Search for known and unknown particles in all-muon final states with the CMS scouting data

David Sperka (Boston University)

On Behalf of the CMS Collaboration

CERN LPCC Seminar Feb. 28th, 2023

Outline

- CMS Detector and Trigger System
- The "Data Scouting" strategy
- Searches for known and unknown particles
 - →Observation of η →4µ decay (<u>CMS-BPH-22-003</u>)
 - → Search for $X \rightarrow \mu^+\mu^-$ resonances (<u>CMS-EXO-21-005</u>)
- Scouting Plans for LHC Run 3 and Beyond
- Conclusions

Dimuon Scouting at CMS

CERN LPCC Seminar

David Sperka (Boston University)

~40 MHz

Dimuon Scouting at CMS

~40 MHz

Level 1 Trigger (L1) ~100 KHz (Hard Limit) 3.2 μs (Hard Limit)

Dimuon Scouting at CMS

David Sperka (Boston University)

~40 MHz

Dimuon Scouting at CMS

~5 GB/s

High Level Trigger (HLT)

~0.5 s (Hard Limit)

~1.5 KHz (Soft Limit)

(Hard Limit)

~40 MHz

How can we maximize the physics output, working within these constraints?

Level 1 Trigger (L1) ~100 KHz (Hard Limit) 3.2 µs (Hard Limit)

High Level Trigger (HLT)~5 GB/s(Hard Limit)~0.5 s(Hard Limit)~1.5 KHz(Soft Limit)

CMS "Data Scouting"

First employed for Dijet searches by CMS in LHC Run 1 (end of 2011)

PRL 117 (2016) 031802

CMS "Data Scouting"

CERN LPCC Seminar

David Sperka (Boston University)

CMS "Data Scouting"

Dimuon Scouting at CMS

CERN LPCC Seminar

David Sperka (Boston University)

CMS Muon Scouting

- Four main Level-1 dimuon triggers feed the HLT
 - Using dimuon topological requirements ($m_{\mu\mu}$, $\Delta r_{\mu\mu}$) to reduce the rate (~4 KHz)

L1 path	$p_{\rm T}$ [GeV]	$ \eta $	ΔR	$m_{\mu\mu}$ [GeV]	Charge
#1	> 4,4.5	_	< 1.2	_	OS
#2	_	< 1.5	< 1.4	_	OS
#3	> 15/7	_	_	-	_
#4	> 4.5	< 2.0	_	7–18	OS

CMS Muon Scouting

CMS MCC

- Four main Level-1 dimuon triggers feed the HLT
 - Using dimuon topological requirements $(m_{\mu\mu}, \Delta r_{\mu\mu})$ to reduce the rate (~4 KHz)

 Apply filters at HLT, save the full event content for thorough offline analysis

L1 path	$p_{\rm T}$ [GeV]	$ \eta $	ΔR	$m_{\mu\mu}$ [GeV]	Charge
#1	> 4,4.5		< 1.2		OS
#2		< 1.5	< 1.4		OS
#3	> 15/7				
#4	> 4.5	< 2.0		7–18	OS

Table 2: LHC Fill 7334 (23. Oct. 2018, $\mathcal{L} \approx 1.5 \times 10^{34} cm^{-2} s^{-1}$).

Data stream	Rate [Hz]	Event Size	Bandwidth (MB/s)
Muons	420	0.86 MB	360
Jets/HT	345	0.87 MB	300
Scouting Muons	4580	8.9 KB	40
Scouting Jets/HT	1380	14.8 KB	20

CMS Muon Scouting

- Four main Level-1 dimuon triggers feed the HLT
 - Using dimuon topological requirements ($m_{\mu\mu}$, $\Delta r_{\mu\mu}$) to reduce the rate (~4 KHz)
- "Standard" dimuon analysis:
 - Apply filters at HLT, save the full event content for thorough offline analysis
- "Scouting" dimuon analysis:
 - Minimal filters applied at HLT (p_T>3 GeV), save limited information (one shot reconstruction)

Scouting Jets/HT	1380	14.8 KB	20
Kinematic quantities	Π	O variables	Track / Vertex
$p^{\mu}_{ m T},\eta^{\mu},\phi^{\mu}$	Ecal,	Hcal, Track Iso.	$q/p, \lambda, \phi, d_{sz}$
$p_{ ext{T}}^{ ext{track}}$, $\eta^{ ext{track}}$, $\phi^{ ext{track}}$	#pixel,#	strip, #muon hits	$\sigma_{q/p}, \sigma_{\lambda}, \sigma_{\phi}, \sigma_{d_{sz}}$
d_{xy} , d_z	#station	s, #tracker layers	$\mu\mu$ vertex <i>x</i> , <i>y</i> , <i>z</i>
$\sigma_{d_{xu}}, \sigma_{d_z}$	χ^2 ,	#d.o.f., i _{vertex}	$\mu\mu$ vertex $\sigma_x, \sigma_y, \sigma_z$

L1 path	$p_{\rm T}$ [GeV]		ΔR	<i>m</i> _{μμ} [GeV]
#1	> 4,4.5		< 1.2	
#2		< 1.5	< 1.4	
#3	> 15/7			
#4	> 4.5	< 2.0		7–18

Table 2: LHC Fill 7334 (23. Oct. 2018, $\mathcal{L} \approx 1.5 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$).

Dimuon Mass Distribution

David Sperka (Boston University)

Dimuon Mass Distribution

Dimuon Scouting at CMS

David Sperka (Boston University)

- The η meson is copiously produced in high energy pp collisions at the LHC
- Require opposite sign muon pair consistent with production from a common vertex

- The η meson is copiously produced in high energy pp collisions at the LHC
- Require opposite sign muon pair consistent with production from a common vertex
- Fit the η peak in the inclusive dimuon spectrum to extract the number of η→μμ events
 - ~4.5 x 10⁶ η→µµ events
 - B(η→μμ) ≈ 5.8 x 10⁻⁶
 - $^{\circ}$ Access to ${\sim}10^{12}\,\eta$ mesons

- The η meson is copiously produced in high energy pp collisions at the LHC
- Require opposite sign muon pair consistent with production from a common vertex
- Fit the η peak in the inclusive dimuon spectrum to extract the number of η→μμ events
 - ∘ ~4.5 x 10⁶ η→μμ events
 - B(η→μμ) ≈ 5.8 x 10⁻⁶
 - Access to $\sim 10^{12} \eta$ mesons
- Can use the dimuon scouting data set to search for rare η meson decays!

 To put this number in context, CMS produces a number of η mesons much greater than KLOE experiment at DAΦNE, and comparable to the proposed REDTOP experiment at Fermilab

Proposed REDTOP experiment at Fermilab ~10¹²-10¹⁴ η mesons/year

https://redtop.fnal.gov/

 To put this number in context, CMS produces a number of η mesons much greater than KLOE experiment at DAΦNE, and comparable to the proposed REDTOP experiment at Fermilab

Proposed REDTOP experiment at Fermilab ~10¹²-10¹⁴ η mesons/year

https://redtop.fnal.gov/

Rare Radiative Decays

- Leptonic radiative decays of the η/η' meson are an interesting target
 - $^{\circ}$ η→μ⁺μ⁻μ⁺μ⁻ and η→μ⁺μ⁻e⁺e⁻ are yet to be observed
 - η'→e+e-e+e- decay only recently observed at BESIII <u>PRD 105 (2022) 112010</u>
 - B(2e2 μ)~2.4x10⁻⁶, B(4 μ)~4x10⁻⁹ in SM <u>arxiv:1511.04916</u>

Rare Radiative Decays

- Leptonic radiative decays of the η/η' meson are an interesting target
 - $\eta \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ and $\eta \rightarrow \mu^+ \mu^- e^+ e^-$ are yet to be observed
 - η'→e⁺e⁻e⁺e⁻ decay only recently observed at BESIII <u>PRD 105 (2022) 112010</u>
 - B(2e2μ)~2.4x10⁻⁶, B(4μ)~4x10⁻⁹ in SM <u>arxiv:1511.04916</u>
- Measuring the rare η meson branching ratios is important for several reasons
 - $^\circ\,$ Tests low energy QCD calculations which contributes to the hadronic light-by-light component of the (g-2)_\mu\,
 - Sensitive to the presence of BSM physics (light mediators, True Muonium) <u>arxiv:2007.00664</u>

Observation of $\eta \rightarrow 4\mu$

- Look for events with 4 muons and zero net charge, consistent with production from a common vertex
 - $\circ\,$ Clear peak observed at the η mass

Observation of $\eta \rightarrow 4\mu$

- Look for events with 4 muons and zero net charge, consistent with production from a common vertex
 - Clear peak observed at the η mass
- Fit the distribution to a peaking signal and a threshold background shape
 - Signal: Crystal ball function
 - Background: $f(m_{4\mu}) = (m_{4\mu} 4m_{\mu})^{\beta}$

Observation of $\eta \rightarrow 4\mu$

- Look for events with 4 muons and zero net charge, consistent with production from a common vertex
 - Clear peak observed at the η mass
- Fit the distribution to a peaking signal and a threshold background shape
 - Signal: Crystal ball function
 - Background: $f(m_{4\mu}) = (m_{4\mu} 4m_{\mu})^{\beta}$

Significance of the signal well in excess of 5σ **First observation of \eta \rightarrow 4\mu!!!**

 Cross check performed to check for possibility of rare η decay backgrounds using simulated samples

- Cross check performed to check for possibility of rare η decay backgrounds using simulated samples
 - $\eta \rightarrow \mu^+ \mu^- \gamma$ with γ conversion in material non-peaking and shifted to higher m(4_µ)

- Cross check performed to check for possibility of rare η decay backgrounds using simulated samples
 - $\eta \rightarrow \mu^+ \mu^- \gamma$ with γ conversion in material non-peaking and shifted to higher m(4_µ)
 - $\eta \rightarrow \pi^+\pi^-\mu^+\mu^-$ with $\pi \rightarrow \mu$ fake shifted to lower mass due to wrong mass hypothesis
 - Rate shown is for current experimental upper limit $B(\eta \rightarrow \pi^+\pi^-\mu^+\mu^-) < 1.6 \times 10^{-4}$
 - SM Prediction 6.5x10⁻⁹

- Cross check performed to check for possibility of rare η decay backgrounds using simulated samples
 - $\eta \rightarrow \mu^+ \mu^- \gamma$ with γ conversion in material non-peaking and shifted to higher m(4_µ)
 - η→π⁺π⁻μ⁺μ⁻ with π→μ fake shifted to lower mass due to wrong mass hypothesis
 - Rate shown is for current experimental upper limit $B(\eta \rightarrow \pi^+\pi^-\mu^+\mu^-) < 1.6 \times 10^{-4}$
 - SM Prediction 6.5x10⁻⁹
- No possibility of significant peaking background component

Dimuon Scouting at CMS

• Measure the $\eta \rightarrow 4\mu$ branching ratio relative to $\eta \rightarrow 2\mu$

• $N_{4\mu}$ and $N_{2\mu}$ determined from sideband fits (in bins of η meson p_T and $|\eta|$ for $N_{2\mu}$)

• Measure the $\eta \rightarrow 4\mu$ branching ratio relative to $\eta \rightarrow 2\mu$

- $N_{4\mu}$ and $N_{2\mu}$ determined from sideband fits (in bins of η meson p_T and $|\eta|$ for $N_{2\mu}$)
- The ratio of acceptance x eff. $A_{4\mu}/A_{2\mu}$ determined from simulation (PLUTO generator) <u>arxiv:0708.2382</u>

• Measure the $\eta \rightarrow 4\mu$ branching ratio relative to $\eta \rightarrow 2\mu$

- $N_{4\mu}$ and $N_{2\mu}$ determined from sideband fits (in bins of η meson p_T and $|\eta|$ for $N_{2\mu}$)
- The ratio of acceptance x eff. $A_{4\mu}/A_{2\mu}$ determined from simulation (PLUTO generator) <u>arxiv:0708.2382</u>

- η→2µ Axε driven by L1 trigger acceptance
- η→4µ Axε lower due to reconstruction requirements

B($\eta \rightarrow 4\mu$) Uncertainties

 η→4µ differential event rate as a function of p_T in excellent agreement with the simulation

B($\eta \rightarrow 4\mu$) Uncertainties

- η→4µ differential event rate as a function of p_T in excellent agreement with the simulation
- Residual uncertainty due to the imperfect knowledge of Ax ϵ for $\eta \rightarrow 2\mu$ and $\eta \rightarrow 4\mu$
 - Accounts for threshold effects and η→2µ efficiency differences between data and MC (in total ~13%)

B($\eta \rightarrow 4\mu$) Uncertainties

- η→4µ differential event rate as a function of p_T in excellent agreement with the simulation
- Residual uncertainty due to the imperfect knowledge of Ax ϵ for $\eta \rightarrow 2\mu$ and $\eta \rightarrow 4\mu$
 - Accounts for threshold effects and η→2µ efficiency differences between data and MC (in total ~13%)
- Uncertainty in normalization mode branching ratio (~14%)

$${\cal B}(\eta
ightarrow 2\mu) = (5.8 \pm 0.8) imes 10^{-6}$$

B($\eta \rightarrow 4\mu$) Measurement

• $B(\eta \rightarrow 4\mu)/B(\eta \rightarrow 2\mu)$ is extracted summing over all $p_T/|\eta|$ bins:

$$rac{\mathcal{B}_{4\mu}}{\mathcal{B}_{2\mu}} = (0.9 \pm 0.1 \, (ext{stat}) \pm 0.1 \, (ext{syst})) imes 10^{-3}$$

B($\eta \rightarrow 4\mu$) Measurement

• $B(\eta \rightarrow 4\mu)/B(\eta \rightarrow 2\mu)$ is extracted summing over all $p_T/|\eta|$ bins:

$$rac{\mathcal{B}_{4\mu}}{\mathcal{B}_{2\mu}} = (0.9 \pm 0.1 \, (ext{stat}) \pm 0.1 \, (ext{syst})) imes 10^{-3}$$

• Using the world average B($\eta \rightarrow 2\mu$), B($\eta \rightarrow 4\mu$) is measured for the first time:

$$\mathcal{B}(\eta
ightarrow 4\mu) = (5.0 \pm 0.8 \, (ext{stat}) \pm 0.7 \, (ext{syst}) \pm 0.7 \, (\mathcal{B})) imes 10^{-9}$$

B($\eta \rightarrow 4\mu$) Measurement

• $B(\eta \rightarrow 4\mu)/B(\eta \rightarrow 2\mu)$ is extracted summing over all $p_T/|\eta|$ bins:

$$rac{\mathcal{B}_{4\mu}}{\mathcal{B}_{2\mu}} = (0.9 \pm 0.1 \, (ext{stat}) \pm 0.1 \, (ext{syst})) imes 10^{-3}$$

• Using the world average B($\eta \rightarrow 2\mu$), B($\eta \rightarrow 4\mu$) is measured for the first time:

$$\mathcal{B}(\eta
ightarrow 4\mu) = (5.0 \pm 0.8 \, (ext{stat}) \pm 0.7 \, (ext{syst}) \pm 0.7 \, (\mathcal{B})) imes 10^{-9}$$

• In agreement, within uncertainties, with the SM prediction:

$$(3.98\pm0.15) imes10^{-9}$$

<u>arxiv:1511.04916</u>

Dimuon Scouting at CMS

Search for Unknown Resonances

Events/GeV × Prescale

Dimuon Scouting at CMS

David Sperka (Boston University)

Search for Unknown Resonances

Events/GeV × Prescale

Why the GeV Scale?

- New states at the GeV scale are motivated from several perspectives
 Vector portal interaction in thermal dark matter models
 - $\circ\,$ New scalar or vector coupling to muons could help explain (g-2)_{\mu}

David Sperka (Boston University)

Why the GeV Scale?

- CMS (MARK)
- New states at the GeV scale are motivated from several perspectives
 Vector portal interaction in thermal dark matter models
 - $\,\circ\,$ New scalar or vector coupling to muons could help explain (g-2)_{\mu}

Analysis Strategy

- Bump hunt on the dimuon mass using analytical signal and bkg. pdfs
- Multivariate identification to suppress misidentified muons
- Define a simple fiducial volume (2 muons with $p_T^{\mu} > 4$ GeV and $|\eta| < 1.9$)
- Data driven measurement of trigger and reconstruction efficiency
- Measure integrated luminosity, set model independent limit on $\sigma \times B \times \alpha$
- Compute $\sigma \times B \times \alpha$ in specific models to set limits on model parameters

Muon Identification

- Target prompt production, require transverse displacement L<0.2cm
- Data-driven BDT: OS J/ Ψ and Y events as signal, SS events as background
 - $^{\circ}$ Y training optimal for higher mass, J/ Ψ training for low mass/boosted

Efficiency Measurement

- BDT ID efficiency measured in data using tag and probe method on J/Ψ and Y
 - Uncertainty in ID eff. from data sample and data/MC diff. (4-20%)
- Trigger efficiency for dimuon events within fiducial volume is measured using an unbiased sample of standard e/γ events
 - Dependent on $m_{\mu\mu}$ and $\Delta r_{\mu\mu}$
 - Difference between data and simulation and taken as uncertainty (up to 20%)

David Sperka (Boston University)

CERN LPCC Seminar

46

Efficiency Measurement

- BDT ID efficiency measured in data using tag and probe method on J/Ψ and Y
 - Uncertainty in ID eff. from data sample and data/MC diff. (4-20%)
- Trigger efficiency for dimuon events within fiducial volume is measured using an unbiased sample of standard e/γ events
 - $^{\circ}~$ Dependent on $m_{\mu\mu}$ and $\Delta r_{\mu\mu}$
 - Difference between data and simulation and taken as uncertainty (up to 20%)

Dimuon Scouting at CMS

David Sperka (Boston University)

Event Categorization

- Optimal for different production mechanisms (e.g. DY or ggF)
- For high mass inclusive category, additional requirement L<0.015cm
- For inclusive low mass and boosted categories vertex resolution degrades so instead cut on displacement significance

Preselection	$L < 0.2 { m cm}, \eta^{\mu} < 1.9, { m OS}$					
Category	Inclusive		Boosted			
Mass Range	$m_{\mu\mu} < 2.6 \text{GeV}$ $m_{\mu\mu} > 4.2 \text{GeV}$		$m_{\mu\mu} < 2.6 \mathrm{GeV}$	$m_{\mu\mu} > 4.2{ m GeV}$		
p_{T}^{μ}	> 4 GeV		$> 5 \mathrm{GeV}$			
BDT ID	$J/\psi \text{ ID} > -0.1$ Y ID > 0.0		J/ψ ID > -0.1			
Vertex	$\sigma_L < 3.5L$ $L < 0.015 {\rm cm}$		$\sigma_L < 3.5L$			
$p_{\mathrm{T}}^{\mu\mu}$	-	-	> 35 GeV	> 20 GeV		

David Sperka (Boston University)

Background Modeling

- Combinatorial background is modeled using 4th order Bernstein polynomial (checked with toy datasets to have negligible bias)
- Peaking backgrounds ($D_0 \rightarrow KK, K\pi$) estimated from control regions with inverted L/ σ_L cuts (transfer factors estimated from simulation)
 - $^\circ\,$ Uncertainty on transfer factors 20-25% estimated using J/ Ψ data/MC

David Sperka (Boston University)

Signal Model and Largest Excess

- Signal modeled from fits to SM resonances
 - Double Crystal Ball + Gaussian
 - 20% uncertainty on resolution

Signal Model and Largest Excess

- Signal modeled from fits to SM resonances
 - Double Crystal Ball + Gaussian
 - 20% uncertainty on resolution
- The mass hypothesis with the largest local significance comes at 2.41 GeV in the boosted category
 - 3.2σ local significance, 1.3σ global significance

Signal Model and Largest Excess

- Signal modeled from fits to SM resonances
 - Double Crystal Ball + Gaussian
 - 20% uncertainty on resolution
- The mass hypothesis with the largest local significance comes at 2.41 GeV in the boosted category
 - 3.2σ local significance, 1.3σ global significance
 - Notably LHCb reports a 3.1σ local excess at 2.42 GeV in one event category (X+b, 10<p_T(X)<20 GeV)

JHEP 10 (2020) 156

Model Independent Limit

- Main results are model independent limits on σ×B×α for the inclusive and boosted selections
- Limit calculation includes all experimental uncertainties

Effect	$m_{\mu^{\pm}\mu^{\mp}} < 2.6 \text{ GeV}$	$m_{\mu^{\pm}\mu^{\mp}} > 4.2 \text{ GeV}$			
Integrated luminosity	2.3–2.5%				
Mass resolution	20%				
Trigger efficiency	1–20%				
Muon ID efficiency	4–9%	12–20%			
Vertex selection		3%			
Efficiency application	8%	4%			
D meson normalization TFs	20–25%	<u> </u>			

Model Dependent Limits

- We choose two specific models to constrain model parameters
 - DY production of vector boson (dark photon)
 - Gluon fusion production of pseudoscalar (2HDM+S)
- Relies on theoretical calcuations of cross sections, branching ratio, and experimental acceptance

Model Dependent Limits

- We choose two specific models to constrain model parameters
 - DY production of vector boson (dark photon)
 - Gluon fusion production of pseudoscalar (2HDM+S)
- Relies on theoretical calcuations of cross sections, branching ratio, and experimental acceptance

$$\sigma_{\mathrm{pp} \to Z_{\mathrm{D}}} \cdot \epsilon^{2} \cdot \mathcal{B} \cdot A = \sigma_{\mathrm{limit}}$$

- Dark photon cross section and BR calculated with MadGraph
- NNLO corrections and acceptance from DYTurbo <u>EPJC 80 (2020) 251</u>

Model Dependent Limits

- We choose two specific models to constrain model parameters
 - DY production of vector boson (dark photon)
 - Gluon fusion production of pseudoscalar (2HDM+S)
- Relies on theoretical calcuations of cross sections, branching ratio, and experimental acceptance

$$\sigma_{\mathrm{pp}\to Z_{\mathrm{D}}}\cdot\epsilon^{2}\cdot\mathcal{B}\cdot A = \sigma_{\mathrm{limit}}$$

- Dark photon cross section and BR calculated with MadGraph
- NNLO corrections and acceptance from DYTurbo <u>EPJC 80 (2020) 251</u>

$$\sigma_{\mathrm{pp}\to a}\cdot\sin^2(\theta_{\mathrm{H}})\cdot\mathcal{B}\cdot A=\sigma_{\mathrm{limit}}$$

- Gluon fusion cross section from HIGLU <u>arxiv:hep-ph/9510347</u>, BR from Haisch et. al. <u>JHEP 03 (2018) 178</u>
- Acceptance from MadGraph and Pythia

David Sperka (Boston University)

Dark Photon Interpretation

 Limits on kinetic mixing parameter ε² in dark photon model extracted from the inclusive category limits

2HDM+S Interpretation

• Limits on mixing angle $sin(\Theta_H)$ in Type-IV 2HDM+S model (tan β =0.5) extracted from the boosted category limits

$$\mathcal{L} \supset -\sum_{f} \frac{y_{f}}{\sqrt{2}} i\xi_{f}^{\mathrm{M}} \bar{f} \gamma_{5} f a$$
sype

I
II
III
IV

up-type quarks	s_{θ}/t_{β}	s_{θ}/t_{β}	s_{θ}/t_{β}	s_{θ}/t_{β}
down-type quarks	$-s_{\theta}/t_{\beta}$	$s_{\theta} t_{\beta}$	$-s_{\theta}/t_{\beta}$	$s_{\theta} t_{\beta}$
charged leptons	$-s_{\theta}/t_{\beta}$	$s_{\theta} t_{\beta}$	$s_{\theta}t_{\beta}$	$-s_{\theta}/t_{\beta}$

Data Scouting in Run 3

Bottleneck #1: HLT speed •

- Accelerate pixel tracking and calorimeter reco. w/ GPUs
- Running HLT Scouting in Run 3 at ~30 KHz, 350 MB/s

Bottleneck #2: Event Content

 Reconstruct and store more information (e.g. electrons, photons) in smaller data format (~6 kB after compression)

Final Bottleneck: L1 rate

• For HL-LHC, L1 trigger will have much better resolution, opportunity for scouting at L1

CERN LPCC Seminar

Dimuon Scouting at CMS

Summary

- Data Scouting is a powerful frameworks for performing otherwise impossible searches and measurements
- CMS has further exploited the dimuon scouting stream
 - → First ever observation of the rare $\eta \rightarrow 4\mu$ decay
 - Impressive sensitivity to dark photon and scalar resonances at the GeV scale
- LHC Run 3 will be extremely interesting!!!

Backup

Dimuon Scouting at CMS

LHCb Dark Photon Search

- The mechanism is the same for γ^{\ast} and dark photon production
- Estimate non-prompt γ^{\ast} bkg. using SS sample, subtract from observation
- Ratio between the observed γ^* yield and signal yield proportional to ϵ^2
- Does not use theory cross sections, detector efficiency, or luminosity

Phys. Rev. Lett. 124 (2020) 041801

Dimuon Scouting at CMS

Sensitivity Projections

Dark Photon Lifetime

L1 Trigger Upgrade

