
CP violation in D decays to two pseudoscalars:

A SM-based calculation

Eleftheria Solomonidi
In collaboration with Antonio Pich & Luiz Vale Silva

Instituto de F́ısica Corpuscular-University of Valencia/CSIC

February 1, 2023

TU Dortmund



Contents

1 Introduction

2 Concepts implemented in our approach

3 Results

Eleftheria Solomonidi CPV in D Introduction 2 / 31



A new Flavour Physics ’anomaly’ or an incomplete

theory prediction?

Flavour Physics beyond B-anomalies

Charm Physics is growing (LHCb, Belle II, BESIII)

Rare decays Mixing CP violation in decays

CPV in hadronic D modes: only discovery of CPV in the charm
sector

Plus new result of KK has puzzling implications
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CP violation in D decays: just a SM system or

gateway to New Physics?

∆Aexp
CP ≡ ACP(D

0 → K+K−)− ACP(D
0 → π+π−) = [−1.54± 0.29] · 10−3

∆Adir ,exp
CP = [−1.57± 0.29] · 10−3 [LHCb 2019]

NEW!!! ACP(D
0 → K+K−) = [6.8± 5.4(stat)± 1.6(syst)] · 10−4 [LHCb 2022]

Adir
CP(D

0 → π+π−) = [23.2± 6.1] · 10−4

Is the SM theoretical prediction in agreement?

Weak sector (CKM
parameters) already probed by
kaons, B mesons

Strong sector (hadronic uncertainties) problematic
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CPV in D: the strong sector

Does a beyond-naive estimation of hadronic effects matter?

A = |A1|e iδ1+iϕ1 + |A2|e iδ2+iϕ2

A = |A1|e iδ1−iϕ1 + |A2|e iδ2−iϕ2

adirCP ∼ |A1||A2| sin (δ1 − δ2) sin (ϕ1 − ϕ2)

Need different weak phases AND different strong phases

A (D0 → f ) = A(f ) + irCKMB(f )

A (D0 → f ) = A(f )−irCKMB(f )

adirCP ≈ 2rCKM
|B(f )|
|A(f )|

· sin arg A(f )

B(f )

(rCKM = Im
V ∗
cbVub

V ∗
cdVud

,

rephasing-invariant)

Tree topology

Penguin

topology
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Non-perturbative QCD methods

In K decays: Chiral Perturbation Theory

In B decays: HQET

ΛχPT ≈ mρ < mD = 1865 MeV, ΛQCD

mc
= O(1)

→
:::::::
neither

:::::::::
approach

:::
is

:::::::
strictly

:::::
valid

:::
in

:::::::
charm!

Approaches in charm use symmetries to combine observables
[Müller, Nierste, Schacht ’15]

or set bounds for the strong phases [Khodjamirian, Petrov ’17]
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A way to look at the problem: rescattering

Strong process, blind to the
weak phase

Isospin (u↔d) is a good
symmetry of strong
interactions

In I=0, two channels:

Sstrong =(
ππ → ππ ππ → KK
KK → ππ KK → KK

)
Eleftheria Solomonidi CPV in D
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Rescattering & what we learn about strong phases

S matrix is unitary, as well as strong sub-matrix

For I=0, S-wave:(
A0
0(D → ππ)

A0
0(D → KK)

)
=

(
ηe i2δ1 i

√
1 − η2e i(δ1+δ2)

i
√

1 − η2e i(δ1+δ2) ηe i2δ2

)
︸ ︷︷ ︸

Sstrong

·
(
A0∗
0 (D → ππ)

A0∗
0 (D → KK)

)

The phases are related to the rescattering phases which are
known from data/other experiments

Watson’s theorem (elastic rescattering limit):
argA0

0(D → ππ) = δ1 ≡ argA(ππ → ππ)modπ

With inelasticities:

argA0
0(D → ππ) = δ1 + arccos

√
(1+η)2−

(
|A0

0
(D→KK)|

|A0
0
(D→ππ)|

)2

(1−η2)

4η

depends on the ratio λπK =
|A0

0(D→ππ)|
|A0

0(D→KK)|
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What about magnitudes?

Rescattering also affects the magnitudes of amplitudes, apart
from the phases

An estimate for magnitudes:
factorisation/large
number-of-colors (NC )

CKM × Wilson coefficient ×factorisation

Does not take rescattering into account

Decay constant and form factor come from data and/or lattice

< π−|(dγµc)|D0 >=
m2

D−m2
π

m2
π

qµf
Dπ
0 (m2

π) + (vanishing contr.)
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Basic property of scattering amplitudes: analyticity

Fundamental,
model-independent property
related to causality

Cauchy’s theorem:
A(s) = 1

2πi

∮
C
ds ′A(s

′)
s′−s

leads to

ReA(s) =
1

π
PV

∫ ∞

sthr

ds ′
ImA(s ′)

s ′ − s

(Dispersion relation)

Unitarity of S-matrix & dispersion relation:

ReA(s)︸ ︷︷ ︸
Re at a point

= 1
π
PV

∫ ∞

sthr

ds ′
tan δ(s ′)

s ′ − s
ReA(s ′)︸ ︷︷ ︸

integral of Re along the physical region
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Analyticity & what we learn about magnitudes

Integral equation, studied by Muskhelishvili-Omnes

One subtraction: needs one piece of physical information
Single channel case (& one subtraction at s0), physical solution:

|AI (s)| = AI (s0) exp{
s − s0
π

PV

∫ ∞

4M2
π

dz
δI (z)

(z − s0)(z − s)
}︸ ︷︷ ︸

Omnes factor Ω

We need more than just large NC !

|AI (s = m2
D)| = (large NC result)× (Omnes factor)I

Behaviour at large s: Ω(s) ∼ 1
sn
, n = δI (∞)

π

Eleftheria Solomonidi CPV in D
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Dispersion relations for multiple channels

More channels: Equally more solutions.

The equivalent of the dispersion relation in the 2-channel case:(
ReAπ(s)
ReAK (s)

)
=

1

π
PV

∫ ∞

sthr

ds ′
(ReT )−1(ImT )(s ′)

s ′ − s

(
ReAπ(s ′)
ReAK (s ′)

)
(1)

T = T 0
0 = −i(S0

0 − I )

No analytical solution

Closed-form equation:

λπK (s) ≡ |A0
0(D→ππ)(s)|

|A0
0(D→KK)(s)| = func(

∫
η(z), δ1(z), δ2(z), λπK (z))

Gives an analytical solution only in the case of small phases
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Solving 2-channel dispersion relations

(
ReAπ(s)
ReAK (s)

)
=

1

π
PV

∫ ∞

sthr

ds ′
(ReT )−1(ImT )(s ′)

s ′ − s

(
ReAπ(s ′)
ReAK (s ′)

)

Two ’fundamental’ solutions

Ω(1)(s) =

(
Ωπ1(s)
ΩK1(s)

)
, Ω(2)(s) =

(
Ωπ2(s)
ΩK2(s)

)
for which

detΩ ≡ det
(
Ω(1)|Ω(2)

) s→∞−−−→ 1
sn
, n = δ1(∞)+δ2(∞)

π

The detΩ(s) always has an explicit analytical solution

In our case n = 2 and the fundamental solutions go as 1
s

The physical solution is unique:(
ReAπ(s)
ReAK (s)

)
= Ω(s) ·

(
P1(s)
P2(s)

)
Eleftheria Solomonidi CPV in D
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Numerical solution of 2-channel case

(
ReAπ(s)
ReAK (s)

)
=

s − s0
π

PV

∫ ∞

sthr

ds ′
(ReT )−1(ImT )(s ′)

(s ′ − s)(s ′ − s0)

(
ReAπ(s ′)
ReAK (s ′)

)
+

(
ReAπ

0 (s0)
ReAK

0 (s0)

)
We discretise following the method from [Moussallam et al. hep-ph/9909292]

To pick the fundamental solutions, we
check they behave as expected at infinity

make sure the numerical determinant behaves as the (known) analytical

determinant
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Summary of our method

Factor out weak phases

Flavour basis to isospin

Isospin blocks:

I=0 with 2 channels: ππ and KK
I=1 with KK elastic rescattering
I=2 with ππ elastic rescattering

Isospin amplitudes treated with dispersion relations calculated
numerically

Physical input: unitarity (for integrand), large NC limit (for
polynomial ambiguity/subtraction point)
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Data deployed: phase-shifts & inelasticities of I=0

Use inelasticity and phase-shift parameterisations [Pelaez et al.,

1907.13162],[Pelaez et al., 2010.11222]

Data: nuclear experiments from the 70’-80’s

Analytical parameterisation in partial waves, encompassing effect
of known resonances

Respect dispersion relations up to some energy, within
uncertainties

Parameterisations available up to energies ∼ mD - extrapolate
for higher & vary relevant parameters for uncertainties
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The weak part & short-distance contributions

Heff =
GF√
2

[
Σ2

i=1zi (µ)
(
λdQ

d
i (µ) + λsQ

s
i (µ)

)
− λbΣ

6
i=3vi (µ)Qi (µ) + C8g (µ)Q8g (µ)

]
λq = V ∗

cqVuq , q = d , s, b

|λd | ≈ |λs | = O(λ), usually Reλd = −Reλs

Qd
1 = (d̄c)V−A(ūd)V−A

Qd
2 = (d̄jci )V−A(ūidj)V−A

Qs
1 = (s̄c)V−A(ūs)V−A

Qs
2 = (s̄jci )V−A(ūi sj)V−A

Q3 = (ūc)V−AΣq(q̄q)V−A

Q4 = (ūj ci )V−AΣq(q̄i qj )V−A

Q5 = (ūc)V−AΣq(q̄q)V+A

Q6 = (ūj ci )V−AΣq(q̄i qj )V+A

Q8g = −
gs

8π2
mc ūσµν (1 + γ5)G

µν c

µ z1 z2 v3 v4 v5 v6

1.3 GeV 1.21 −0.41 0.02 −0.06 0.02 −0.06
2 GeV 1.15 −0.31 0.01 −0.04 0.01 −0.03
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Data deployed: isospins 1 and 2

For I=1 and 2 we can deploy Br’s of
A(D+ → π+π0) ∼ AI=2,A(D

+ → K+K 0) ∼ AI=1, isospin-pure
channels
Extract Omnes factors’ magnitudes from those

Phases: there are available data
for I=2 ππ, but not well behaved

No data for I=1 KK

Not elastic channels

It is exact to assume Omnes factors’ magnitudes from the
charged D channels
It is not exact to extract the phases, so we leave them free
Eleftheria Solomonidi CPV in D

Concepts implemented in our
approach 20 / 31
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Omnes factors

For the isospin=0 channels we calculate numerically the Omnes
matrix at s = m2

D :

ΩI=0 =

(
0.58e1.8i 0.64e−1.7i

0.58e−1.4i 0.61e−2.3i

)
(In data: inelasticity taken mainly from ππ rescattering - solution I from Pelaez et al. ’19 )

Compare to Watson’s theorem prediction: argA(ππ → ππ) = 7rad , argA(KK → KK) = −1.7rad

The physical solution is(
A(D → ππ)
A(D → KK )

)
= ΩI=0 ·

(
Afactorisation(D → ππ)
Afactorisation(D → KK )

)
(Same for B instead of A)

This way argA(D → ππ) = 1.6, argA(D → KK ) = −1.1,

argB(D → ππ) = −1.3, argB(D → KK ) = 1.7rad

Eleftheria Solomonidi CPV in D Results 22 / 31
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Flavour amplitudes breakdown

Af︸︷︷︸
flavour-specific decay amplitudes

= Uf︸︷︷︸
isospin to flavour matrix

AI︸︷︷︸
isospin-specific decay amplitudes

AI = ΩIA fac
I

AI = U−1
f A fac

f

These give

A (D0 → π
+
π
−) ≈ λd fπFDπ(m2

π)(m2
D − m2

π)︸ ︷︷ ︸
factorised hadronic matrix element (D → ππ)fac

(
|ΩI=2|e

iδ2π (
1

3
C1 −

1

3
C2) + Ω11(

2

3
C1 +

1

3
C2)

)

+ λs

factorised hadronic matrix element (D → KK)fac︷ ︸︸ ︷
fKFDK (m2

K )(m2
D − m2

K ) 1
3
Ω12C1 + #(C4, C6)︸ ︷︷ ︸

penguin operators

The contribution of penguin operator insertions to the magnitude of
the amplitudes can be ignored
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CPV sources
The main term in the CP asymmetry is (for D0 → π+π−)

aCP ∼ J ∗ (D → KK)fac (D → ππ)fac
{
−

curr.-curr. operators︷ ︸︸ ︷
(2C2

1 + C1C2) ω1︸ ︷︷ ︸
I = 0 vs I = 0 interference

+

curr.-curr. operators︷ ︸︸ ︷
(C2

1 − C1C2) |ΩI=2|(r12 sin δ
I=2
ππ − i12 cos δI=2

ππ )︸ ︷︷ ︸
I = 2 vs I = 0 interference

}

∼ J ∗ (D → KK)fac (D → ππ)fac
{
−2.4ω1 + 2.0|ΩI=2|(r12 sin δ2π − i12 cos δ2π)

}
where ω1 = Im(Ω11Ω

∗
12)(of I=0), J = Im(λdλ

∗
s ) ∼ Jarlskog

Note: in D → ππ main contribution from I = 2, I = 0 interference;
in D → KK from I = 0, I = 0 interference
The interference with the short-distance penguins (suppressed by
GIM) is

J ∗ (D → KK)fac (D → ππ)fac
{
0.13ω1 + 0.25|ΩI=2|...

}
+ J ∗ (D → ππ)2fac0.13|ΩI=2|...

much smaller than the tree-tree interference
Eleftheria Solomonidi CPV in D Results 24 / 31



Comparison to the K → ππ CPV problem

A (K 0 → π+π−) =
1√
2
A2 + A0

Follow the same procedure as in the D decays [Gisbert, Pich ’17]
ππ rescattering only elastic
⇒ argA(I = 0) = argB(I = 0) = argA(ππ → ππ)
I=2, I=0 different strong phases → ϵ′

ϵ

Interference between I=2-tree and I=0-penguin only:

A (K 0 → π+π−) =
1√
2
λu|Ω2|e iδ2T2+λu|Ω0|e iδ0T0+λt |Ω0|e iδ0P0

aCP ∼ Im(λ∗
uλt) sin (δ2 − δ0)

Eleftheria Solomonidi CPV in D Results 25 / 31



Branching fraction estimation

We adjust δππI=2, δ
KK
I=1
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Branching fraction estimation

We find:

Brtheo
Brexp

Decay channel
Our method

(preliminary)
Naive factorisation

Watson’s theorem,

no DRs

Correct phases,

no DRs

D0 → π+π− 1.1 1.7 0.63 1.0
D0 → π0π0 1.1 0.1 2.1 0.8
D0 → K+K− 1.1 0.9 0.070 0.7

D0 → K 0K 0 1.2
0

(1/NC -suppressed)
12 0.7

(
Br(D0→K+K−)
Br(D0→π+π−)

)
theo

=

(
Br(D0→K+K−)
Br(D0→π+π−)

)
exp

≈ 2.8

Old D → ππ, KK puzzle seems to be solved!
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CP asymmetries

∆Adir ,exp
CP = (−1.57± 0.29) · 10−3 [LHCb 2019]

ACP(D
0 → K+K−) = (6.8± 5.4(stat)± 1.6(syst)) · 10−4 [LHCb 2022]

We predict ∆Adir ,theo
CP ≤ O(10−4)!! (preliminary)

and adirCP(D
0 → π+π−) ≈ 3 · 10−4, adirCP(D

0 → K+K−) ≈ −1 · 10−4 with no prior

assumption about U-spin

Also predict adirCP(D
0 → π0π0) = O(10−4)

Recall: adirCP ≈ 2 rCKM︸︷︷︸
∼ 6 · 10−4

|B(f )|
|A(f )|︸ ︷︷ ︸

needs be O(1)

· sin arg
A(f )

B(f )︸ ︷︷ ︸
needs be close to 1

The short-distance GIM-suppressed diagrams are not the only
generator of CP-odd amplitudes
Yet we do not find a sufficient enough enhancement of B ’s, or
very large phase-shift differences between A and B to
compensate
Eleftheria Solomonidi CPV in D Results 28 / 31



Caveats & points to improve

Something big missing in I = 2?
Less likely: no established particle of I=2 as per PDG

Third channel in I = 0?

Yes: 4π is known, but its effect on 2π, 2K difficult to estimate
No available data over energy
Future work!

SM calculation - ”strong” statement, needs to be scrutinised

If everything fails, it’s time for NP! (See talk by T. Höhne)
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Summary

SM approach deploying
1 S-matrix unitarity, scattering amplitude analyticity, isospin

symmetry and factorisation
2 as much data as possible (rescattering, form factors and decay

constants, Br’s of D+ decays)

We succeed in calculating the branching fractions in reasonable
agreement with experiment, from scratch

We still estimate the CP asymmetry an order of magnitude
too small compared to the experimental value!

The SM discussion is still open, but seems difficult to
accommodate the current exp. value in our SM calculation...
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Thank you very much!
Stay tuned!

(Preprint coming soon!)
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Isospin-2 and -1 fixing

A (D+ → π+π0) =
3

2
√
2
Aπ
I2

A (D+ → K+K 0) = AK
I1

We fix |Aπ
I2|, |AK

I1| from the Br’s and use them in e.g.

A (D0 → π+π−) = − 1

2
√
3
Aπ
I2 +

1√
6
Aπ
I0

If I=2 elastic then Aπ
I2 = ΩI=2Afac,I=2

If inelastic Aπ
I2 = ΩI=2Afac,I=2 + (mixing) but we use directly

Aπ
I2 = |Aπ

I2|exp{iδππI=2}, phase left free
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Comments on 2203.04056

αππ, αKK referred to as ”tree level processes” with no phases BUT extracted from the branching fraction:

Eq. (8) in the elastic limit would give:

A
D0→KK

= e2iδKK V∗
csVusaKK

A
D0→ππ

= e2iδππV∗
cdVud aππ

⇒ δ(D0 → KK) = 2δKK , δ(D0 → ππ) = 2δππ !
Compare to ours:

A
D0→KK

= Ω22V
∗
csVusaKK + Ω21V

∗
cdVud aππ

A
D0→ππ

= Ω11V
∗
cdVud aππΩ12V

∗
csVusaKK

The full A ’s coincide with the transition amplitude from the branching fraction
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Numerical solution of 2-channel case

(
ReAπ(s)
ReAK (s)

)
=

s − s0
π

PV

∫ ∞

sthr

ds ′
(ReT )−1(ImT )(s ′)

(s ′ − s)(s ′ − s0)

(
ReAπ(s ′)
ReAK (s ′)

)
+

(
ReAπ

0 (s0)
ReAK

0 (s0)

)

We discretise following the method from [Moussallam et al. hep-ph/9909292] into

(
ReAπ(si )
ReAK (si )

)
=

si − s0

π

∑
j

ŵj
(ReT )−1(ImT )(sj )

(sj − si )(sj − s0)

(
ReAπ(sj )
ReAK (sj )

)
+

(
ReAπ

0 (s0)
ReAK

0 (s0)

)

This creates an invertible matrix which gives a (discrete) solution

Subtleties taken care of as in [Moussallam et al. hep-ph/9909292]

To pick the fundamental solutions, we fix the vector at an unphysical point s < 0 and

check they behave as 1
s
for large s

make sure the numerical determinant behaves as the (known) analytical

determinant
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CPV in mesons

ACP(f ) =
Γ(D0 → f )− Γ(D0 → f )

Γ(D0 → f ) + Γ(D0 → f )

≈ A(D0 → f )− A(D0 → f )

A(D0 → f ) + A(D0 → f )
+

< tf >

τD0

aindCP

AΓ = −aindCP = (−2.8± 2.8) · 10−4

For the decay D0 → π+π−: apply unitarity of the CKM matrix
A(D0 → π+π−) = λdAd + λbAb

→ adirCP ∼ |λd ||λb||Ad ||Ab| sin arg
V ∗
cdVud

V ∗
cbVub

· sin arg Ad

Ab
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Isospin decomposition

ππ states can have isospin=0,2. KK can have isospin=0,1.
A(π+π−)
A(π0π0)
A(K+K−)

A(K 0K
0
)

 =


− 1

2
√
3

1√
6

0 0
1√
3

1√
6

0 0

0 0 1/2 1/2
0 0 −1/2 1/2



A2
π

A0
π

A1
K

A0
K
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CPV in I=0

(
Aπ

AK

)
=

(
Ω11 Ω12

Ω21 Ω22

)(
ReλdT

π + ...
ReλsT

K + ...

)
(
Bπ

BK

)
=

(
Ω11 Ω12

Ω21 Ω22

)(
ImλdT

π +
∑

i ImλdiP
π
i

ImλsT
K +

∑
i ImλdiP

K
i

)
Can consider either Imλd = 0 or Imλs = 0, not both simultaneously
⇒ In adirCP there always exists a term ∼ T πTK , both for ππ and for
KK
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Large NC limit & effective operators

Tfac(D
0 → π+π−) = λdC1

GF√
2
FDπ
0 (m2

π)fπ · (m2
D −m2

π)

Pfac(D
0 → π+π−) =

λd(C4 − 2C6
M2

π

(mu+md )(mc+md )
)GF√

2
FDπ
0 (m2

π)fπ · (m2
D −m2

π)

Q1(i) = (dic)V−A(udi)V−A,Q2(i) = (didi)V−A(uc)V−A,
Q5,3 = (uc)V−A

∑
q(qq)V±A,

Q4 =
∑

q(uq)V−A(qc)V−A,Q6 = −2
∑

q(uq)S+P(qc)S−P

C1 = 1.15,C2 = −0.31,C3 = 0.01,C4 = −0.04,C5 = 0.01,C6 =
−0.03

λd = V ∗
cdVud ≈ 0.22

mc(2GeV ) = 1.045GeV

Compare mD = 1865 MeV to ΛχPT ≈ mρ = 775 MeV

Eleftheria Solomonidi CPV in D BACKUP 8 / 8


	Introduction
	Concepts implemented in our approach
	Results 
	Appendix
	BACKUP


