

Report on Task 7.3: VAriable Dipole for the Elettra Ring

I.FAST P1 Review - 09/02/23

Y. Papaphillipou

IFAST

VAriable Dipole for the Elettra Ring - VADER

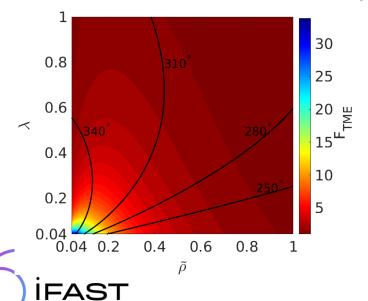
- Task 7.3 within I.FAST WP7: High Brightness Accelerators for Light Sources
- Partners and collaborators:

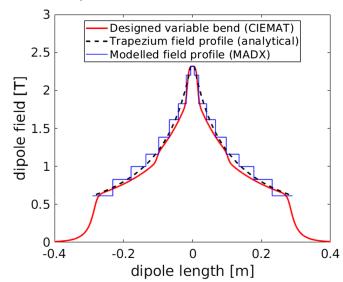
Y. Papaphilippou A. Poyet

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

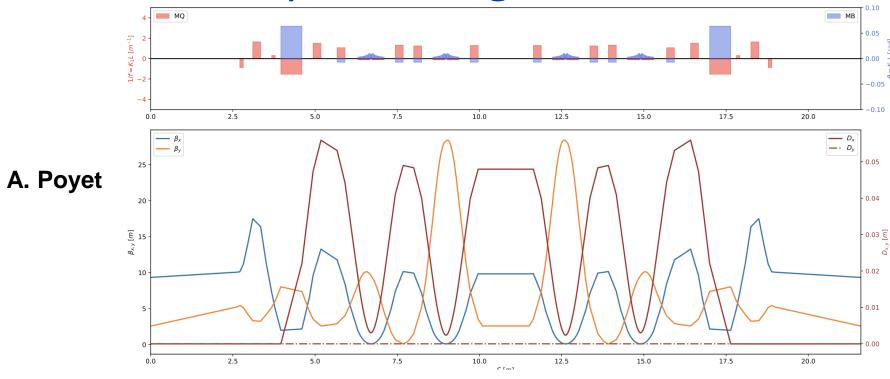
> F. Toral M. Dominguez

E. Karantzoulis




R. Geometrante

VADER objectives

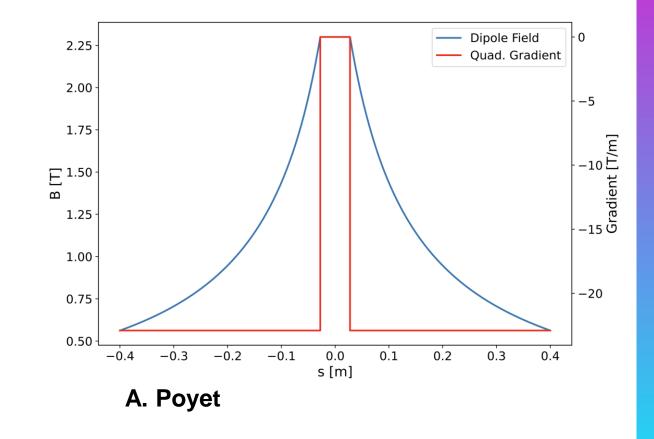

- Fabricate an innovative dipole magnet prototype with longitudinal varying dipole field, including a transverse gradient for the ELETTRA upgrade
- Permanent magnet concept with trapezoidal bending radius, 2.3 T peak field and ~10 T/m gradient, already established (CERN/CIEMAT)
- Proved the horizontal emittance reduction to ultra-low levels of i.e. ~60 pm @ 2.86 GeV, for the CLIC DR (M. A. Domínguez Martinez et al., IEEE Trans. Appl. Supercond. 28, 1, 2018; S. Papadopoulou et al, PRAB 22, 1091601, 2019)
- First demonstrator constructed/qualified by CIEMAT

Lattice and optics design

- Optics constraints at the ID are matched
- Horizontal emittance reduction from 212 to 100 pm
 (more than factor of 2!)
- Chromaticities: -157/-125

Tunes: 34.706 / 22.852

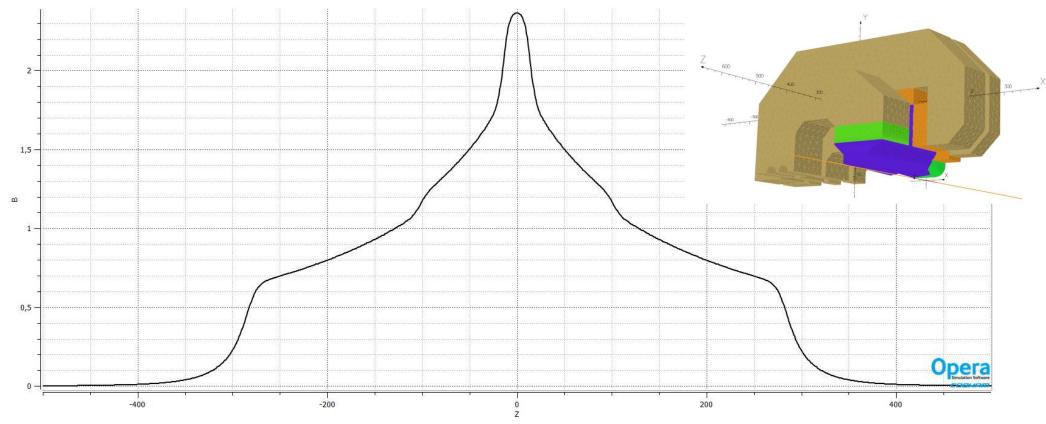
✓ Non-linear optimization on-going: already good on-momentum DA of about 6 mm


Profile Design and Magnet Specifications

Good field region: +/- 6-8 mm

• **Gap:** 17 mm

Quadrupolar gradient: 23 T/m


- Profile optimized according to the calculation of the emittance reduction factor
- Magnetic design on-going at CIEMAT

VADER: Magnetic design progress

- Feasibility study with adaptation of the CLIC demonstrator model
- Increasing permanent magnet (NdFeB) volume around 30% (@ high field region), peak of
 2.3T with gap of 17mm can be reached

VADER timeline

	Deliverable description	Month	
1	Magnet Specifications based on optics calculations for ELETTRA	12	Milestone MS 26
2	Magnetic and mechanical design (including fabrication drawings)	24	J
3	Fabrication of the prototype	42	→ Deliverable D7.3
4	Acceptance tests	48	→ Milestone MS 27

- Optics work completed (CERN/Elettra), non-linear dynamics optimization on-going
- Magnet specification document in final review stage
- <u>Internal meeting</u> between **CIEMAT/KYMA** to **discuss fabrication process** in **fall 2022**
- Magnetic and mechanical design from CIEMAT on-going with input from KYMA for fabrication, to be ready by summer 2023
- Fabrication of the prototype by KYMA to start on summer 2023, ready for acceptance tests by beginning of 2025

IFAST

Thank you for your attention!

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.