CP violation in D decays to two pseudoscalars: A SM-based calculation

Eleftheri

suide ?

In collaboration with Antonio Pich \& Luiz Vale Silva

February 1, 2023
TU Dortmund

Contents

(2) Concepts implemented in our approach

(3) Results

A new Flavour Physics 'anomaly' or an incomplete theory prediction?

- Flavour Physics beyond B-anomalies
- Charm Physics is growing (LHCb, Belle II, BESIII)

Rare decays

CP violation in decays

- CPV in hadronic D modes: only discovery of CPV in the charm sector
- Plus new result of $K K$ has puzzling implications

CP violation in D decays: just a SM system or gateway to New Physics?

$$
\begin{array}{r}
\Delta A_{C P}^{\exp } \equiv A_{C P}\left(D^{0} \rightarrow K^{+} K^{-}\right)-A_{C P}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)=[-1.54 \pm 0.29] \cdot 10^{-3} \\
\Delta A_{C P}^{\text {dir exp }}=[-1.57 \pm 0.29] \cdot 10^{-3}[\text { LHCb 2019 }]
\end{array}
$$

NEW!!! $A_{C P}\left(D^{0} \rightarrow K^{+} K^{-}\right)=[6.8 \pm 5.4($ stat $) \pm 1.6($ syst $)] \cdot 10^{-4} \quad[$ LHCb 2022]

$$
A_{C P}^{d i r}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)=[23.2 \pm 6.1] \cdot 10^{-4}
$$

- Is the SM theoretical prediction in agreement?
- Weak sector (CKM
parameters) already probed by kaons, B mesons

CPV in D: the strong sector

- Does a beyond-naive estimation of hadronic effects matter?

$$
\begin{aligned}
& \mathscr{A}=\left|A_{1}\right| e^{i \delta_{1}+i \phi_{1}}+\left|A_{2}\right| e^{i \delta_{2}+i \phi_{2}} \\
& \overline{\mathscr{A}}=\left|A_{1}\right| e^{i \delta_{1}-i \phi_{1}}+\left|A_{2}\right| e^{i \delta_{2}-i \phi_{2}} \\
& a_{C P}^{d i r} \sim\left|A_{1}\right|\left|A_{2}\right| \sin \left(\delta_{1}-\delta_{2}\right) \sin \left(\phi_{1}-\phi_{2}\right)
\end{aligned}
$$

Need different weak phases AND different strong phases

$$
\begin{aligned}
& \mathscr{A}\left(D^{0} \rightarrow f\right)=A(f)+\operatorname{ir}_{C K M} B(f) \\
& \mathscr{A}\left(\overline{D^{0}} \rightarrow f\right)=A(f)-\operatorname{ir}_{C K M} B(f) \\
& a_{C P}^{\operatorname{dir}} \approx 2 r_{C K M} \frac{|B(f)|}{|A(f)|} \cdot \sin \arg \frac{A(f)}{B(f)} \\
& \left(r_{C K M}=\operatorname{Im} \frac{V_{c o}^{*} V_{u b}}{V_{\text {*d }}^{*} V_{u d}},\right. \\
& \text { rephasing-invariant })
\end{aligned}
$$

Non-perturbative QCD methods

- In K decays: Chiral Perturbation Theory
- In B decays: HQET
- $\Lambda_{\chi P T} \approx m_{\rho}<m_{D}=1865 \mathrm{MeV}, \frac{\Lambda_{Q C D}}{m_{C}}=\mathscr{O}(1)$
\rightarrow neither approach is strictly valid in charm!
- Approaches in charm use symmetries to combine observables [Müller, Nierste, Schacht '15] or set bounds for the strong phases [Khodiamirian, Petrov '17]

Contents

(1) Introduction

(2) Concepts implemented in our approach

(3) Results

A way to look at the problem: rescattering

- Strong process, blind to the weak phase
- Isospin $(u \leftrightarrow d)$ is a good symmetry of strong interactions
- In $I=0$, two channels:

$$
\begin{aligned}
& S_{\text {strong }}= \\
& \left(\begin{array}{ll}
\pi \pi \rightarrow \pi \pi & \pi \pi \rightarrow K K \\
K K \rightarrow \pi \pi & K K \rightarrow K K
\end{array}\right)
\end{aligned}
$$

Rescattering \& what we learn about strong phases

- S matrix is unitary, as well as strong sub-matrix
- For $I=0$, S-wave:

$$
\binom{A_{0}^{0}(D \rightarrow \pi \pi)}{A_{0}^{0}(D \rightarrow K K)}=\underbrace{\left(\begin{array}{cc}
\eta e^{i 2 \delta_{1}} & i \sqrt{1-\eta^{2}} e^{i\left(\delta_{1}+\delta_{2}\right)} \\
i \sqrt{1-\eta^{2} e^{i\left(\delta_{2}\right.}}
\end{array}\right)}_{S_{\text {strong }}} \cdot\left(\begin{array}{c}
\left.A_{1}^{0 *}+\delta_{2}\right) \\
A_{0}^{0 *}(D \rightarrow \pi \pi) \\
\hline K K)
\end{array}\right)
$$

- The phases are related to the rescattering phases which are known from data/other experiments
- Watson's theorem (elastic rescattering limit): $\arg A_{0}^{0}(D \rightarrow \pi \pi)=\delta_{1} \equiv \arg A(\pi \pi \rightarrow \pi \pi) \bmod \pi$
- With inelasticities:
$\arg A_{0}^{0}(D \rightarrow \pi \pi)=\delta_{1}+\arccos \sqrt{\frac{(1+\eta)^{2}-\left(\frac{\left|A_{0}^{0}(D \rightarrow K \kappa)\right|}{\left|A_{0}^{0}(D \rightarrow \pi \pi)\right|}\right)^{2}\left(1-\eta^{2}\right)}{4 \eta}}$
depends on the ratio $\lambda_{\pi K}=\frac{\left|A_{0}^{0}(D \rightarrow \pi \pi)\right|}{\left|A_{0}^{0}(D \rightarrow K K)\right|}$

What about magnitudes?

- Rescattering also affects the magnitudes of amplitudes, apart from the phases
- An estimate for magnitudes: factorisation/large number-of-colors (N_{C})

CKM \times Wilson coefficient \times factorisation

- Does not take rescattering into account
- Decay constant and form factor come from data and/or lattice $<\pi^{-}\left|\left(\bar{d} \gamma_{\mu} c\right)\right| D^{0}>=\frac{m_{D}^{2}-m_{\pi}^{2}}{m_{\pi}^{2}} q_{\mu} f_{0}^{D \pi}\left(m_{\pi}^{2}\right)+($ vanishing contr. $)$

Basic property of scattering amplitudes: analyticity

- Fundamental, model-independent property related to causality
- Cauchy's theorem: $A(s)=\frac{1}{2 \pi i} \oint_{C} d s^{\prime} \frac{A\left(s^{\prime}\right)}{s^{\prime}-s}$ leads to

$$
\operatorname{Re} A(s)=\frac{1}{\pi} P V \int_{s_{t h r}}^{\infty} d s^{\prime} \frac{\operatorname{Im} A\left(s^{\prime}\right)}{s^{\prime}-s}
$$

(Dispersion relation)

- Unitarity of S-matrix \& dispersion relation:

$$
\underbrace{\operatorname{Re} A(s)}_{\text {Re at a point }}=\frac{1}{\pi} \underbrace{P V \int_{s_{t h r}}^{\infty} d s^{\prime} \frac{\tan \delta\left(s^{\prime}\right)}{s^{\prime}-s} \operatorname{Re} A\left(s^{\prime}\right)}_{\text {integral of Re along the physical region }}
$$

Analyticity \& what we learn about magnitudes

- Integral equation, studied by Muskhelishvili-Omnes
- One subtraction: needs one piece of physical information
- Single channel case (\& one subtraction at s_{0}), physical solution:

$$
\left|A_{l}(s)\right|=A_{l}\left(s_{0}\right) \underbrace{\exp \left\{\frac{s-s_{0}}{\pi} P V \int_{4 M_{\pi}^{2}}^{\infty} d z \frac{\delta_{l}(z)}{\left(z-s_{0}\right)(z-s)}\right\}}_{\text {Omnes factor } \Omega}
$$

We need more than just large N_{C} !

$\left|A_{l}\left(s=m_{D}^{2}\right)\right|=\left(\right.$ large N_{C} result $) \times($ Omnes factor $)$,

- Behaviour at large s: $\Omega(s) \sim \frac{1}{s^{n}}, n=\frac{\delta_{1}(\infty)}{\pi}$

Dispersion relations for multiple channels

- More channels: Equally more solutions.
- The equivalent of the dispersion relation in the 2-channel case:

$$
\begin{align*}
& \binom{\operatorname{Re} A^{\pi}(s)}{\operatorname{Re} A^{K}(s)}=\frac{1}{\pi} P V \int_{s_{\text {thr }}}^{\infty} d s^{\prime} \frac{(\operatorname{Re} T)^{-1}(I m T)\left(s^{\prime}\right)}{s^{\prime}-s}\binom{\operatorname{Re} A^{\pi}\left(s^{\prime}\right)}{\operatorname{Re} A^{K}\left(s^{\prime}\right)} \tag{1}\\
& T=T_{0}^{0}=-i\left(S_{0}^{0}-I\right)
\end{align*}
$$

- No analytical solution
- Closed-form equation:

$$
\lambda_{\pi K}(s) \equiv \frac{\left|A_{0}^{0}(D \rightarrow \pi \pi)(s)\right|}{\left|A_{0}^{0}(D \rightarrow K K)(s)\right|}=\text { func }\left(\int \eta(z), \delta_{1}(z), \delta_{2}(z), \lambda_{\pi K}(z)\right)
$$

- Gives an analytical solution only in the case of small phases

Solving 2-channel dispersion relations

$$
\binom{\operatorname{Re} A^{\pi}(s)}{\operatorname{Re} A^{K}(s)}=\frac{1}{\pi} P V \int_{s_{t h r}}^{\infty} d s^{\prime} \frac{(\operatorname{Re} T)^{-1}(\operatorname{Im} T)\left(s^{\prime}\right)}{s^{\prime}-s}\binom{\operatorname{Re} A^{\pi}\left(s^{\prime}\right)}{\operatorname{Re} A^{K}\left(s^{\prime}\right)}
$$

- Two 'fundamental' solutions

$$
\begin{aligned}
& \Omega^{(1)}(s)=\binom{\Omega_{\pi 1}(s)}{\Omega_{K 1}(s)}, \Omega^{(2)}(s)=\binom{\Omega_{\pi 2}(s)}{\Omega_{K 2}(s)} \text { for which } \\
& \operatorname{det} \Omega \equiv \operatorname{det}\left(\Omega^{(1)} \mid \Omega^{(2)}\right) \xrightarrow{s \rightarrow \infty} \frac{1}{s^{n}}, n=\frac{\delta_{1}(\infty)+\delta_{2}(\infty)}{\pi}
\end{aligned}
$$

- The $\operatorname{det} \Omega(s)$ always has an explicit analytical solution
- In our case $n=2$ and the fundamental solutions go as $\frac{1}{s}$
- The physical solution is unique:

$$
\binom{\operatorname{Re} A^{\pi}(s)}{\operatorname{Re} A^{K}(s)}=\Omega(s) \cdot\binom{P_{1}(s)}{P_{2}(s)}
$$

Numerical solution of 2-channel case

$$
\binom{\operatorname{Re} A^{\pi}(s)}{\operatorname{Re} A^{K}(s)}=\frac{s-s_{0}}{\pi} P V \int_{s_{t h r}}^{\infty} d s^{\prime} \frac{(\operatorname{Re} T)^{-1}(I m T)\left(s^{\prime}\right)}{\left(s^{\prime}-s\right)\left(s^{\prime}-s_{0}\right)}\binom{\operatorname{Re} A^{\pi}\left(s^{\prime}\right)}{\operatorname{Re} A^{K}\left(s^{\prime}\right)}+\binom{\operatorname{Re} A_{0}^{\pi}\left(s_{0}\right)}{\operatorname{Re} A_{0}^{K}\left(s_{0}\right)}
$$

- We discretise following the method from [Moussallam et al. hep-ph/9909292]
- To pick the fundamental solutions, we
- check they behave as expected at infinity
- make sure the numerical determinant behaves as the (known) analytical determinant

Rescattering of light pseudoscalars with $\mathrm{I}=0$

Summary of our method

- Factor out weak phases
- Flavour basis to isospin
- Isospin blocks:
- I=0 with 2 channels: $\pi \pi$ and $K K$
- $\mathrm{I}=1$ with $K K$ elastic rescattering
- $\mathrm{I}=2$ with $\pi \pi$ elastic rescattering
- Isospin amplitudes treated with dispersion relations calculated numerically
- Physical input: unitarity (for integrand), large N_{C} limit (for polynomial ambiguity/subtraction point)

Data deployed: phase-shifts \& inelasticities of $\mathrm{I}=0$

- Use inelasticity and phase-shift parameterisations [Pelaez et al, 1907.13162],[Pelaez et al., 2010.11222]
- Data: nuclear experiments from the 70'-80's
- Analytical parameterisation in partial waves, encompassing effect of known resonances
- Respect dispersion relations up to some energy, within uncertainties
- Parameterisations available up to energies $\sim m_{D}$ - extrapolate for higher \& vary relevant parameters for uncertainties

The weak part \& short-distance contributions

$$
\begin{aligned}
& \mathscr{H}_{\mathrm{eff}}=\frac{G_{F}}{\sqrt{2}}\left[\sum_{i=1}^{2} z_{i}(\mu)\left(\lambda_{d} Q_{i}^{d}(\mu)+\lambda_{s} Q_{i}^{s}(\mu)\right)-\lambda_{b} \Sigma_{i=3}^{6} v_{i}(\mu) Q_{i}(\mu)+C_{8 g}(\mu) Q_{8 g}(\mu)\right] \\
& \lambda_{q}=V_{c q}^{*} V_{u q}, \quad q=d, s, b \\
& \left|\lambda_{d}\right| \approx\left|\lambda_{s}\right|=\mathscr{O}(\lambda) \text {, usually } \operatorname{Re} \lambda_{d}=-\operatorname{Re} \lambda_{s} \\
& Q_{1}^{d}=(\bar{d} c)_{V-A}(\bar{u} d)_{V-A} \\
& Q_{2}^{d}=\left(\bar{d}_{j} c_{i}\right)_{V-A}\left(\bar{u}_{i} d_{j}\right)_{V-A} \\
& Q_{3}=(\bar{u} c)_{V-A} \Sigma_{q}(\bar{q} q)_{V-A} \\
& Q_{4}=\left(\bar{u}_{j} c_{i}\right)_{V-A} \Sigma_{q}\left(\bar{q}_{i} q_{j}\right)_{V-A} \\
& Q_{5}=(\bar{u} c)_{V-A} \Sigma_{q}(\bar{q} q)_{V+A} \\
& Q_{1}^{s}=(\bar{s} c)_{V-A}(\bar{u} s)_{V-A} \quad Q_{6}=\left(\bar{u}_{j} c_{i}\right)_{V-A} \Sigma_{q}\left(\overline{(}_{i} q_{j}\right)_{V+A} \\
& Q_{2}^{s}=\left(\bar{s}_{j} c_{i}\right)_{V-A}\left(\bar{u}_{i} s_{j}\right)_{V-A} \quad Q_{8 g}=-\frac{g_{s}}{8 \pi^{2}} m_{c} \bar{u} \sigma_{\mu \nu}\left(1+\gamma_{5}\right) G^{\mu \nu} c
\end{aligned}
$$

Data deployed: isospins 1 and 2

- For $\mathrm{I}=1$ and 2 we can deploy Br 's of
$A\left(D^{+} \rightarrow \pi^{+} \pi^{0}\right) \sim A_{I=2}, A\left(D^{+} \rightarrow K^{+} \overline{K^{0}}\right) \sim A_{I=1}$, isospin-pure channels
- Extract Omnes factors' magnitudes from those

Phases: there are available data for $\mathrm{I}=2 \pi \pi$, but not well behaved

No data for $\mathrm{I}=1 \mathrm{KK}$

Not elastic channels

- It is exact to assume Omnes factors' magnitudes from the charged D channels
- It is not exact to extract the phases, so we leave them free

Contents

(1) Introduction

(2) Concepts implemented in our approach

(3) Results

Omnes factors

For the isospin $=0$ channels we calculate numerically the Omnes matrix at $s=m_{D}^{2}$:

$$
\Omega_{I=0}=\left(\begin{array}{cc}
0.58 e^{1.8 i} & 0.64 e^{-1.7 i} \\
0.58 e^{-1.4 i} & 0.61 e^{-2.3 i}
\end{array}\right)
$$

(In data: inelasticity taken mainly from $\pi \pi$ rescattering - solution | from Pelaez et al. '19)
Compare to Watson's theorem prediction: $\arg A(\pi \pi \rightarrow \pi \pi)=7 \mathrm{rad}, \arg A(K K \rightarrow K K)=-1.7 \mathrm{rad}$
The physical solution is

$$
\binom{\mathbf{A}(D \rightarrow \pi \pi)}{\mathbf{A}(D \rightarrow K K)}=\Omega_{l=0} \cdot\binom{\mathbf{A}_{\text {factorisation }}(D \rightarrow \pi \pi)}{\mathbf{A}_{\text {factorisation }}(D \rightarrow K K)}
$$

(Same for \mathbf{B} instead of \mathbf{A})

$$
\begin{gathered}
\text { This way } \arg \mathbf{A}(D \rightarrow \pi \pi)=1.6, \arg \mathbf{A}(D \rightarrow K K)=-1.1, \\
\quad \arg \mathbf{B}(D \rightarrow \pi \pi)=-1.3, \arg \mathbf{B}(D \rightarrow K K)=1.7 \operatorname{rad}
\end{gathered}
$$

Flavour amplitudes breakdown

- $\mathscr{A}_{\mathscr{g}}=U_{f}^{-1} \mathscr{A}_{f}^{\text {fac }}$

These give

$$
\mathscr{A}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right) \approx \lambda_{d} \underbrace{f_{\text {hadronic matrix }} f_{D \pi}\left(m_{\pi}^{2}\right)\left(m_{D}^{2}-m_{\pi}^{2}\right)}_{\text {factorised }} \quad\left(\left|\Omega_{l=2}\right| e^{i \delta_{22}}\left(\frac{1}{3} C_{1}-\frac{1}{3} C_{2}\right)+\Omega_{11}\left(\frac{2}{3} C_{1}+\frac{1}{3} C_{2}\right)\right)
$$

$$
+\lambda_{s} \overbrace{f_{K} F_{D K}\left(m_{K}^{2}\right)\left(m_{D}^{2}-m_{K}^{2}\right)}^{\text {factorised hadronic matrix element }(D \rightarrow K K)_{f a c}}
$$

The contribution of penguin operator insertions to the magnitude of the amplitudes can be ignored

CPV sources

The main term in the CP asymmetry is (for $D^{0} \rightarrow \pi^{+} \pi^{-}$)

$$
a_{C P} \sim J *(D \rightarrow K K)_{f a c}(D \rightarrow \pi \pi)_{f a c}\{\underbrace{-\overbrace{\left(2 C_{1}^{2}+C_{1} C_{2}\right)}^{\text {curr.-curr. operators }} \omega_{1}}_{I=0 \text { vs } I=0 \text { interference }}+\underbrace{\overbrace{\left(C_{1}^{2}-C_{1} C_{2}\right)}^{\text {curr.-curr. operators }}\left|\Omega_{I=2}\right|\left(r_{12} \sin \delta_{\pi \pi}^{I=2}-i_{12} \cos \delta_{\pi \pi}^{I=2}\right)}_{I=2 \text { vs } I=0 \text { interference }}\}
$$

$$
\sim J *(D \rightarrow K K)_{f a c}(D \rightarrow \pi \pi)_{f a c}\left\{-2.4 \omega_{1}+2.0\left|\Omega_{I=2}\right|\left(r_{12} \sin \delta_{2 \pi}-i_{12} \cos \delta_{2 \pi}\right)\right\}
$$

where $\omega_{1}=\operatorname{Im}\left(\Omega_{11} \Omega_{12}^{*}\right)($ of $\mathrm{I}=0), J=\operatorname{Im}\left(\lambda_{d} \lambda_{s}^{*}\right) \sim$ Jarlskog
Note: in $D \rightarrow \pi \pi$ main contribution from $I=2, I=0$ interference; in $D \rightarrow K K$ from $I=0, I=0$ interference
The interference with the short-distance penguins (suppressed by GIM) is

$$
J *(D \rightarrow K K)_{f a c}(D \rightarrow \pi \pi)_{f a c}\left\{0.13 \omega_{1}+0.25\left|\Omega_{l=2}\right| \ldots\right\}+J *(D \rightarrow \pi \pi)_{f a c}^{2} 0.13\left|\Omega_{l=2}\right| \ldots
$$

Comparison to the $K \rightarrow \pi \pi$ CPV problem

$$
\mathscr{A}\left(K^{0} \rightarrow \pi^{+} \pi^{-}\right)=\frac{1}{\sqrt{2}} A_{2}+A_{0}
$$

- Follow the same procedure as in the D decays [Gisbert, Pich '17] $\pi \pi$ rescattering only elastic

$$
\Rightarrow \arg A(I=0)=\arg B(I=0)=\arg A(\pi \pi \rightarrow \pi \pi)
$$

$\mathrm{I}=2, \mathrm{I}=0$ different strong phases $\rightarrow \frac{\epsilon^{\prime}}{\epsilon}$
Interference between $\mathrm{I}=2$-tree and $\mathrm{I}=0$-penguin only:

$$
\begin{gathered}
\mathscr{A}\left(K^{0} \rightarrow \pi^{+} \pi^{-}\right)=\frac{1}{\sqrt{2}} \lambda_{u}\left|\Omega_{2}\right| e^{i \delta_{2}} T_{2}+\lambda_{u}\left|\Omega_{0}\right| e^{i \delta_{0}} T_{0}+\lambda_{t}\left|\Omega_{0}\right| e^{i \delta_{0}} P_{0} \\
a_{C P} \sim \operatorname{Im}\left(\lambda_{u}^{*} \lambda_{t}\right) \sin \left(\delta_{2}-\delta_{0}\right)
\end{gathered}
$$

Branching fraction estimation

We adjust $\delta_{I=2}^{\pi \pi}, \delta_{I=1}^{K K}$

> (Br-prediction)/(Br-exp)

Branching fraction estimation

We find:

$\frac{B r_{\text {treo }}}{B_{\text {rexp }}}$					
Decay channel	Our method (preliminary)	Naive factorisation	Watson's theorem, no DRs	Correct phases, no DRs	
$D^{0} \rightarrow \pi^{+} \pi^{-}$	1.1	1.7	0.63	1.0	
$D^{0} \rightarrow \pi^{0} \pi^{0}$	1.1	0.1	2.1	0.8	
$D^{0} \rightarrow K^{+} K^{-}$	1.1	0.9	0.070	0.7	
$D^{0} \rightarrow K^{0} \overline{K^{0}}$	1.2	0			
$\left(1 / N_{C}\right.$-suppressed)	12	0.7			

$$
\left(\frac{\operatorname{Br}\left(D^{0} \rightarrow K^{+} K^{-}\right)}{\operatorname{Br}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)}\right)_{\text {theo }}=\left(\frac{\operatorname{Br}\left(D^{0} \rightarrow K^{+} K^{-}\right)}{\operatorname{Br}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)}\right)_{\exp } \approx 2.8
$$

Old $D \rightarrow \pi \pi, K K$ puzzle seems to be solved!

CP asymmetries

$\Delta A_{C P}^{\text {dir, exp }}=(-1.57 \pm 0.29) \cdot 10^{-3}[$ LHCb 2019]
$A_{C P}\left(D^{0} \rightarrow K^{+} K^{-}\right)=(6.8 \pm 5.4($ stat $) \pm 1.6($ syst $)) \cdot 10^{-4}[$ LHCb 2022
We predict $\triangle A_{C P}^{\text {dir,theo }} \leq \mathscr{O}\left(10^{-4}\right)!$! (preliminary)
and $a_{C P}^{\operatorname{dir}}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right) \approx 3 \cdot 10^{-4}, a_{C P}^{\text {dir }}\left(D^{0} \rightarrow K^{+} K^{-}\right) \approx-1 \cdot 10^{-4}$ with no prior assumption about U-spin
Also predict $a_{C P}^{\text {dir }}\left(D^{0} \rightarrow \pi^{0} \pi^{0}\right)=\mathscr{O}\left(10^{-4}\right)$

$$
\text { Recall: } a_{C P}^{\text {dir }} \approx 2 \underbrace{r_{C K M}}_{\sim 6 \cdot 10^{-4}} \underbrace{\frac{|B(f)|}{|A(f)|}}_{\text {needs be } \mathscr{O}(1)} \cdot \underbrace{\sin \arg \frac{A(f)}{B(f)}}_{\text {needs be close to } 1}
$$

- The short-distance GIM-suppressed diagrams are not the only generator of CP-odd amplitudes
- Yet we do not find a sufficient enough enhancement of B 's, or very large phase-shift differences between A and B to compensate

Caveats \& points to improve

- Something big missing in $I=2$?

Less likely: no established particle of $\mathrm{I}=2$ as per PDG

- Third channel in $I=0$?
- Yes: 4π is known, but its effect on 2π, $2 K$ difficult to estimate
- No available data over energy
- Future work!
- SM calculation - "strong" statement, needs to be scrutinised
- If everything fails, it's time for NP! (See talk by T. Höhne)

Summary

- SM approach deploying
(1) S-matrix unitarity, scattering amplitude analyticity, isospin symmetry and factorisation
(2) as much data as possible (rescattering, form factors and decay constants, Br's of D^{+}decays)
- We succeed in calculating the branching fractions in reasonable agreement with experiment, from scratch
- We still estimate the CP asymmetry an order of magnitude too small compared to the experimental value!
- The SM discussion is still open, but seems difficult to accommodate the current exp. value in our SM calculation...

Thank you very much! Stay tuned! (Preprint coming soon!)

Contents

(4) BACKUP

Isospin-2 and -1 fixing

$$
\begin{gathered}
\mathscr{A}\left(D^{+} \rightarrow \pi^{+} \pi^{0}\right)=\frac{3}{2 \sqrt{2}} A_{12}^{\pi} \\
\mathscr{A}\left(D^{+} \rightarrow K^{+} \overline{K^{0}}\right)=A_{11}^{K}
\end{gathered}
$$

We fix $\left|A_{12}^{\pi}\right|,\left|A_{I 1}^{K}\right|$ from the Br's and use them in e.g.

$$
\mathscr{A}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)=-\frac{1}{2 \sqrt{3}} A_{12}^{\pi}+\frac{1}{\sqrt{6}} A_{10}^{\pi}
$$

If $\mathrm{I}=2$ elastic then $A_{12}^{\pi}=\Omega_{I=2} A_{f a c, l=2}$
If inelastic $A_{l 2}^{\pi}=\Omega_{l=2} A_{\text {fac }, l=2}+$ (mixing) but we use directly $A_{l 2}^{\pi}=\left|A_{l 2}^{\pi}\right| \exp \left\{i \delta_{l=2}^{\pi \pi}\right\}$, phase left free

Comments on 2203.04056

$$
\begin{align*}
\mathcal{A}_{D^{0} \rightarrow K K}= & \eta \mathrm{e}^{2 i \delta_{K K}} V_{c s}^{*} V_{u s} a_{K K} \\
& +i \sqrt{1-\eta^{2}} \mathrm{e}^{i\left(\delta_{\pi \pi}+\delta_{K K}\right)} V_{c d}^{*} V_{u d} a_{\pi \pi} \tag{8}\\
\mathcal{A}_{D^{0} \rightarrow \pi \pi}= & \eta \mathrm{e}^{2 i \delta_{\pi \pi}} V_{c d}^{*} V_{u d} a_{\pi \pi} \\
& +i \sqrt{1-\eta^{2}} \mathrm{e}^{i\left(\delta_{\pi \pi}+\delta_{K K}\right)} V_{c s}^{*} V_{u s} a_{K K}
\end{align*}
$$

$\alpha_{\pi \pi}, \alpha_{K K}$ referred to as "tree level processes" with no phases BUT extracted from the branching fraction:

$$
\begin{align*}
& \text { from the amplitudes given in Eq. (8). By taking into } \\
& \text { account that } \sqrt{1-\eta^{2}} \ll 1 \text { at the } D^{0} \text { mass, we have: } \\
& \Gamma_{\pi \pi} \approx \eta\left|V_{c d}^{*} V_{u d}\right|^{2} a_{\pi \pi}^{2} \text { and } \Gamma_{K K} \approx \eta\left|V_{c s}^{*} V_{u s}\right|^{2} a_{K K}^{2} \text {. (11) } \tag{11}
\end{align*}
$$

Eq. (8) in the elastic limit would give:

$$
\begin{aligned}
& \mathscr{A}_{D^{0} \rightarrow K K}=e^{2 i \delta_{K K}} V_{c s}^{*} V_{u s} a_{K K} \\
& \mathscr{A}_{D^{0} \rightarrow \pi \pi}=e^{2 i \delta_{\pi \pi}} V_{c d}^{*} V_{u d} a_{\pi \pi}
\end{aligned}
$$

$\Rightarrow \delta\left(D^{0} \rightarrow K K\right)=2 \delta_{K K}, \delta\left(D^{0} \rightarrow \pi \pi\right)=2 \delta_{\pi \pi}!$
Compare to ours:

$$
\begin{gathered}
\mathscr{A}_{D^{0} \rightarrow K K}=\Omega_{22} V_{c s}^{*} V_{u s} a_{K K}+\Omega_{21} V_{c d}^{*} V_{u d} a_{\pi \pi} \\
\mathscr{A}_{D^{0} \rightarrow \pi \pi}=\Omega_{11} V_{c d}^{*} V_{u d} a_{\pi \pi} \Omega_{12} V_{c s}^{*} V_{u s} a_{K K}
\end{gathered}
$$

The full \mathscr{A} 's coincide with the transition amplitude from the branching fraction

Numerical solution of 2-channel case

$$
\binom{\operatorname{Re} A^{\pi}(s)}{\operatorname{Re} A^{K}(s)}=\frac{s-s_{0}}{\pi} P V \int_{s_{t h r}}^{\infty} d s^{\prime} \frac{(\operatorname{Re} T)^{-1}(\operatorname{Im} T)\left(s^{\prime}\right)}{\left(s^{\prime}-s\right)\left(s^{\prime}-s_{0}\right)}\binom{\operatorname{Re} A^{\pi}\left(s^{\prime}\right)}{\operatorname{Re} A^{K}\left(s^{\prime}\right)}+\binom{\operatorname{Re} A_{0}^{\pi}\left(s_{0}\right)}{\operatorname{Re} A_{0}^{K}\left(s_{0}\right)}
$$

- We discretise following the method from [Moussallam et al. hep-ph/9909292] into

$$
\binom{\operatorname{Re} A^{\pi}\left(s_{i}\right)}{\operatorname{Re} A^{K}\left(s_{i}\right)}=\frac{s_{i}-s_{0}}{\pi} \sum_{j}{\hat{w_{j}}} \frac{(\operatorname{Re} T)^{-1}(I m T)\left(s_{j}\right)}{\left(s_{j}-s_{i}\right)\left(s_{j}-s_{0}\right)}\binom{\operatorname{Re} A^{\pi}\left(s_{j}\right)}{\operatorname{Re} A^{K}\left(s_{j}\right)}+\binom{\operatorname{Re} A_{0}^{\pi}\left(s_{0}\right)}{\operatorname{ReA} A_{0}^{K}\left(s_{0}\right)}
$$

- This creates an invertible matrix which gives a (discrete) solution
- Subtleties taken care of as in [Moussallam et al. hep-ph/9909292]
- To pick the fundamental solutions, we fix the vector at an unphysical point $s<0$ and
- check they behave as $\frac{1}{s}$ for large s
- make sure the numerical determinant behaves as the (known) analytical determinant

CPV in mesons

$$
\begin{array}{r}
A_{C P}(f)=\frac{\Gamma\left(D^{0} \rightarrow f\right)-\Gamma\left(\overline{D^{0}} \rightarrow \bar{f}\right)}{\Gamma\left(D^{0} \rightarrow f\right)+\Gamma\left(\overline{D^{0}} \rightarrow \bar{f}\right)} \\
\approx \frac{A\left(D^{0} \rightarrow f\right)-A\left(\overline{D^{0}} \rightarrow \bar{f}\right)}{A\left(D^{0} \rightarrow f\right)+A\left(\overline{D^{0}} \rightarrow \bar{f}\right)}+\frac{<t_{f}>}{\tau_{D^{0}}} a_{C P}^{i n d}
\end{array}
$$

- $A_{\Gamma}=-a_{C P}^{\text {ind }}=(-2.8 \pm 2.8) \cdot 10^{-4}$
- For the decay $D^{0} \rightarrow \pi^{+} \pi^{-}$: apply unitarity of the CKM matrix $A\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)=\lambda_{d} A_{d}+\lambda_{b} A_{b}$
$\rightarrow a_{C P}^{\text {dir }} \sim\left|\lambda_{d}\right|\left|\lambda_{b}\right|\left|A_{d}\right|\left|A_{b}\right| \sin \arg \frac{V_{c d}^{*} V_{u d}}{V_{c b}^{*} V_{u b}} \cdot \sin \arg \frac{A_{d}}{A_{b}}$

Isospin decomposition

- $\pi \pi$ states can have isospin=0,2. $K K$ can have isospin=0,1.

$$
\left(\begin{array}{c}
A\left(\pi^{+} \pi^{-}\right) \\
A\left(\pi^{0} \pi^{0}\right) \\
A\left(K^{+} K^{-}\right) \\
A\left(K^{0} \bar{K}^{0}\right)
\end{array}\right)=\left(\begin{array}{cccc}
-\frac{1}{2 \sqrt{3}} & \frac{1}{\sqrt{6}} & 0 & 0 \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & 0 & 0 \\
0 & 0 & 1 / 2 & 1 / 2 \\
0 & 0 & -1 / 2 & 1 / 2
\end{array}\right)\left(\begin{array}{c}
A_{\pi}^{2} \\
A_{\pi}^{0} \\
A_{K}^{1} \\
A_{K}^{0}
\end{array}\right)
$$

CPV in $\mathrm{I}=0$

$$
\begin{gathered}
\binom{A^{\pi}}{A^{K}}=\left(\begin{array}{ll}
\Omega_{11} & \Omega_{12} \\
\Omega_{21} & \Omega_{22}
\end{array}\right)\binom{\operatorname{Re} \lambda_{d} T^{\pi}+\ldots}{\operatorname{Re} \lambda_{s} T^{K}+\ldots} \\
\binom{B^{\pi}}{B^{K}}=\left(\begin{array}{ll}
\Omega_{11} & \Omega_{12} \\
\Omega_{21} & \Omega_{22}
\end{array}\right)\binom{\operatorname{Im} \lambda_{d} T^{\pi}+\sum_{i} \operatorname{Im} \lambda_{d_{i}} P_{i}^{\pi}}{\operatorname{Im} \lambda_{s} T^{K}+\sum_{i} \operatorname{Im} \lambda_{d_{i}} P_{i}^{K}}
\end{gathered}
$$

Can consider either $\operatorname{Im} \lambda_{d}=0$ or $\operatorname{Im} \lambda_{s}=0$, not both simultaneously $\Rightarrow \ln a_{C P}^{\text {dir }}$ there always exists a term $\sim T^{\pi} T^{K}$, both for $\pi \pi$ and for KK

Large N_{C} limit \& effective operators

- $T_{f a c}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)=\lambda_{d} C_{1} \frac{G_{F}}{\sqrt{2}} F_{0}^{D \pi}\left(m_{\pi}^{2}\right) f_{\pi} \cdot\left(m_{D}^{2}-m_{\pi}^{2}\right)$
- $P_{f a c}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)=$
$\lambda_{d}\left(C_{4}-2 C_{6} \frac{M_{\pi}^{2}}{\left(m_{u}+m_{d}\right)\left(m_{c}+m_{d}\right)}\right) \frac{G_{F}}{\sqrt{2}} F_{0}^{D \pi}\left(m_{\pi}^{2}\right) f_{\pi} \cdot\left(m_{D}^{2}-m_{\pi}^{2}\right)$
- $Q_{1}(i)=\left(\bar{d}_{i} c\right)_{V-A}\left(\bar{u} d_{i}\right)_{V-A}, Q_{2}(i)=\left(\bar{d}_{i} d_{i}\right)_{V-A}(\bar{u} c)_{V-A}$,
$Q_{5,3}=(\bar{u} c)_{V-A} \sum_{q}(\bar{q} q)_{V \pm A}$,
$Q_{4}=\sum_{q}(\bar{u} q)_{v-A}(\bar{q} c)_{v-A}, Q_{6}=-2 \sum_{q}(\bar{u} q)_{S+P}(\bar{q} c)_{S-P}$
- $C_{1}=1.15, C_{2}=-0.31, C_{3}=0.01, C_{4}=-0.04, C_{5}=0.01, C_{6}=$ -0.03
- $\lambda_{d}=V_{c d}^{*} V_{u d} \approx 0.22$
- $\overline{m_{c}}(2 \mathrm{GeV})=1.045 \mathrm{GeV}$
- Compare $m_{D}=1865 \mathrm{MeV}$ to $\Lambda_{\chi P T} \approx m_{\rho}=775 \mathrm{MeV}$

