vector and tensor modes).
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Metric perturbations in Fourier space

Using A
(n)
ij (~k) basis, metric perturbations are:

Scalar:

γ(1)(~k) =
1√
3
γ̄ijδγij(~k) (66)

and

γ(2)(~k) =

√
3

2

(
k̂lk̂m − γ̄lm

3

)
δγij(~k) . (67)

Vector:

γ(3)(~k) =
√

2 k̂iχ̂jδγij(~k), γ(4)(~k) =
√

2 k̂i ξ̂jδγij(~k) (68)

Tensor:

γ(5)(~k) =
1√
2

(
χ̂iχ̂j − ξ̂iξ̂j

)
δγij(~k), γ(6)(~k) =

√
2χ̂i ξ̂jδγij(~k),

(69)
Momenta can be found using

π(n)(~k) = A
(n)
ij (~k) δπij(~k) . (70)
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Linearized spatial diffeomorphism constraint

Since background is homogeneous, the spatial-diffeomorphim
constraint in the configuration space at the linear order becomes:

H(1)
i = −2π̄jk∂kδγij(~x)− 2γ̄ij∂kδπ

jk(~x) + π̄jk∂iδγjk(~x) + π̄φ∂iδφ(~x).
(71)

In Fourier space it gives

H(1)
i = −aπ̄a

3
kjδγij(~k)−2a2δijkkδπ

jk(~k)+
π̄a
6a
δjkkiδγjk(~k)+π̄φkiδφ(~k) ≈ 0

(72)
Leads to three constraints:

H(1)
i χ̂i = 0, H(1)

i ξ̂i = 0, H(1)
i k̂i = 0 (73)

Each of these constraints, being first class, require a gauge-fixing
condition and eliminate two degrees of freedom in the phase space.

First two constraints fix vector perturbations. Third, along with
H(1) ≈ 0, eliminates 4 d.o.f. Starting from 10 d.o.f. in scalar and
vector subspaces, one is left with only 2 d.o.f. in phase space.
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Gauge invariant variables or gauge fixing?
(i) Gauge-invariant treatment: Retain all degrees of freedom
throughout the calculation and express the final result in the phase
space using a gauge-invariant variable, such as the
Mukhanov-Sasaki variable Q:

Q = δφ+
3π̄φ
κπα

(
γ(1) −

γ(2)

3

)
(74)

(ii) Work in a specific gauge: In spatially-flat gauge, Q is just
δφ. Similarly, other gauges lead to natural identification. Eg. In
longitudinal gauge or the zero shear gauge which amounts to an
isotropic threading of spacetime and a shear free slicing, Bardeen
variables are a natural choice as they directly capture the
amplitude of metric perturbations.

Physical relevance of gauge invariant variables is tied to the gauge
fixing conditions. (Bardeen (88))
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Linearized spatial diffeomorphism constraint with the
spatially-flat gauge

Useful gauge for inflationary models is the spatially-flat gauge in
which the perturbation of intrinsic curvature is zero, i.e. δ (3)R = 0
translating to γ(1)(~k) = γ(2)(~k) = 0.

We can rewrite the constraint as

kiH(1)
i

k2
phy

= − π̄aa
6
√

3

(
γ(1)(~k)− 2

√
2γ(2)(~k)

)
− 2√

3

(
π(1)(~k) +

√
2π(2)(~k)

)
+π̄φδφ(~k) ≈ 0, (75)

In the spatially-flat gauge one can express π(1)(~k) and π(2)(~k) in
terms of perturbations in the scalar field δφ(~k) and its momentum
δπφ(~k) using a similar expression obtained from the vanishing of
the linearized Hamiltonian constraint.
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Linearized Hamiltonian constraint with the spatially-flat
gauge

Scalar constraint at the linear order becomes

H(1) =

[
− κ

72

π2
a

a
−

π̄2
φ

4a3
+
a3

2
U(φ̄)

]
γ̄ijδγij

− a
3

2κ

(
γ̄ilγ̄jk − γ̄ikγ̄jl

)
∂j∂kδγik

−κ
3

πa
a2
γ̄ijδπ

ij +
π̄φ
a3
δπφ + a3U(φ̄),φ̄δφ . (76)

Consists only of the scalar modes, hence simplifies considerably in
the spatially-flat gauge:

H(1) = − κ√
3

πaπ
(1)(~k)

a2
+
π̄φ
a3
δπφ(~k) + a3U(φ̄),φ̄δφ(~k) . (77)
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Second order Hamiltonian constraint for scalar
perturbations

Using spatially-flat gauge, the perturbation in intrinsic curvature
vanishes and we get

H(2) =
2κ√
γ̄

(
γ̄ikγ̄jl −

1

2
γ̄ij γ̄kl

)
δπijδπkl +

1

2a3
δπ2
φ

+
a3

2
U(φ̄),φ̄φ̄ (δφ)2 +

a3

2
∂iδφ ∂

iδφ . (78)

In the spatially-flat gauge, the physical degrees of freedom for
scalar modes are δφ and δπφ. But we still have scalar degrees of
freedom in momenta of metric perturbations. Can be eliminated
using linearized constraints, to give∫

d3kH(2)
s =

∫
d3k
[ 1

2a3
δπφ(~k)δπφ(−~k)−

3π̄2
φ

πaa4
δφ(~k)δπφ(−~k)

+
a3

2

(
U(φ̄),φ̄φ̄ + k2

phy

)
δφ(~k)δφ(−~k)

− 3π̄φ
πaa3

(
a5U(φ̄),φ̄ −

κπa
4
π̄φ

)
δφ(~k)δφ(−~k)

]
.
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Second order Hamiltonian for scalar perturbations

H
(2)
s (δφ,δπφ) =

∫
d3k

[
1

a3
δπφ(~k)δπφ(−~k)

−
3π̄2

φ

πaa4

(
δφ(~k)δπφ(−~k) + δφ(−~k)δπφ(~k)

)
+ a3

(
U(φ̄),φ̄φ̄ + k2

phy

)
δφ(~k)δφ(−~k)

−
6π̄φ
πaa3

(
a5U(φ̄),φ̄ −

κπa
4
π̄φ

)
δφ(~k)δφ(−~k)

]
.

(80)

The cross-terms can be eliminated by going to new variables:

δφ̃(~k) = δφ(~k), δπ̃φ(~k) = δπφ(~k)−
3π̄2

φ

πaa
δφ(~k) . (81)
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Second order Hamiltonian for scalar perturbations

Identifying Q = δφ in the spatially-flat gauge, the Hamiltonian
becomes

H
(2)
s (Q,PQ) =

∫
d3k

[
1

a3
PQ(~k)PQ(−~k) + a(k2 + Ω2

Q)Q(~k)Q(−~k)

]
(82)

where k = akphy and

Ω2
Q = 3κ

π̄2
φ

a4
− 18

π̄4
φ

a6π2
a

− 12a
π̄φ
πa
U,φ + a2U,φφ. (83)

Hamilton’s equations:

Q̇(~k) = {Q((~k)),H
(2)
s (Q,PQ)} =

1

a3
PQ(~k) (84)

and

ṖQ(~k) = {PQ((~k)),H
(2)
s (Q,PQ)} = a(k2 + Ω2

Q)Q(~k) . (85)
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Mukhanov-Sasaki equation

Taking the time derivative of (84) and using (85) one obtains

Q̈(~k) + 3HQ̇(~k) +
1

a2
(k2 + Ω2

Q)Q(~k) = 0 (86)

In the effective description of LQC, this is the starting point to
understand the quantum geometric effects on perturbations by
introducing quantum gravitational modifications in the potential
ΩQ via polymerization of relevant background quantities.

If we simplify the terms in ΩQ except U(φ̄),φ̄φ̄ term, above eq. can
be written in original form (Mukhanov (88))

Q̈(~k)+3HQ̇(~k)+

(
4Ḣ

H

φ̈

φ̇
− 2

Ḣ2

H2
+ 6Ḣ + U(φ̄),φ̄φ̄ + k2

phy

)
Q(~k) = 0 .

(87)
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Tensor modes

Not constrained by the linearized constraints. Are gauge-invariant.

A similar calculation as in the case of scalar perturbations leads to:

H
(2)

T (γ̃(n),π̃(n))
=

∫
d3k

[
4κ

a3
π(n)(−~k)π(n)(~k)+

a3

4κ
k2

phyγ(n)(−~k)γ(n)(~k)

]
.

(88)

which using Hamilton’s equations gives:

¨̃γ(n)(
~k) + 3H ˙̃γ(n)(

~k) +
k2

a2
γ̃(n)(~k) = 0 . (89)

Is similar to the one staisfied by scalar perturbations except for the
absence of the effective potential ΩQ.
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Back to Mukhanov-Sasaki equation: mass function

Perturbation of the spatial curvature in the comoving gauge (in
which covariant velocity perturbations vanish)– the comoving

curvature perturbation R = ν/z where z = a ˙̄φ/H is conserved at
the super-horizon scales k � aH. Here ν is the rescaled
Mukhanov-Sasaki variable: ν = aQ.

Substituting ν(~k) = aQ(~k) in (86) one easily obtains

ν(~k)′′ +

(
k2 + Ω2

Q −
a′′

a

)
ν(~k) = 0 . (90)

Here a ‘prime’ denotes a derivative with respect to conformal time
η =

∫
dt
a . Resembles harmonic oscillator with a time dependent

mass term:
ν(~k)′′ +

(
k2 +m2

)
ν(~k) = 0 (91)

with

m2 = Ω2
Q−

a′′

a
=

3κπ̄2
φ

a4
−18

π̄4
φ

π2
aa

6
−12a

π̄φU,φ̄
πa

+a2U,φ̄φ̄−
a′′

a
. (92)
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Another mass function

One can directly find the second order Hamiltonian for the variable
ν~k and its conjugate momentum using:

ν~k = aδφ~k, πν~k =
δπφ~k
a
−

3π̄2
φ

πaa2
δφ~k −

a

6
κπaδφ~k. (93)

The resulting Hamiltonian leads to

ν ′′~k +
(
k2 + m̃2

SF

)
ν~k = 0. (94)

with

m̃2 = −4πG

3
a2 (ρ− 3P ) + U, (95)

and

U = a2

(
U,φ̄φ̄ + 48πGU + 6H

˙̄φ

ρ
U,φ̄ −

48πG

ρ
U2

)
. (96)
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Relation between mass functions in classical theory

Are m2 and m̃2 the same?

Using the classical Raychaudhuri equation

δm2 = m2
SF − m̃2

SF = −

(
9π̄2

φ

a3π2
a

+
κ

6a

)
H(0) ≈ 0. (97)

Two mass functions are equivalent on the physical solutions of the
classical background dynamics (Li, PS (22))

One can obtain similar mass functions in other gauges and they are
all equivalent on physical solutions of the classical theory.
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Inclusion of quantum geometric effects

To explore effects of quantum geometry in CMB, a strategy is to
replace the classical background quantities in the Mukhanov-Sasaki
equation with those from effective LQC.

Expressions of classical mass function depend on 1/π2
a and 1/πa.

These need to be consistently polymerized.

Use the same polymerization for variables in the propagation
equation for perturbations as in the background Hamiltonian
constraint. Otherwise results are gauge dependent!

Care should be taken to avoid any discontinuous behavior of
potentials ΩQ or Ων . For some choices this can happen at the
bounce and one can not either set initial conditions before the
bounce or propagate perturbations across the bounce.

(Li, PS (22))
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Inclusion of quantum geometric effects

From zeroth order classical Hamiltonian constraint:
πa = −6a2b/κγ which on using

b2 → sin2(λb)

λ2
(98)

results in

1

π2
a

=
κ2γ2

36a4b2
→ κ2γ2λ2

36v4/3 sin2(λb)
=

κ

12v4/3ρ
(99)

For 1/πa, one may simply consider a square root of the above
equation but this is problematic since the resulting effective
potential ΩQ turns out to be discontinuous at the bounce.

Insights from the behavior of background quantum operator
(superselction sectors) results in

1

πa
→ − H

2v2/3ρ
. (100)

(Gomar et al, JCAP 06, 045 (15); Li, PS, Wang (20))
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Trace of quantum geometry in mass functions

Although two mass functions are equivalent in the classical theory,
they are no longer so at the level of the effective dynamics.

δm2
eff = m2

eff − m̃2
eff = −8πG

3
a2 (ρ+ 3P )

ρ

ρc
, (101)

RHS does not vanish on the physical solutions of the effective
background dynamics, especially in the Planck regime where the
energy density becomes comparable with the maximum energy
density in LQC. This happens because:

Different approaches to include quantum geometric efffects
may bring them at different steps. As an example, the
polymerization of the classical equation of motion of a′′/a is
not equal to the equation of motion of a′′/a from the effective
dynamics.
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Can there be quantum geometric signatures in CMB?

Underlying quantum geometry in LQC which is responsible for a
non-singular bounce also results in modifications to the
Mukhanov-Sasaki equation for cosmological perturbations. An
important question is whether these quantum geometric effects
leave an imprint on the modes we can observe today in CMB.

Given an inflationary potential and suitable initial conditions, there
can exist an observational window which can potentially lead to
observable imprint of the pre-inflationary stage.

Question is whether physical wavelength of the modes experience a
curvature scale. If this is the case then such modes get excited
curvature leaves no effect (Parker, Fulling, Phys. Rev. D, 9, 341 (1974))

In LQC, this curvature scale arises from the underlying quantum
geometry (Agullo, Ashtekar, Nelson, Class. Quant. Grav. 30, 085014 (2013))
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Can there be quantum geometric signatures in CMB?

Typically in LQC in the presence of inflationary potentials, the big
bounce is dominated by the kinetic energy of the scalar field. Then
Ω2 � a′′/a in the bounce regime and the Mukhanov-Sasaki eq.
becomes

ν′′k + a2

(
k2

a2
− R

6

)
= 0 . (102)

The four-dimensional Ricci scalar defines a curvature scale in the
bounce regime

λRB
:= 2π

√
6

|RB|
≈ 1.96lPl (103)

If λphy � λRB
then the curvature term in (102) is negligible, and

they propagate as if in a Minkowski spacetime. These modes are
unaffected by the underlying quantum geometry.

Modes with λphy � λRB
feel curvature of quantum geometry and

get excited. Their departure from the Bunch-Davies vacuum state
can carry the quantum gravitational signature of the bounce.
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The observational window

The power amplitude of perturbations in the CMB is
parameterized as

A = As

(
k

k∗

)ns−1

(104)

where As is the initial super-horizon amplitude of the curvature
perturbation and ns denotes the spectral index.

To find the window for potential QG effects use the Planck 2018
data in which the pivot mode is taken to be k∗ = 0.05Mpc−1 and
the values of As and ns are

As = 2.099× 10−9, ns = 0.9649± 0.0042. (105)

Find the mode with minimum physical wavenumber at the bounce
which is observable today. If kphy

min < kphy
RB

we have a desired
window of wavenumbers which can leave a signature of
pre-inflationary branch in CMB.
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The observational window: Example

Consider φ2 inflationary potential with φB = 1.0mPl. The physical
wavenumber of the pivot mode at the Hubble radius crossing
during slow-roll inflation kphy

∗ = 4.72 l−1
Pl , which results in

kphy
min = 0.02 < kphy

LQC = kphy
RB

.

If φB is increased (decreased) the minimum physical wavenumber
at the bounce which is observable today increases (decreases) .
There is only a small range of the values of φB which is
observationally viable.

If bounce occurs for φB & 1.13, there is no window. On the other
hand, for φB . 0.95, there is a large window of physical
wavenumbers potentially leaving quantum gravity signatures.
However, the window of wavenumbers needs to be also consistent
with almost scale invariant spectrum of perturbations.
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Primordial power spectrum
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Angular power spectrum

The exercise can be repeated for dressed/hybrid approaches,
different potentials and different regularizations to explore
quantum geometric effects in CMB.
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Summary for Part B

Quantum geometric effects in LQC have been extensively
explored in CMB. Dressed/Hybrid approaches use Fock
quantized fluctuations over loop quantized background.

At an effective level, Mukhanov-Sasaki equation plays an
important role where background quantities from LQC are
imported.

Power spectrum depends on the choice of states. For certain
choices, it is possible to potentially explain CMB anomalies.

Different regularizations can potentially leave different
signatures.

Open question: Is it possible to identify unique observable
signatures in CMB from different LQC models and in contrast
to other models in GR/modified gravity?
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