Search for known and unknown particles in all-muon final states with the CMS scouting data

David Sperka (Boston University)

On Behalf of the CMS Collaboration

CERN LPCC Seminar Feb. 28th, 2023

Outline

- **CMS Detector and Trigger System**
- **The "Data Scouting" strategy**
- **Searches for known and unknown particles**
	- ➔ Observation of η→4μ decay (*[CMS-BPH-22-003](https://cds.cern.ch/record/2850937)*)
	- ➔ Search for X→μ ⁺μ resonances (*[CMS-EXO-21-005](https://cds.cern.ch/record/2851121)*)
- **Scouting Plans for LHC Run 3 and Beyond**
- **Conclusions**

~40 MHz

~40 MHz

~100 KHz (Hard Limit) 3.2 μs (Hard Limit) Level 1 Trigger (L1)

~40 MHz

~5 GB/s

~1.5 KHz (Soft Limit)

~0.5 s (Hard Limit)

High Level Trigger (HLT)

(Hard Limit)

~40 MHz

How can we maximize the physics output, working within these constraints?

~100 KHz (Hard Limit) 3.2 μs (Hard Limit) Level 1 Trigger (L1)

> *High Level Trigger (HLT) ~1.5 KHz (Soft Limit) ~5 GB/s (Hard Limit) ~0.5 s (Hard Limit)*

Dimuon Scouting at CMS CERN LPCC Seminar David Sperka (Boston University)

CMS "Data Scouting"

First employed for Dijet searches by CMS in LHC Run 1 (end of 2011)

[PRL 117 \(2016\) 031802](https://doi.org/10.1103/PhysRevLett.117.031802)

CMS "Data Scouting"

Dimuon Scouting at CMS CERN LPCC Seminar David Sperka (Boston University) 9

CMS "Data Scouting"

Dimuon Scouting at CMS CERN LPCC Seminar David Sperka (Boston University) 10

CMS Muon Scouting

- Four main Level-1 dimuon triggers feed the HLT
	- Using dimuon topological requirements ($m_{\mu\mu}$, $\Delta r_{\mu\mu}$) to reduce the rate $(-4$ KHz)

CMS Muon Scouting

 CMS

- Four main Level-1 dimuon triggers feed the HLT
	- Using dimuon topological requirements ($m_{\mu\mu}$, $\Delta r_{\mu\mu}$) to reduce the rate $(-4$ KHz)
- "Standard" dimuon analysis:
	- Apply filters at HLT, save the full event content for thorough offline analysis

Table 2: LHC Fill 7334 (23. Oct. 2018, $\mathcal{L} \approx 1.5 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$).

CMS Muon Scouting

- Four main Level-1 dimuon triggers feed the HLT
	- Using dimuon topological requirements ($m_{\mu\mu}$, $\Delta r_{\mu\mu}$) to reduce the rate $(-4$ KHz)
- "Standard" dimuon analysis:
	- Apply filters at HLT, save the full event content for thorough offline analysis
- "Scouting" dimuon analysis:
	- Minimal filters applied at HLT $(p_T>3$ GeV), save limited information (one shot reconstruction)

Table 2: LHC Fill 7334 (23. Oct. 2018, $\mathcal{L} \approx 1.5 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$).

Dimuon Mass Distribution

Dimuon Scouting at CMS CERN LPCC Seminar David Sperka (Boston University) 14

Dimuon Mass Distribution

Dimuon Scouting at CMS CERN LPCC Seminar David Sperka (Boston University) 15

- The n meson is copiously produced in high energy pp collisions at the LHC
- Require opposite sign muon pair consistent with production from a common vertex

- The n meson is copiously produced in high energy pp collisions at the LHC
- Require opposite sign muon pair consistent with production from a common vertex
- Fit the η peak in the inclusive dimuon spectrum to extract the number of η→μμ events
	- $^{\circ}$ \sim 4.5 x 10° η \rightarrow μμ events
	- \circ B(η→μμ) ≈ 5.8 x 10⁻⁶
	- \circ Access to \sim 10¹² η mesons

- The n meson is copiously produced in high energy pp collisions at the LHC
- Require opposite sign muon pair consistent with production from a common vertex
- Fit the η peak in the inclusive dimuon spectrum to extract the number of η→μμ events
	- $^{\circ}$ \sim 4.5 x 10° η \rightarrow μμ events
	- \textdegree B(n \rightarrow µµ) \approx 5.8 x 10⁻⁶
	- \circ Access to \sim 10¹² η mesons
- Can use the dimuon scouting data set to search for rare η meson decays!

• To put this number in context, CMS produces a number of η mesons much greater than KLOE experiment at DAΦNE, and comparable to the proposed REDTOP experiment at Fermilab

~7 x 10⁷ η mesons **Proposed REDTOP experiment at Fermilab** \sim 10¹²-10¹⁴ η mesons/year

<https://redtop.fnal.gov/>

• To put this number in context, CMS produces a number of η mesons much greater than KLOE experiment at DAΦNE, and comparable to the proposed REDTOP experiment at Fermilab

 $~\sim$ 7 x 10⁷ n mesons **Proposed REDTOP experiment at Fermilab** \sim 10¹²-10¹⁴ η mesons/year

<https://redtop.fnal.gov/>

Rare Radiative Decays

- Leptonic radiative decays of the η/η' meson are an interesting target
	- \circ n \rightarrow µ+µ· μ + μ and n \rightarrow µ+ μ -e+e-are yet to be observed
	- ^o η'→e+e-e+e-decay only recently observed at BESIII *[PRD 105 \(2022\) 112010](https://journals.aps.org/prd/pdf/10.1103/PhysRevD.105.112010)*
	- B(2e2µ)~2.4x10-6 , B(4µ)~4x10-9 in SM *[arxiv:1511.04916](https://arxiv.org/abs/1511.04916)*

Rare Radiative Decays

- Leptonic radiative decays of the η/η' meson are an interesting target
	- \circ $\eta \rightarrow$ µ+µ· μ + μ and $\eta \rightarrow$ µ+ μ -e+e-are yet to be observed
	- n'→e+e-e+e-decay only recently observed at BESIII *[PRD 105 \(2022\) 112010](https://journals.aps.org/prd/pdf/10.1103/PhysRevD.105.112010)*
	- B(2e2µ)~2.4x10-6 , B(4µ)~4x10-9 in SM *[arxiv:1511.04916](https://arxiv.org/abs/1511.04916)*
- Measuring the rare η meson branching ratios is important for several reasons
	- Tests low energy QCD calculations which contributes to the hadronic light-by-light component of the $(g-2)_{\mu}$
	- Sensitive to the presence of BSM physics (light mediators, True Muonium) *[arxiv:2007.00664](https://arxiv.org/abs/2007.00664)*

Dimuon Scouting at CMS CERN LPCC Seminar David Sperka (Boston University) 22

Observation of η→4μ

- Look for events with 4 muons and zero net charge, consistent with production from a common vertex
	- Clear peak observed at the η mass

Observation of η→4μ

- Look for events with 4 muons and zero net charge, consistent with production from a common vertex
	- Clear peak observed at the η mass
- Fit the distribution to a peaking signal and a threshold background shape
	- Signal: Crystal ball function
	- $\,{}^{\circ}\,$ Background: f(m $_{4\mu}) = ($ m $_{4\mu}$ 4m $_{\mu})^{\beta}$

Observation of η→4μ

- Look for events with 4 muons and zero net charge, consistent with production from a common vertex
	- Clear peak observed at the η mass
- Fit the distribution to a peaking signal and a threshold background shape
	- Signal: Crystal ball function
	- $\,{}^{\circ}\,$ Background: f(m $_{4\mu}) = ($ m $_{4\mu}$ 4m $_{\mu})^{\beta}$

Significance of the signal well in excess of 5σ **First observation of η→4µ!!!**

CMS

• Cross check performed to check for possibility of rare η decay backgrounds using simulated samples

- Cross check performed to check for possibility of rare η decay backgrounds using simulated samples
	- \circ η→μ+μ៊γ with γ conversion in material non-peaking and shifted to higher m(4_{μ})

- Cross check performed to check for possibility of rare η decay backgrounds using simulated samples
	- η→μ+μ·γ with γ conversion in material non-peaking and shifted to higher $m(4_µ)$
	- \circ η \rightarrow π $^+$ π $^+$ μ $^+$ with π \rightarrow μ fake shifted to lower mass due to wrong mass hypothesis
		- \cdot Rate shown is for current experimental upper limit $B(\eta \rightarrow \pi^+ \pi^- \mu^+ \mu^-)$ < 1.6x10⁻⁴
		- SM Prediction 6.5x10-9

- Cross check performed to check for possibility of rare η decay backgrounds using simulated samples
	- η→μ+μ·γ with γ conversion in material non-peaking and shifted to higher $m(4_µ)$
	- \circ η \rightarrow π $^+$ π·μ $^+$ μ· with π \rightarrow μ fake shifted to lower mass due to wrong mass hypothesis
		- Rate shown is for current experimental upper limit $B(\eta \rightarrow \pi^+ \pi^- \mu^+ \mu^-)$ < 1.6x10⁻⁴
		- SM Prediction 6.5x10-9
- No possibility of significant peaking background component

Dimuon Scouting at CMS CERN LPCC Seminar David Sperka (Boston University) 29

• Measure the $\eta \rightarrow 4\mu$ branching ratio relative to η→2µ

CMS,

• Measure the $\eta \rightarrow 4\mu$ branching ratio relative to η→2µ

• $N_{4\mu}$ and $N_{2\mu}$ determined from sideband fits (in bins of ηmeson p_T and $|\eta|$ for $N_{2\mu}$)

CMS.

• Measure the $\eta \rightarrow 4\mu$ branching ratio relative to η→2µ

- $N_{4\mu}$ and $N_{2\mu}$ determined from sideband fits (in bins of ηmeson p_T and $|\eta|$ for $N_{2\mu}$)
- The ratio of acceptance x eff. $A_{4\mu}$ / $A_{2\mu}$ determined from simulation (PLUTO generator) *[arxiv:0708.2382](https://arxiv.org/abs/0708.2382)*

CMS

• Measure the $\eta \rightarrow 4\mu$ branching ratio relative to η→2µ

- $N_{4\mu}$ and $N_{2\mu}$ determined from sideband fits (in bins of ηmeson p_T and $|\eta|$ for $N_{2\mu}$)
- The ratio of acceptance x eff. $A_{4\mu}$ / $A_{2\mu}$ determined from simulation (PLUTO generator) *[arxiv:0708.2382](https://arxiv.org/abs/0708.2382)*

- η→2μ Axε driven by L1 trigger acceptance
- η→4µ Axε lower due to reconstruction requirements

CMS

B(η→4μ) Uncertainties

• $\eta \rightarrow 4\mu$ differential event rate as a function of p_T in excellent agreement with the simulation

B(η→4μ) Uncertainties

- $\eta \rightarrow 4\mu$ differential event rate as a function of p_T in excellent agreement with the simulation
- Residual uncertainty due to the imperfect knowledge of Axε for $\eta \rightarrow 2\mu$ and $\eta \rightarrow 4\mu$
	- Accounts for threshold effects and η→2µ efficiency differences between data and MC (in total \sim 13%)

B(η→4μ) Uncertainties

- $\eta \rightarrow 4\mu$ differential event rate as a function of p_T in excellent agreement with the simulation
- Residual uncertainty due to the imperfect knowledge of Axε for $\eta \rightarrow 2\mu$ and $\eta \rightarrow 4\mu$
	- Accounts for threshold effects and η→2µ efficiency differences between data and MC (in total \sim 13%)
- Uncertainty in normalization mode branching ratio $(-14%)$

$$
{\cal B}(\eta\, \to 2\mu)\,=\,(5.8\pm 0.8)\times 10^{-6}
$$

B(η→4μ) Measurement

• B($\eta \rightarrow 4\mu$)/B($\eta \rightarrow 2\mu$) is extracted summing over all p_T / |η| bins:

$$
\frac{{\cal B}_{4\mu }}{{\cal B}_{2\mu }} = (0.9 \pm 0.1\, {\rm (stat)} \pm 0.1\, {\rm (syst)}) \times 10^{-3}
$$

B(η→4μ) Measurement

• B($\eta \rightarrow 4\mu$)/B($\eta \rightarrow 2\mu$) is extracted summing over all p_T / |η| bins:

$$
\frac{\mathcal{B}_{4\mu}}{\mathcal{B}_{2\mu}} = (0.9 \pm 0.1\, \text{(stat)} \pm 0.1\, \text{(syst)}) \times 10^{-3}
$$

• Using the world average $B(\eta \rightarrow 2\mu)$, $B(\eta \rightarrow 4\mu)$ is measured for the first time:

$$
\left|\mathcal{B}(\eta\rightarrow4\mu)=\left(5.0\pm0.8\,\text{(stat)}\pm0.7\,\text{(syst)}\pm0.7\,\text(\mathcal{B})\right)\times10^{-9}\right|
$$

B(η→4μ) Measurement

• B($\eta \rightarrow 4\mu$)/B($\eta \rightarrow 2\mu$) is extracted summing over all p_T / |η| bins:

$$
\frac{\mathcal{B}_{4\mu}}{\mathcal{B}_{2\mu}} = (0.9 \pm 0.1\, \text{(stat)} \pm 0.1\, \text{(syst)}) \times 10^{-3}
$$

• Using the world average $B(n\rightarrow 2\mu)$, $B(n\rightarrow 4\mu)$ is measured for the first time:

$$
\mathcal{B}(\eta \to 4\mu) = (5.0 \pm 0.8 \, \text{(stat)} \pm 0.7 \, \text{(syst)} \pm 0.7 \, (\mathcal{B})) \times 10^{-9}
$$

• In agreement, within uncertainties, with the SM prediction:

$$
\left| (3.98 \pm 0.15) \times 10^{-9} \right|
$$

[arxiv:1511.04916](https://arxiv.org/abs/1511.04916)

Search for Unknown Resonances

Events/GeV x Prescale

Dimuon Scouting at CMS CERN LPCC Seminar David Sperka (Boston University) 40

Search for Unknown Resonances

Dimuon Scouting at CMS CERN LPCC Seminar David Sperka (Boston University) 41

Why the GeV Scale?

- CMS
- New states at the GeV scale are motivated from several perspectives ○ Vector portal interaction in thermal dark matter models
	- \circ New scalar or vector coupling to muons could help explain (g-2) μ

Why the GeV Scale?

- CMS,
- New states at the GeV scale are motivated from several perspectives ○ Vector portal interaction in thermal dark matter models
	- \circ New scalar or vector coupling to muons could help explain (g-2) $_{\mu}$

Analysis Strategy

- Bump hunt on the dimuon mass using analytical signal and bkg. pdfs
- Multivariate identification to suppress misidentified muons
- Define a simple fiducial volume (2 muons with p_T ^{μ} > 4 GeV and $|\eta|$ <1.9)
- Data driven measurement of trigger and reconstruction efficiency
- Measure integrated luminosity, set model independent limit on $\sigma \times B \times \alpha$
- Compute $\sigma \times B \times \alpha$ in specific models to set limits on model parameters

Muon Identification

- Target prompt production, require transverse displacement L<0.2cm
- Data-driven BDT: OS J/Ψ and Y events as signal, SS events as background
	- Y training optimal for higher mass, J/Ψ training for low mass/boosted

Dimuon Scouting at CMS CERN LPCC Seminar David Sperka (Boston University) 45

Efficiency Measurement

- BDT ID efficiency measured in data using tag and probe method on J/Ψ and Υ
	- Uncertainty in ID eff. from data sample and data/MC diff. (4-20%)
- Trigger efficiency for dimuon events within fiducial volume is measured using an unbiased sample of standard e/γ events
	- \circ Dependent on $m_{\mu\mu}$ and $\Delta r_{\mu\mu}$
	- Difference between data and simulation and taken as uncertainty (up to 20%)

Dimuon Scouting at CMS CERN LPCC Seminar David Sperka (Boston University) 46

CMS,

Efficiency Measurement

- BDT ID efficiency measured in data using tag and probe method on J/Ψ and Υ
	- Uncertainty in ID eff. from data sample and data/MC diff. (4-20%)
- Trigger efficiency for dimuon events within fiducial volume is measured using an unbiased sample of standard e/γ events
	- \circ Dependent on m_{μμ} and Δr_{μμ}
	- Difference between data and simulation and taken as uncertainty (up to 20%)

Dimuon Scouting at CMS CERN LPCC Seminar David Sperka (Boston University) 47

CMS,

Event Categorization

- Optimal for different production mechanisms (e.g. DY or ggF)
- For high mass inclusive category, additional requirement L<0.015cm
- For inclusive low mass and boosted categories vertex resolution degrades so instead cut on displacement significance

Background Modeling

- CMS,
- Combinatorial background is modeled using 4th order Bernstein polynomial (checked with toy datasets to have negligible bias)
- Peaking backgrounds ($D_0 \rightarrow KK, K\pi$) estimated from control regions with inverted L/σ_L cuts (transfer factors estimated from simulation)
	- Uncertainty on transfer factors 20-25% estimated using J/Ψ data/MC

Signal Model and Largest Excess

- Signal modeled from fits to SM resonances
	- Double Crystal Ball + Gaussian
	- 20% uncertainty on resolution

Signal Model and Largest Excess

- Signal modeled from fits to SM resonances
	- Double Crystal Ball + Gaussian
	- 20% uncertainty on resolution
- The mass hypothesis with the largest local significance comes at 2.41 GeV in the boosted category
	- \circ 3.2σ local significance, 1.3σ global significance

Signal Model and Largest Excess

- Signal modeled from fits to SM resonances
	- Double Crystal Ball + Gaussian
	- 20% uncertainty on resolution
- The mass hypothesis with the largest local significance comes at 2.41 GeV in the boosted category
	- \circ 3.2σ local significance, 1.3σ global significance
	- Notably LHCb reports a 3.1σ local excess at 2.42 GeV in one event category $(X+b, 10 < p_T(X) < 20$ GeV)

[JHEP 10 \(2020\) 156](https://link.springer.com/article/10.1007/JHEP10(2020)156)

Model Independent Limit

- Main results are model independent limits on σ⨯B⨯α for the inclusive and boosted selections
- Limit calculation includes all experimental uncertainties

Model Dependent Limits

- We choose two specific models to constrain model parameters
	- DY production of vector boson (dark photon)
	- Gluon fusion production of pseudoscalar (2HDM+S)
- Relies on theoretical calcuations of cross sections, branching ratio, and experimental acceptance

Model Dependent Limits

- We choose two specific models to constrain model parameters
	- DY production of vector boson (dark photon)
	- Gluon fusion production of pseudoscalar (2HDM+S)
- Relies on theoretical calcuations of cross sections, branching ratio, and experimental acceptance

$$
\sigma_{\rm pp \to Z_D} \cdot \epsilon^2 \cdot \mathcal{B} \cdot \mathcal{A} = \sigma_{\rm limit}
$$

- Dark photon cross section and BR calculated with MadGraph
- NNLO corrections and acceptance from DYTurbo *[EPJC 80 \(2020\) 251](https://doi.org/10.1140/epjc/s10052-020-7757-5)*

Model Dependent Limits

- We choose two specific models to constrain model parameters
	- DY production of vector boson (dark photon)
	- Gluon fusion production of pseudoscalar (2HDM+S)
- Relies on theoretical calcuations of cross sections, branching ratio, and experimental acceptance

$$
\sigma_{\rm pp \to Z_D} \cdot \epsilon^2 \cdot {\cal B} \cdot {\cal A} = \sigma_{\rm limit}
$$

- Dark photon cross section and BR calculated with MadGraph
- NNLO corrections and acceptance from DYTurbo *[EPJC 80 \(2020\) 251](https://doi.org/10.1140/epjc/s10052-020-7757-5)*

$$
\sigma_{\text{pp}\to a} \cdot \sin^2(\theta_{\text{H}}) \cdot \mathcal{B} \cdot A = \sigma_{\text{limit}}
$$

- Gluon fusion cross section from HIGLU *[arxiv:hep-ph/9510347](https://arxiv.org/abs/hep-ph/9510347)*, BR from Haisch et. al. *[JHEP 03 \(2018\) 178](https://link.springer.com/article/10.1007/JHEP03(2018)178)*
- Acceptance from MadGraph and Pythia

Dimuon Scouting at CMS CERN LPCC Seminar David Sperka (Boston University) 56

Dark Photon Interpretation

• Limits on kinetic mixing parameter ε ²in dark photon model extracted from the inclusive category limits

2HDM+S Interpretation

• Limits on mixing angle sin(Θ_H) in Type-IV 2HDM+S model (tan β =0.5) extracted from the boosted category limits

$$
\mathcal{L} \supset -\sum_{f} \frac{y_f}{\sqrt{2}} i \xi_f^M \bar{f} \gamma_5 f a
$$

type
up-type quarks
down-type quarks

$$
\begin{array}{c|c|c|c}\nI & II & III & IV \\
\hline\ns_{\theta}/t_{\beta} & s_{\theta}/t_{\beta} & s_{\theta}/t_{\beta} & s_{\theta}/t_{\beta} \\
\hline\n\text{down-type quarks} & -s_{\theta}/t_{\beta} & s_{\theta}t_{\beta} & -s_{\theta}/t_{\beta} \\
\text{charged leptons} & -s_{\theta}/t_{\beta} & s_{\theta}t_{\beta} & s_{\theta}t_{\beta} & -s_{\theta}/t_{\beta}\n\end{array}
$$

Data Scouting in Run 3

● **Bottleneck #1: HLT speed**

- Accelerate pixel tracking and calorimeter reco. w/ GPUs
- \degree Running HLT Scouting in Run 3 at \sim 30 KHz, 350 MB/s

● **Bottleneck #2: Event Content**

○ Reconstruct and store more information (e.g. electrons, photons) in smaller data format (\sim 6 kB after compression)

● **Final Bottleneck: L1 rate**

○ For HL-LHC, L1 trigger will have much better resolution, opportunity for scouting at L1

Summary

- **Data Scouting is a powerful frameworks for performing otherwise impossible searches and measurements**
- **CMS has further exploited the dimuon scouting stream**
	- ➔ First ever observation of the rare η→4μ decay
	- ➔ Impressive sensitivity to dark photon and scalar resonances at the GeV scale
- **LHC Run 3 will be extremely interesting!!!**

Backup

LHCb Dark Photon Search

- The mechanism is the same for γ^* and dark photon production
- Estimate non-prompt γ^* bkg. using SS sample, subtract from observation
- Ratio between the observed γ^* yield and signal yield proportional to ε^2
- Does not use theory cross sections, detector efficiency, or luminosity

[Phys. Rev. Lett. 124 \(2020\) 041801](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.041801)

Sensitivity Projections

Dark Photon Lifetime

L1 Trigger Upgrade

Dimuon Scouting at CMS CERN LPCC Seminar David Sperka (Boston University) 65