

Prof. Toms TORIMS, Riga Technical University

I.FAST Period 1 Review, 09.02.2023

Task 10.1 Coordination and communication

- Overall WP coordination, monitoring of progress and technical actions
- To identify and promote novel technologies to improve performance of particle accelerators
- Promote communication strategies on opportunities offered by new technologies for accelerators

Coordination of WP10 – how it works?

Coordination of the WP

- Regular Task meetings (remote and in-person) AM segment Tasks 10.2+10.3+10.4
- Task 10.5, 10.6 and 10.7 meetings and liaison with the Task Leaders
- 2 WP10 all Tasks meetings
- Monitoring of the progress
 - This is about Deliverables and Milestones of each Task
 - Every Task leader is fully aware of his D's and M's
- Technical actions
 - Tools are made available: Indico, I.FAST Collaborative Space
 - Regular communication, updates, follow-up and support
 - Organisation of events [Type1,2,3,4] and linking them with other I.FAST WP's
 - Coordination of publications and participation in the events

WP10 Milestones

MS43	Dissemination and communication plan	10.1	12	Report Done	
MS44	Survey on current AM applications in accelerators and expected new developments	10.2	30		ng – no
MS45	Survey on current AM repair technologies for accelerator and list of possible applications	10.3	24	Report	ilties noted
MS46	Performance of Superconductive Cavities made by	10.4	12	Report	
	AM technology by Nb or Cu with Nb thin spattered film on the internal surface	Ongoing – ex	tension re	quested to M30	
MS47	First NEG coated samples are installed on SR beamline at DLS and Soleil	10.5	12	Report Done	
MS48	ML model selection and implementation plan	10.6	18	Report Done	
MS49	Delivery of an electro-optic waveguide prototype for demonstration at RHUL test bench	10.7	12	Laboratory prototype in operation	

WP10 Deliverables

Deliverables related to WP10		
D10.1: Potential AM applications in accelerators.		30
Report on output of the survey on AM application. community, and perspective developments.	s, further needs for the accelerator Ongoing – no difficulties not	ed
D10.2: Survey of AM applications and strategies for rep	airing accelerator components by AM.	24
Report listing possible strategies and technologies for r		ed
D10.3: Additive-manufactured Superconductive RF cay	vities.	1218
Production and tests of superconductive RF cavities, m	ade by Nb and/or Cu coated by an Nb	10
thin film.		Done
D10.4: First PSD data from NEG coating.		36
First PSD data from NEG coating reported.	Ongoing – no difficulties not	ed
D10.5: Technical Report on machine learning at ESS.		34
Evaluation and verification results, architecture of the performance at the ESS facility.	e final implementation, and achieved Ongoing – no difficulties not	ed
D10.6: Electro-optic performance report. Final report on the performance of the electro-optic pic	ck-up prototype with beam.	24
	Ongoing – no difficulties not	od

T10.1 summary of activities in P1 - *some highlights only*

- 53 meetings and events https://indico.cern.ch/category/13515/
- Dedicated Workshop on Additive Manufacturing applications at CERN globe during I.FAST annual meeting <u>https://indico.cern.ch/event/1133254/sessions/439997/#20220505</u>

External dissemination of results:

- Participation in the major **conferences**
- 10+ scientific papers, and counting
- Presence and visibility in the major AM exhibition
- New European industrial partners engaged

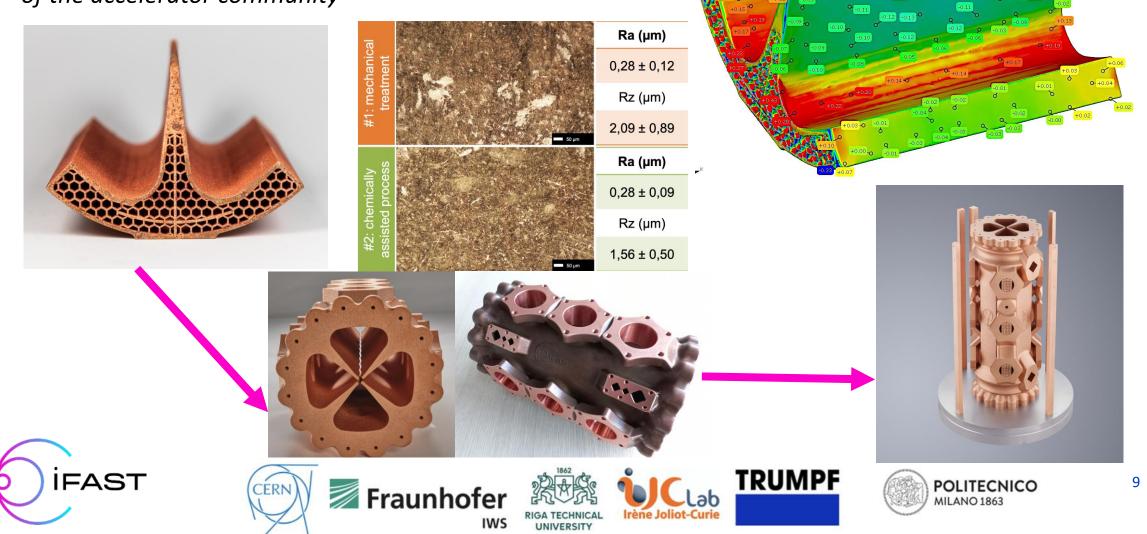
Task 10.2 AM – Survey of applications and potential developments

- Survey of *current* Additive Manufacturing (AM) *applications* in accelerators and identification of *needs for future* development and research actions
- Promote initiatives to identify how AM can address the needs of the accelerator community
- Define **strategic directions** for future AM technologies and foster their impact on accelerator applications (inc. societal), identifying technology barrier and challenges.

Partners:

PoliMi, RTU, CERN, CNRS, CEA, INFN, TalTec + TRUMPF

AM in the accelerator community - survey


Courtesy of Guntis Pikurs

I.FAST Period 1 Review, 9 February 2023

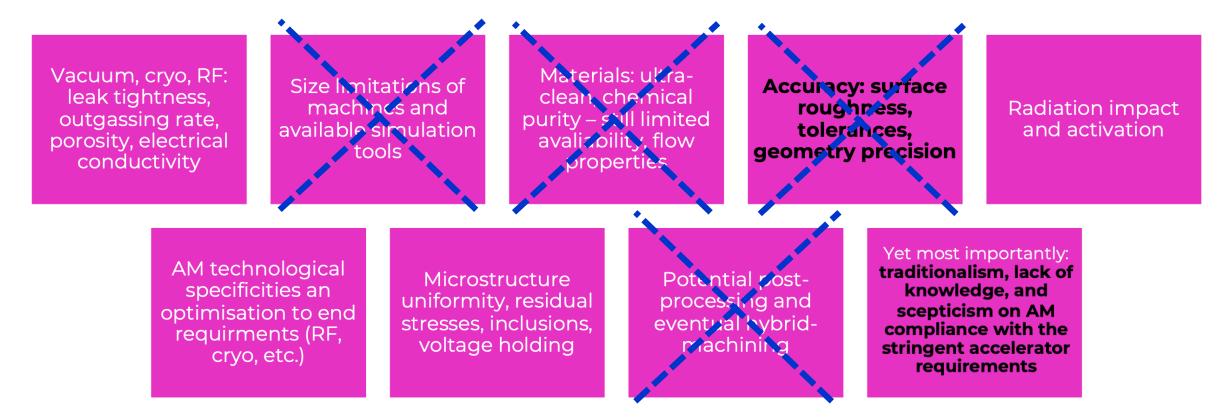
Indicative sample of RFQ

 Promote initiatives to identify how AM can address the needs of the accelerator community

0.15

RFQ Particle Accelerator

-	ostering in Accelerator Science	and
Technology	Hors Polist Propert of Harizon 2020 Francework Pro- navation, addressing Research Infrastructure (RI)	600
Par Research and In Advanced Communi	Hern Pilot Project of Haribon 2020 ("removing on novelitor, addressing Research Infrastructure (kin Refer. - It lange REmoving and 12 address Removing Con- tension Common Countries	11.
* 48 honeficiaries	A large A resonance of the second sec	
+ 13 Work Inchage		ME
- Turneline d year	contribution, marking and the	-
Contraction of the	The same of Assessment Annual States	
s. Frita		
to the support	and the second s	Ginne 1
	and service and	


High-Frequency REQ Prototype

Additional Computer City

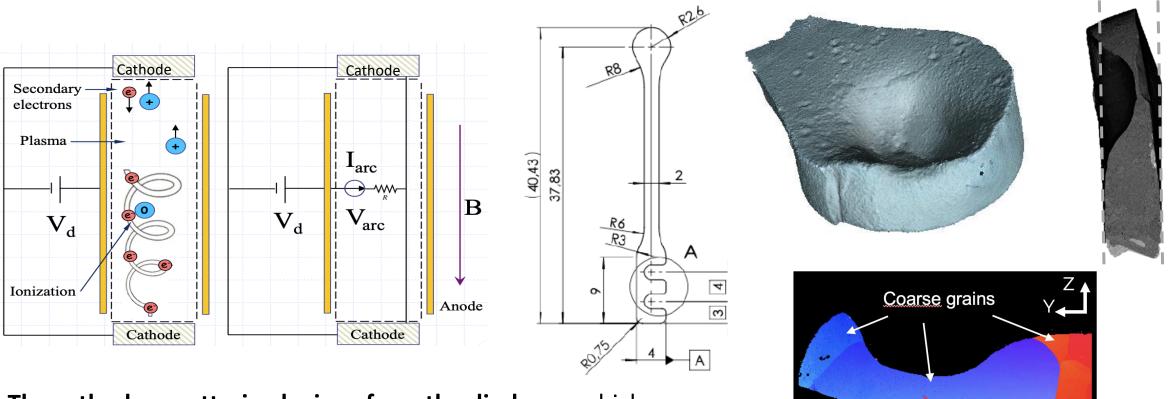
And the second s

-World Premiere

T10.2 achievments during P1 - addressing challenges within accelerators

• Define **strategic directions** for future AM technologies and foster their impact on **FAST** accelerator applications (inc. societal), identifying technology barrier and challenges. 11

Work is going-on!


Task 10.3 Refurbishment of accelerator components by Additive Manufacturing (AM) technologies

- Definition of **applications and components for the repair** activities in the accelerator components by AM
- Identification of **AM strategies** that can be adopted to repair parts
- Study post-processing methods to control surface roughness and surface cleanliness of AM parts
- Identification of a sample **demonstration prototype** of AM repaired unit for an accelerator

Partners:

RTU, PoliMi, CERN, CEA, INFN, CNRS, TalTec

Repaired - Cold cathode Penning Ionization Gauge (PIG) ion source

The cathodes sputtering by ions form the discharge which produces a crater

UNIVERSITY

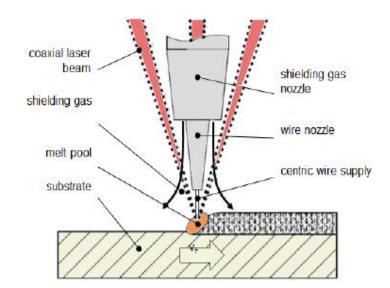
IWS

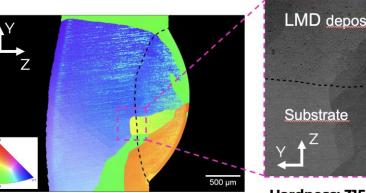
500 um

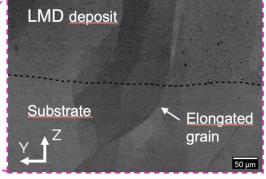
MINISTERIO

DE CIENCIA INNOVACIO

Twin


y Tecnológicas


T10.3 achievments during P1


- Demonstrated AM abilities with exotic material
- Successfully used two DED AM technologies
- Parameters diapasons were determined
- Tested several repair strategies

Wire

Hardness: 315.3 ± 10.3 HV_{0.05}

I.FAST Period 1 Review, 9 February 2023

Work is going-on!

Task 10.4: Development of AM-manufactured superconductive RF cavities

- Develop the design approach and test relevant properties of AMmanufactured Niobium RF cavities
- Develop the design approach and test relevant properties of AMmanufactured Ultra-Pure Cu-made RF body cavities - coated by a Niobium thin layer at the inner surface
- Both to be tested at room and at cryogenic temperature

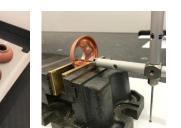
Partners: INFN, CNRS

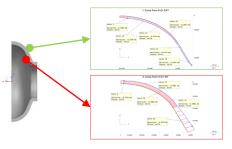
T10.4 achievments during P1 - Cavities produced by AM

Cu cavities

First prototypes:

Geometry verifications

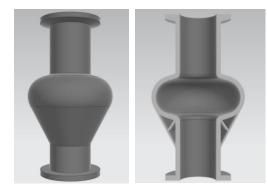

6 GHz seamless cavities:


Red laser

Green laser

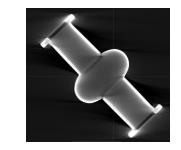
•

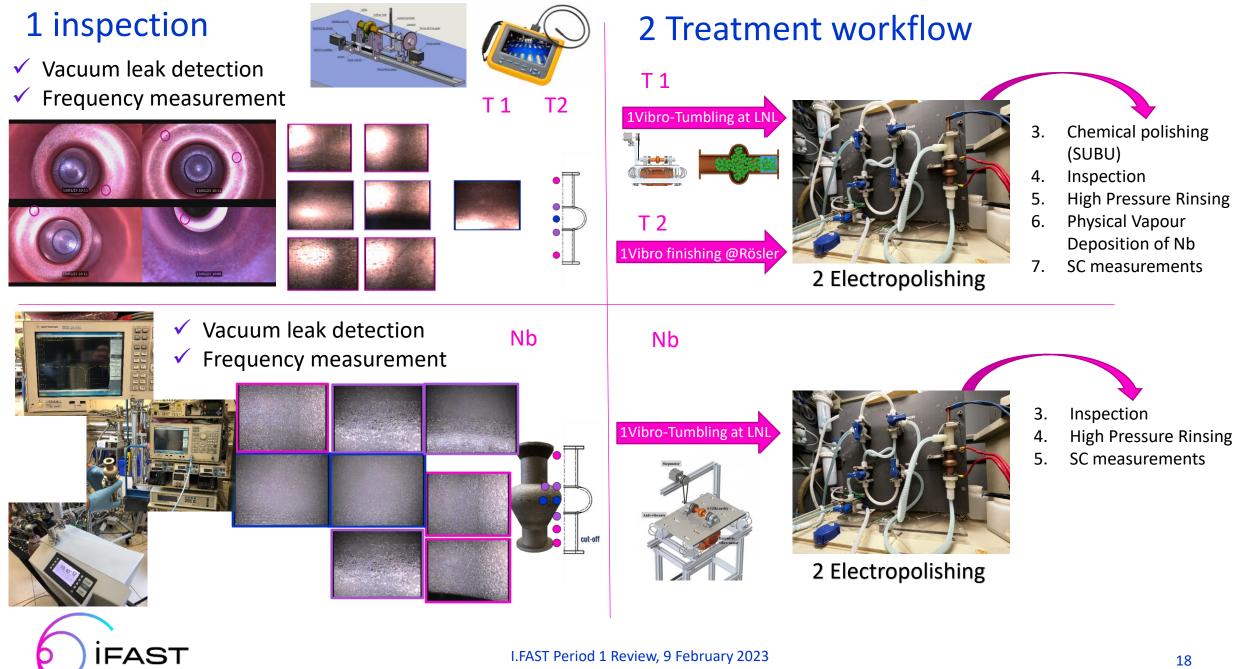
•


Nb cavities

Material characterization and process parameters optimization:

- Density
- Critical angle
- Down-skin
- Contour


50° 45° 40° 35° 30° 25° 22° 20° 18° 6 GHz seamless cavities production



Surface treatments by Rösler		Treatments						
Cavities		Туре	Mechanical treatment		Chemically-assisted treatment		Extra polishing step	
P-shape →	Scrap parts for	# of steps	10		5		2	
L-shape T-shape	preliminary test Samples to be treated	media and compounds	<i>Rösler</i> media: Cu needles + synthetic diamond powder		<i>Rösler</i> ceramic media: <i>RMBD1 05 G</i> <i>Rösler</i> compound: <i>CMP 03/21 L</i>		<i>Rösler</i> plastic media: <i>RKH</i> /4	
GOAL: Ra ≤ 1,0 μm		GOAL	Roughness reduction R_a from about 30 μm to 4 μm		Roughness reduction <mark>R_a ≤ 1,0 µm</mark>		Last defects removal Final cleaning <mark>R_a ≤ 1,0 µm</mark>	
Rough	Chemically-assisted	Extra polishi	ng				Marphalagy	
Upskin (T2) Upskin (T2)		oski		Average roughness at the end:		Morphology		
				CAVITY	R _a µm	R _z µm		
				L2	0,48	2,32		
Downskin (T2)	Downskin Do (T2) (T2	wnskin 2)		L3	0,54	3,34		
				T2	0,48	3,39		
							500 μm	

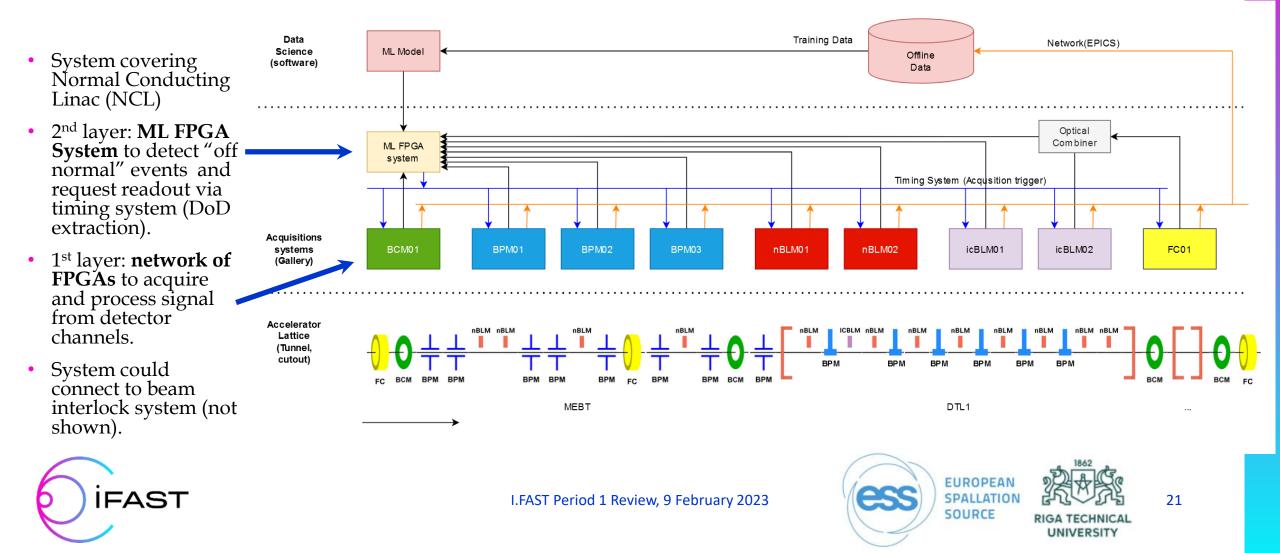
Task 10.5: Photon Stimulated Desorption from NEG coating for accelerator vacuum chambers

- Building facilities for photon stimulated desorption (PSD) yield measurement on beamlines.
- Obtaining and analysing the photon stimulated gas desorption (PSD) experimental data from Non-Evaporable Getter (NEG) coated prototypes under conditions similar to future light sources.

Reported within WP9

Task 10.6: Machine Learning Techniques for Accelerator and Target Diagnostics

- Long term mission: **Develop low-latency Machine Learning** (ML) techniques to improve performance and availability of high-power facilities at the intensity frontier.
- Goal: Identify signatures of potential errant beam conditions
- Scope:


Assess the **predictive capabilities** of selected ML models

Prototype: proof of principle demonstration

The most promising ML model to be implemented on a low- latency network of FPGAs processing signals from array of detector channels

ML prototype – ESS Normal Conducting Linac, Low Energy Section

T10.6. achievments during P1

- Acquired data sets during ESS beam commissioning run to DTL1 in July 2022
- Doctoral student from RTU engaged: performing exploratory analysis on data from beam commissioning run in July 2022
- Work on producing simulated ESS data for normal operation and anomalies ongoing
- **Conceptual design** for the prototype demo prepared FPGA system fed by low latency links from a set of instrumentation systems
- Prototype FPGA system demonstrated with the Xilinx SW toolchain and generic ML algorithm
- First version of low latency link demonstrated by transporting waveforms with sub-microsecond latency at multigigabit per second rates

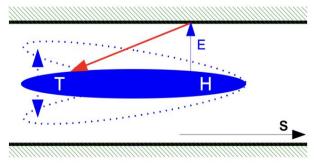
Task 10.7: Development of electro-optical waveguide sensors as beam electric field sensors

- Develop novel electric-field sensors based on electro-optic waveguides to address new challenges in fast time response (<50ps) beam instrumentation
- **Demonstrate the capability** to optically measure the intra-bunch transverse displacement of a passing relativistic bunch, with a bandwidth that is beyond state-of-the-art

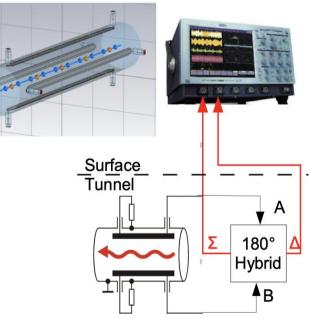
How to make beam Instrumentation FASTer?

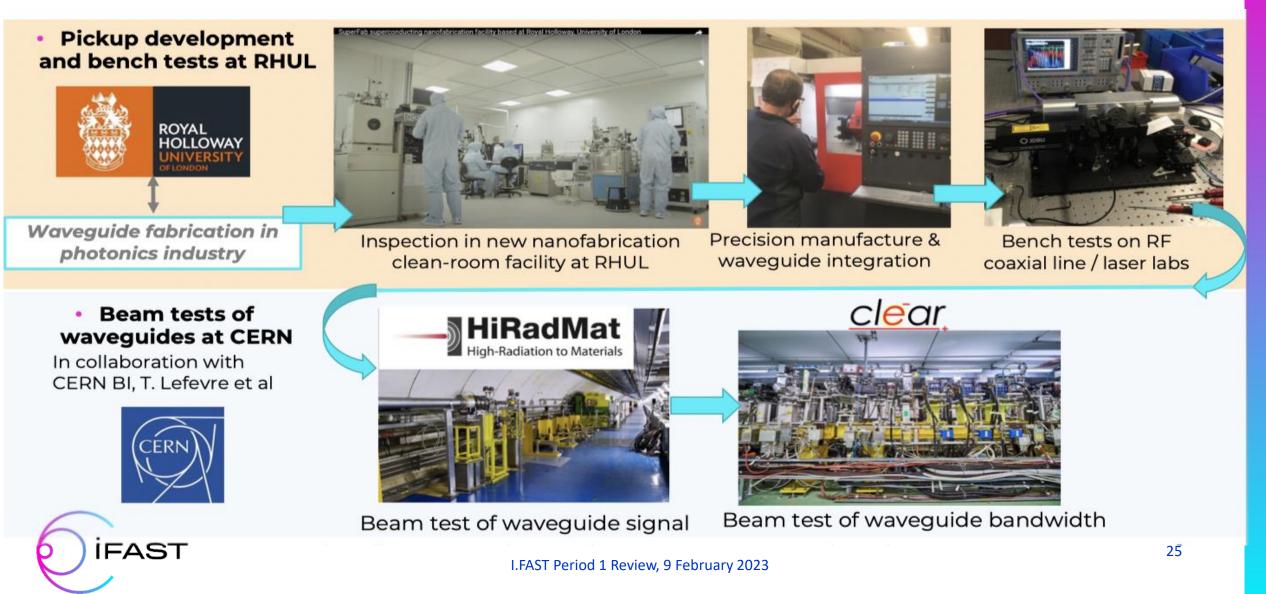
Challenge of rapid diagnostics

- Beam instrumentation at current and future particle accelerators would benefit from an improved time response in multiple areas:
 - Bunch arrival time/ ToF; crabbed bunch rotation; temporal longitudinal profiles; measuring rapid, intra-bunch transverse instabilities...
- Bandwidth of conventional diagnostics is typically limited to a few GHz by the pick-ups, hybrid, cables and acquisition system.


A new technology is needed

- replace capacitive pick-ups with fast electro-optic crystals
- replace electric cables by optical-fibre readout





Standard approach: stripline BPM

Partners and facilities

T10.7 summary of activities in P1

Two successful beam test campaigns of electro-optics waveguide pickups:

HighRadMat 2021:.

- Benefit from short bunch length and train structure at CLEAR to assess the time response using an optical streak camera.
- Improvements to the ata acquisition system to reach higher bandwidths.
- CLEAR 2022:.
 - Short bunch length and train structure at CLEAR used to assess the time response
- Results in invited talk at International Beam Instrumentation Conference 2022, Kraków:
 - IBIC22 proceedings: <u>https://ibic2022.vrws.de/papers/tuli1.pdf</u>

Waveguide design optimised in collaboration with photonics industry:

- Improve opto-mechanical design for handling, assembly and precise alignment of delicate components.
- Approaching final months of originally funded 24 month project on 10.7.

WP10 specific objectives

- Improve fabrication and repair techniques, reduce cost, and enhance performance for all accelerators.
- Identify applications of Additive Manufacturing (AM) in the accelerator.
- Develop and test AM-produced SRF cavities.
- Build facilities for measurement of Photon Simulated Desorption from coatings in accelerator vacuum chambers.
- Develop Machine Learning (ML) predictive algorithms with the capability to diagnose and protect high-power accelerators.
- Develop electro-optical waveguide sensors for beam monitoring.

IFAST

Thank you for your attention!

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

Back-up slides

WP10 perfectly relevant and are having impact

- Define strategic directions for the use of AM technologies on accelerator applications
- Identification of **AM strategies** that can be adopted to **repair parts**
- Develop the design approach and test relevant properties of AMmanufactured RF cavities
- Build facilities for photon stimulated desorption (PSD) yield measurement on beamlines
- Develop Machine Learning (ML) predictive algorithms to diagnose and protect high power accelerators
- Develop novel electric-field sensors to address new challenges in fast time response beam instrumentation

Workshops and meetings

How can AM address the needs of the accelerator community?

- Type 1: I.FAST meetings project partners and community
- Type 2: "in situ" meetings with industry and other research institutions relevant non-project partners and interested parties
- Type 3: "Horizontal Workshops" open to everyone (linked to project Annual Meetings) - transverse multidisciplinary Workshops and events involving two or more I.FAST WPs.
- Type 4: oral contribution to the international conferences and seminars

Workshops and meetings - in practice

- > Type 1: I.FAST meetings
 - WP10 meeting, Task 10.1-10.7 meetings
 - Steering Committee, progress meetings, Annual meetings
 - I.FAST industrial workshop Task 3.1
 - European Advanced Accelerator Concepts workshop Task 6.1
- Type 2: meetings "in situ" with industry and other research institutions
 - Roesler, AM Solutions current
 - meeting in Paris @ CNRS (Feb 2022) with designated workshop on AM applied to accelerators + series of other seminars in various locations
- Type 3: "Horizontal workshops" open to all (linked to project meetings)
 - I.FAST Annual Meeting @CERN (May 2022) AM
- > Type 4: conferences

FAST

• special interest in IPAC23 @Venice (May 2023)