CP violation in D decays to two pseudoscalars: A SM-based calculation

Eleftheria Solomonidi In collaboration with Antonio Pich & Luiz Vale Silva

Instituto de Física Corpuscular University of Valencia/CSIC

February 1, 2023

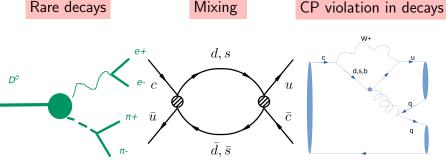
TU Dortmund

INSTITUT DE FÍSICA CORPUSCULAR

2 Concepts implemented in our approach

A new Flavour Physics 'anomaly' or an incomplete theory prediction?

- Flavour Physics beyond B-anomalies
- Charm Physics is growing (LHCb, Belle II, BESIII)

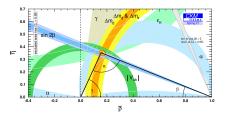


- CPV in hadronic D modes: only discovery of CPV in the charm sector
- Plus new result of KK has puzzling implications

CP violation in D decays: just a SM system or gateway to New Physics?

$$\Delta A_{CP}^{exp} \equiv A_{CP}(D^0 \to K^+ K^-) - A_{CP}(D^0 \to \pi^+ \pi^-) = [-1.54 \pm 0.29] \cdot 10^{-3}$$
$$\Delta A_{CP}^{dir,exp} = [-1.57 \pm 0.29] \cdot 10^{-3} \quad [LHCb \ 2019]$$
NEW!!! $A_{CP}(D^0 \to K^+ K^-) = [6.8 \pm 5.4(\text{stat}) \pm 1.6(\text{syst})] \cdot 10^{-4} \quad [LHCb \ 2022]$
$$A_{CP}^{dir}(D^0 \to \pi^+ \pi^-) = [23.2 \pm 6.1] \cdot 10^{-4}$$

- Is the SM theoretical prediction in agreement?
- Weak sector (CKM parameters) already probed by kaons, B mesons



CPV in D: the strong sector

• Does a beyond-naive estimation of hadronic effects matter?

$$\mathscr{A} = |A_1|e^{i\delta_1+i\phi_1} + |A_2|e^{i\delta_2+i\phi_2}$$
 $\overline{\mathscr{A}} = |A_1|e^{i\delta_1-i\phi_1} + |A_2|e^{i\delta_2-i\phi_2}$
 $a_{CP}^{dir} \sim |A_1||A_2|\sin(\delta_1 - \delta_2)\sin(\phi_1 - \phi_2)$

Need different weak phases AND different strong phases

$$\begin{aligned} \mathscr{A}(D^{0} \to f) &= A(f) + ir_{CKM}B(f) & \stackrel{c}{\underset{\bar{u}/\bar{d}}{\int}} & \stackrel{u}{\underset{\bar{u}}{\int}} & \text{Tree topology} \\ \mathscr{A}(\overline{D^{0}} \to f) &= A(f) - ir_{CKM}B(f) & \stackrel{\bar{u}/\bar{d}}{\underset{\bar{u}}{\int}} & \stackrel{u}{\underset{\bar{u}}{\int}} & \stackrel{u}{\underset{\bar{u}}{\int} & \stackrel{u}{\underset{\bar{u}}{\int}} & \stackrel{u}{\underset{\bar{u}}{\int}} & \stackrel{u}{\underset{\bar{u}}{\int} & \stackrel{u}{\underset{\bar{u}}{\int}} & \stackrel{u}{\underset{\bar{u}}{\int} & \stackrel{u}{\underset{\bar{u}}{\int} & \stackrel{u}{\underset{\bar{u}}{\int}} & \stackrel{u}{\underset{\bar{u}}{\int} & \stackrel{u}{\underset{\bar{u}}{\underset{\bar{u}}{\int} & \stackrel{u}{\underset{\bar{u}}{\int} & \stackrel{u}{\underset{\bar{u}}{\int} & \stackrel{u}{\underset{\bar{$$

- In K decays: Chiral Perturbation Theory
- In B decays: HQET
- $\Lambda_{\chi PT} \approx m_{\rho} < m_D = 1865 \text{ MeV}, \frac{\Lambda_{QCD}}{m_c} = \mathcal{O}(1)$ \rightarrow neither approach is strictly valid in charm!
- Approaches in charm use symmetries to combine observables

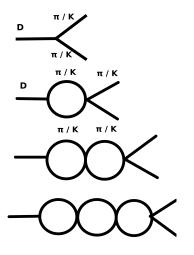
[Müller, Nierste, Schacht '15]

or set bounds for the strong phases [Khodjamirian, Petrov '17]

A way to look at the problem: rescattering

- Strong process, blind to the weak phase
- Isospin (u↔d) is a good symmetry of strong interactions
- In I=0, two channels:

$$\begin{aligned} S_{strong} &= \\ \begin{pmatrix} \pi\pi \to \pi\pi & \pi\pi \to KK \\ KK \to \pi\pi & KK \to KK \end{pmatrix} \end{aligned}$$



Rescattering & what we learn about strong phases

• S matrix is **unitary**, as well as strong sub-matrix

• For I=0, S-wave:

$$\begin{pmatrix} A_0^0(D \to \pi\pi) \\ A_0^0(D \to KK) \end{pmatrix} = \underbrace{\begin{pmatrix} \eta e^{i2\delta_1} & i\sqrt{1-\eta^2}e^{i(\delta_1+\delta_2)} \\ i\sqrt{1-\eta^2}e^{i(\delta_1+\delta_2)} & \eta e^{i2\delta_2} \end{pmatrix}}_{S_{strong}} \cdot \begin{pmatrix} A_0^{0*}(D \to \pi\pi) \\ A_0^{0*}(D \to KK) \end{pmatrix}$$

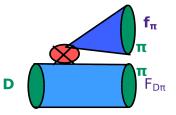
- The phases are related to the rescattering phases which are known from data/other experiments
- Watson's theorem (elastic rescattering limit): $argA_0^0(D \to \pi\pi) = \delta_1 \equiv argA(\pi\pi \to \pi\pi)mod\pi$
- With inelasticities:

$$argA_0^0(D \to \pi\pi) = \delta_1 + \arccos \sqrt{\frac{(1+\eta)^2 - \left(\frac{|A_0^0(D \to KK)|}{|A_0^0(D \to \pi\pi)|}\right)^2 (1-\eta^2)}{4\eta}}$$

depends on the ratio $\lambda_{\pi K} = \frac{|A_0^0(D \to \pi\pi)|}{|A_0^0(D \to KK)|}$

What about magnitudes?

- Rescattering also affects the *magnitudes* of amplitudes, apart from the *phases*
- An estimate for magnitudes: factorisation/large number-of-colors (N_C)



$\mathsf{CKM} \times \mathsf{Wilson}$ coefficient $\times \mathsf{factorisation}$

- Does not take rescattering into account
- Decay constant and form factor come from data and/or lattice $< \pi^{-}|(\overline{d}\gamma_{\mu}c)|D^{0} > = \frac{m_{D}^{2}-m_{\pi}^{2}}{m_{\pi}^{2}}q_{\mu}f_{0}^{D\pi}(m_{\pi}^{2}) + (vanishing contr.)$

Basic property of scattering amplitudes: analyticity

- Fundamental, model-independent property related to causality
- Cauchy's theorem: $A(s) = \frac{1}{2\pi i} \oint_C ds' \frac{A(s')}{s'-s} \text{ leads to}$ $ReA(s) = \frac{1}{\pi} PV \int_{s_{thr}}^{\infty} ds' \frac{ImA(s')}{s'-s}$ (Dispersion relation)
- Unitarity of S-matrix & dispersion relation:

$$\underbrace{\underbrace{ReA(s)}}_{\text{Re at a point}} = \frac{1}{\pi} \underbrace{PV \int_{s_{thr}}^{\infty} ds' \frac{\tan \delta(s')}{s' - s} ReA(s')}_{\text{integral of Re along the physical region}}$$

s-plane

 $\mathbf{R} \rightarrow \infty$

Analyticity & what we learn about magnitudes

- Integral equation, studied by Muskhelishvili-Omnes
- One subtraction: needs one piece of physical information
- Single channel case (& one subtraction at s_0), **physical** solution:

$$|A_{I}(s)| = A_{I}(s_{0}) \underbrace{exp\{\frac{s-s_{0}}{\pi}PV\int_{4M_{\pi}^{2}}^{\infty}dz\frac{\delta_{I}(z)}{(z-s_{0})(z-s)}\}}_{\text{Omnes factor }\Omega}$$

We need more than just large N_C !

 $|A_I(s = m_D^2)| = (\text{large } N_C \text{ result}) \times (\text{Omnes factor})_I$

• Behaviour at large s:
$$\Omega(s) \sim rac{1}{s^n}, \ n = rac{\delta_l(\infty)}{\pi}$$

Dispersion relations for multiple channels

- More channels: Equally more solutions.
- The equivalent of the dispersion relation in the 2-channel case:

$$\begin{pmatrix} ReA^{\pi}(s) \\ ReA^{\kappa}(s) \end{pmatrix} = \frac{1}{\pi} PV \int_{s_{thr}}^{\infty} ds' \frac{(ReT)^{-1}(ImT)(s')}{s'-s} \begin{pmatrix} ReA^{\pi}(s') \\ ReA^{\kappa}(s') \end{pmatrix}$$
(1)

$$T = T_0^0 = -i(S_0^0 - I)$$

No analytical solution

• Closed-form equation: $\lambda_{\pi \kappa}(s) \equiv \frac{|A_0^0(D \to \pi \pi)(s)|}{|A_0^0(D \to \kappa \kappa)(s)|} = func(\int \eta(z), \delta_1(z), \delta_2(z), \lambda_{\pi \kappa}(z))$

• Gives an analytical solution only in the case of small phases

Solving 2-channel dispersion relations

$$\begin{pmatrix} \operatorname{Re}A^{\pi}(s) \\ \operatorname{Re}A^{\kappa}(s) \end{pmatrix} = \frac{1}{\pi} \operatorname{PV} \int_{s_{thr}}^{\infty} ds' \frac{(\operatorname{Re}T)^{-1}(\operatorname{Im}T)(s')}{s'-s} \begin{pmatrix} \operatorname{Re}A^{\pi}(s') \\ \operatorname{Re}A^{\kappa}(s') \end{pmatrix}$$

• Two 'fundamental' solutions $\Omega^{(1)}(s) = \begin{pmatrix} \Omega_{\pi 1}(s) \\ \Omega_{K 1}(s) \end{pmatrix}, \ \Omega^{(2)}(s) = \begin{pmatrix} \Omega_{\pi 2}(s) \\ \Omega_{K 2}(s) \end{pmatrix} \text{ for which}$ $det\Omega \equiv det(\Omega^{(1)}|\Omega^{(2)}) \xrightarrow{s \to \infty} \frac{1}{s^n}, \ n = \frac{\delta_1(\infty) + \delta_2(\infty)}{\pi}$

- The $det\Omega(s)$ always has an explicit analytical solution
- In our case n = 2 and the fundamental solutions go as $\frac{1}{s}$
- The physical solution is unique:

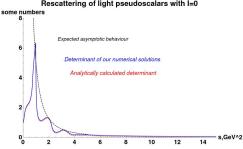
$$egin{pmatrix} {\sf ReA}^{\pi}(s)\ {\sf ReA}^{\kappa}(s) \end{pmatrix} = \Omega(s) \cdot egin{pmatrix} {\sf P}_1(s)\ {\sf P}_2(s) \end{pmatrix}$$

Numerical solution of 2-channel case

$$\binom{ReA^{\pi}(s)}{ReA^{\kappa}(s)} = \frac{s-s_0}{\pi} PV \int_{s_{thr}}^{\infty} ds' \frac{(ReT)^{-1}(ImT)(s')}{(s'-s)(s'-s_0)} \binom{ReA^{\pi}(s')}{ReA^{\kappa}(s')} + \binom{ReA^{\pi}_0(s_0)}{ReA^{\kappa}_0(s_0)}$$

- We discretise following the method from [Moussallam et al. hep-ph/9909292] ۰
- ۰ To pick the *fundamental* solutions, we
 - check they behave as expected at infinity
 - make sure the numerical determinant behaves as the (known) analytical

determinant



Rescattering of light pseudoscalars with I=0

Eleftheria Solomonidi

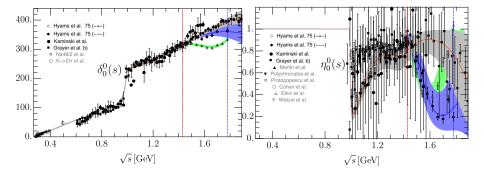
CPV in D

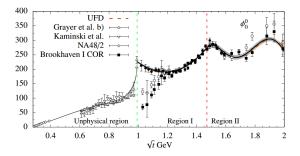
Summary of our method

- Factor out weak phases
- Flavour basis to isospin
- Isospin blocks:
 - I=0 with 2 channels: $\pi\pi$ and KK
 - I=1 with KK elastic rescattering
 - I=2 with $\pi\pi$ elastic rescattering
- Isospin amplitudes treated with dispersion relations calculated numerically
- Physical input: unitarity (for integrand), large N_C limit (for polynomial ambiguity/subtraction point)

Data deployed: phase-shifts & inelasticities of I=0

- Use inelasticity and phase-shift parameterisations [Pelaez et al., 1907.13162],[Pelaez et al., 2010.11222]
- Data: nuclear experiments from the 70'-80's
- Analytical parameterisation in partial waves, encompassing effect of known resonances
- Respect dispersion relations up to some energy, within uncertainties
- Parameterisations available up to energies $\sim m_D$ extrapolate for higher & vary relevant parameters for uncertainties





The weak part & short-distance contributions

$$\begin{aligned} \mathscr{H}_{eff} &= \frac{G_F}{\sqrt{2}} \left[\sum_{i=1}^{2} z_i(\mu) \left(\lambda_d Q_i^d(\mu) + \lambda_s Q_i^s(\mu) \right) - \lambda_b \sum_{i=3}^{6} v_i(\mu) Q_i(\mu) + C_{8g}(\mu) Q_{8g}(\mu) \right] \\ \lambda_q &= V_{cq}^* V_{uq}, \quad q = d, s, b \\ \left| \lambda_d \right| &\approx \left| \lambda_s \right| = \mathscr{O}(\lambda), \text{ usually } Re\lambda_d = -Re\lambda_s \end{aligned}$$

$$\begin{aligned} Q_1^d &= (\bar{d}c)_{V-A} (\bar{u}d)_{V-A} & Q_3 = (\bar{u}c)_{V-A} \Sigma_q(\bar{q}q)_{V-A} \\ Q_2^d &= (\bar{d}_jc_i)_{V-A} (\bar{u}_id_j)_{V-A} & Q_5 = (\bar{u}c)_{V-A} \Sigma_q(\bar{q}q)_{V+A} \\ Q_1^s &= (\bar{s}c)_{V-A} (\bar{u}s)_{V-A} & Q_6 = (\bar{u}_jc_i)_{V-A} \Sigma_q(\bar{q}q)_{V+A} \\ Q_2^s &= (\bar{s}_jc_i)_{V-A} (\bar{u}s_j)_{V-A} & Q_{6g} = -\frac{g_s}{8\pi^2} m_c \bar{u}\sigma_{\mu\nu}(1+\gamma_5) G^{\mu\nu} c \\ \hline \mu & z_1 & z_2 & v_3 & v_4 & v_5 & v_6 \\ \hline 1.3 \text{ GeV} & 1.21 & -0.41 & 0.02 & -0.06 & 0.02 & -0.06 \\ \hline 2 \text{ GeV} & 1.15 & -0.31 & 0.01 & -0.04 & 0.01 & -0.03 \end{aligned}$$

 \sim

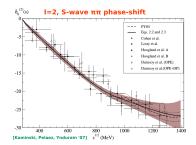
Data deployed: isospins 1 and 2

- For I=1 and 2 we can deploy Br's of $A(D^+ \to \pi^+ \pi^0) \sim A_{I=2}, A(D^+ \to K^+ \overline{K^0}) \sim A_{I=1}$, isospin-pure channels
- Extract Omnes factors' magnitudes from those

Phases: there are available data for I=2 $\pi\pi$, but not well behaved

No data for I=1 KK

Not elastic channels



- It is exact to assume Omnes factors' magnitudes from the charged D channels
- It is not exact to extract the phases, so we leave them free

Eleftheria Solomonidi

1 Introduction

2 Concepts implemented in our approach

Omnes factors

For the isospin=0 channels we **calculate** numerically the Omnes matrix at $s = m_D^2$:

$$\Omega_{l=0} = \left(\begin{array}{cc} 0.58e^{1.8i} & 0.64e^{-1.7i} \\ 0.58e^{-1.4i} & 0.61e^{-2.3i} \end{array}\right)$$

(In data: inelasticity taken mainly from $\pi\pi$ rescattering - solution I from Pelaez et al. '19) Compare to Watson's theorem prediction: $argA(\pi\pi \to \pi\pi) = 7rad$, $argA(KK \to KK) = -1.7rad$ The **physical solution** is

$$\begin{pmatrix} \mathbf{A}(D \to \pi\pi) \\ \mathbf{A}(D \to KK) \end{pmatrix} = \Omega_{I=0} \cdot \begin{pmatrix} \mathbf{A}_{\mathsf{factorisation}}(D \to \pi\pi) \\ \mathbf{A}_{\mathsf{factorisation}}(D \to KK) \end{pmatrix}$$

(Same for **B** instead of **A**)

This way
$$arg \mathbf{A}(D \rightarrow \pi\pi) = 1.6$$
, $arg \mathbf{A}(D \rightarrow KK) = -1.1$,
 $arg \mathbf{B}(D \rightarrow \pi\pi) = -1.3$, $arg \mathbf{B}(D \rightarrow KK) = 1.7rad$

Flavour amplitudes breakdown

flavour-specific decay amplitudes

- $\mathscr{A}_I = \Omega_I \mathscr{A}_I^{fac}$
- $\mathscr{A}_{\mathscr{I}} = U_f^{-1} \mathscr{A}_f^{\mathit{fac}}$

These give

$$\mathscr{A}(D^0 \to \pi^+\pi^-) \approx \lambda_d \underbrace{f_{\pi}F_{D\pi}(m_{\pi}^2)(m_D^2 - m_{\pi}^2)}_{\text{factorised hadronic matrix element } (D \to \pi\pi)_{fac}} \left(\frac{|\Omega_{l=2}|e^{i\delta_2\pi}}{(\frac{1}{3}C_1 - \frac{1}{3}C_2) + \Omega_{11}(\frac{2}{3}C_1 + \frac{1}{3}C_2)} \right)$$

factorised hadronic matrix element
$$(D \to KK)_{fac}$$

+ $\lambda_s \qquad f_K F_{DK}(m_K^2)(m_D^2 - m_K^2) \qquad \frac{1}{3}\Omega_{12}C_1 + \underbrace{\#(C_4, C_6)}_{\text{penguin operators}}$

isospin to flavour matrix isospin-specific decay amplitudes

The contribution of penguin operator insertions to the magnitude of the amplitudes can be ignored

CPV sources

The main term in the CP asymmetry is (for $D^0 \rightarrow \pi^+\pi^-$)

 $a_{CP} \sim J * (D \rightarrow KK)_{fac} (D \rightarrow \pi\pi)_{fac} \left\{ \underbrace{- (2C_1^2 + C_1 C_2)}_{I = 0 \text{ interference}} \omega_1 + \underbrace{(C_1^2 - C_1 C_2)}_{I = 2 \text{ vs } I = 0 \text{ interference}} |\Omega_{I=2}| (r_{12} \sin \delta_{\pi\pi}^{I=2} - i_{12} \cos \delta_{\pi\pi}^{I=2}) \right\}$

 $\overset{\sim J*(D \to KK)_{fac}(D \to \pi\pi)_{fac} \{-2.4\omega_1 + 2.0|\Omega_{I=2}|(r_{12}\sin\delta_{2\pi} - i_{12}\cos\delta_{2\pi})\} }{\text{where } \omega_1 = Im(\Omega_{11}\Omega_{12}^*) \text{(of I=0), } J = Im(\lambda_d\lambda_s^*) \sim \text{Jarlskog}$

Note: in $D \rightarrow \pi\pi$ main contribution from I = 2, I = 0 interference; in $D \rightarrow KK$ from I = 0, I = 0 interference

The interference with the short-distance penguins (suppressed by GIM) is

$$J * (D \to KK)_{\textit{fac}} (D \to \pi\pi)_{\textit{fac}} \left\{ 0.13\omega_1 + 0.25 |\Omega_{\textit{I}=2}| \dots \right\} + J * (D \to \pi\pi)_{\textit{fac}}^2 0.13 |\Omega_{\textit{I}=2}| \dots \right\}$$

much smaller than the tree-tree interference

Comparison to the $K \rightarrow \pi \pi$ CPV problem

$$\mathscr{A}(\mathsf{K}^0 o \pi^+\pi^-) = rac{1}{\sqrt{2}}\mathsf{A}_2 + \mathsf{A}_0$$

 Follow the same procedure as in the *D* decays [Gisbert, Pich '17] ππ rescattering only elastic
 ⇒ argA(I = 0) = argB(I = 0) = argA(ππ → ππ)
 I=2, I=0 different strong phases → ^{ε'}/₂

Interference between I=2-tree and I=0-penguin only:

$$\mathscr{A}(\mathsf{K}^{0} \to \pi^{+}\pi^{-}) = \frac{1}{\sqrt{2}} \frac{\lambda_{u}}{\sqrt{2}} |\Omega_{2}| e^{i\delta_{2}} T_{2} + \frac{\lambda_{u}}{\sqrt{2}} |\Omega_{0}| e^{i\delta_{0}} T_{0} + \frac{\lambda_{t}}{\sqrt{2}} |\Omega_{0}| e^{i\delta_{0}} P_{0}$$

$$a_{CP} \sim Im(\lambda_u^* \lambda_t) \sin(\delta_2 - \delta_0)$$

Branching fraction estimation

We adjust $\delta_{I=2}^{\pi\pi}, \delta_{I=1}^{KK}$

2.0 — D0 -> π+π-1.5 — D0 -> π0π0 0.5 $\delta(\pi\pi, l=2)$ 4 3 (Br-prediction)/(Br-exp) 121 — D0->K+K-6 D0->K0 K0 4 2 -_____ δ(KK,I=1) 4

(Br-prediction)/(Br-exp)

Branching fraction estimation

We find:

$\left[rac{Br_{theo}}{Br_{exp}} ight]$					
Decay channel	Our method	Naive factorisation	Watson's theorem,	Correct phases,	
	(preliminary)		no DRs	no DRs	
$D^0 ightarrow \pi^+\pi^-$	1.1	1.7	0.63	1.0	
$D^0 o \pi^0 \pi^0$	1.1	0.1	2.1	0.8	
$D^0 o K^+ K^-$	1.1	0.9	0.070	0.7	
$D^0 o K^0 \overline{K^0}$	1.2	0 (1/N _C -suppressed)	12	0.7	
			'	'	

$$\left(\frac{Br(D^0 \to K^+ K^-)}{Br(D^0 \to \pi^+ \pi^-)}\right)_{theo} = \left(\frac{Br(D^0 \to K^+ K^-)}{Br(D^0 \to \pi^+ \pi^-)}\right)_{exp} \approx 2.8$$

Old $D \rightarrow \pi\pi$, *KK* puzzle seems to be solved!

CP asymmetries

 $\Delta A_{CP}^{dir,exp} = (-1.57 \pm 0.29) \cdot 10^{-3}$ [LHCb 2019] $A_{CP}(D^0 \to K^+ K^-) = (6.8 \pm 5.4 (\text{stat}) \pm 1.6 (\text{syst})) \cdot 10^{-4} \text{ [LHCb 2022]}$ We predict $\Delta A_{CP}^{dir,theo} \leq \mathcal{O}(10^{-4})!!$ (preliminary) and $a_{CP}^{dir}(D^0 \to \pi^+\pi^-) \approx 3 \cdot 10^{-4}$, $a_{CP}^{dir}(D^0 \to K^+K^-) \approx -1 \cdot 10^{-4}$ with no prior assumption about U-spin Also predict $a_{CP}^{dir}(D^0 \to \pi^0 \pi^0) = \mathcal{O}(10^{-4})$ Recall: $a_{CP}^{dir} \approx 2$ $\underbrace{r_{CKM}}_{IA(f)|} = \frac{|B(f)|}{|A(f)|} + \sin \arg \frac{A(f)}{B(f)}$ $\sim 6.10^{-4}$ needs be $\mathcal{O}(1)$ needs be close to 1

- The short-distance GIM-suppressed diagrams are not the only generator of CP-odd amplitudes
- Yet we **do not** find a sufficient enough enhancement of *B*'s, or very large phase-shift differences between *A* and *B* to compensate

- Something big missing in I = 2?
 Less likely: no established particle of I=2 as per PDG
- Third channel in I = 0?
 - Yes: 4π is known, but its effect on 2π , 2K difficult to estimate
 - No available data over energy
 - Future work!
- SM calculation "strong" statement, needs to be scrutinised
- If everything fails, it's time for NP! (See talk by T. Höhne)

• SM approach deploying

- S-matrix unitarity, scattering amplitude analyticity, isospin symmetry and factorisation
- as much data as possible (rescattering, form factors and decay constants, Br's of D⁺ decays)
- We succeed in calculating the branching fractions in reasonable agreement with experiment, from scratch
- We still estimate the CP asymmetry **an order of magnitude too small** compared to the experimental value!
- The SM discussion is still open, but seems difficult to accommodate the current exp. value in our SM calculation...

Thank you very much! Stay tuned! (Preprint coming soon!)

$$\mathscr{A}(D^+ o \pi^+ \pi^0) = rac{3}{2\sqrt{2}} A^{\pi}_{I2}$$

 $\mathscr{A}(D^+ o K^+ \overline{K^0}) = A^{K}_{I1}$

We fix $|A_{I2}^{\pi}|$, $|A_{I1}^{\kappa}|$ from the Br's and use them in e.g.

$$\mathscr{A}(D^0 o \pi^+\pi^-) = -rac{1}{2\sqrt{3}}A^{\pi}_{I2} + rac{1}{\sqrt{6}}A^{\pi}_{I0}$$

If I=2 elastic then $A_{I2}^{\pi} = \Omega_{I=2}A_{fac,I=2}$ If inelastic $A_{I2}^{\pi} = \Omega_{I=2}A_{fac,I=2} + (\text{mixing})$ but we use directly $A_{I2}^{\pi} = |A_{I2}^{\pi}| exp\{i\delta_{I=2}^{\pi\pi}\}$, phase left free

Comments on 2203.04056

$$\begin{aligned} \mathcal{A}_{D^0 \to KK} &= \eta e^{2i\delta_{KK}} V_{cs}^* V_{us} a_{KK} \\ &+ i\sqrt{1-\eta^2} e^{i(\delta_{\pi\pi}+\delta_{KK})} V_{cd}^* V_{ud} a_{\pi\pi} , \\ \mathcal{A}_{D^0 \to \pi\pi} &= \eta e^{2i\delta_{\pi\pi}} V_{cd}^* V_{ud} a_{\pi\pi} \\ &+ i\sqrt{1-\eta^2} e^{i(\delta_{\pi\pi}+\delta_{KK})} V_{cs}^* V_{us} a_{KK} . \end{aligned}$$

$$\end{aligned}$$

$$\tag{8}$$

 $\alpha_{\pi\pi}, \alpha_{KK}$ referred to as "tree level processes" with no phases BUT extracted from the branching fraction:

from the amplitudes given in Eq. (8). By taking into account that
$$\sqrt{1-\eta^2} << 1$$
 at the D^0 mass, we have:
 $\Gamma_{\pi\pi} \approx \eta |V_{cd}^* V_{ud}|^2 a_{\pi\pi}^2$ and $\Gamma_{KK} \approx \eta |V_{cs}^* V_{us}|^2 a_{KK}^2$. (11)

Eq. (8) in the elastic limit would give:

$$\mathscr{A}_{D^{0} \to KK} = e^{2i\delta_{KK}} V_{cs}^{*} V_{us} a_{KK}$$
$$\mathscr{A}_{D^{0} \to \pi\pi} = e^{2i\delta_{\pi\pi}} V_{cd}^{*} V_{ud} a_{\pi\pi}$$

 $\Rightarrow \delta(D^0 \to KK) = 2\delta_{KK}, \ \delta(D^0 \to \pi\pi) = 2\delta_{\pi\pi} \ !$ Compare to ours:

$$\begin{aligned} \mathscr{A}_{D^0 \to KK} &= \Omega_{22} V_{cs}^* V_{us} a_{KK} + \Omega_{21} V_{cd}^* V_{ud} a_{\pi\pi} \\ \mathscr{A}_{D^0 \to \pi\pi} &= \Omega_{11} V_{cd}^* V_{ud} a_{\pi\pi} \Omega_{12} V_{cs}^* V_{us} a_{KK} \end{aligned}$$

The full d's coincide with the transition amplitude from the branching fraction

Eleftheria Solomonidi	CPV in D	BACKUP 3 /
-----------------------	----------	------------

$$\binom{ReA^{\pi}(s)}{ReA^{\kappa}(s)} = \frac{s-s_0}{\pi} PV \int_{s_{thr}}^{\infty} ds' \frac{(ReT)^{-1}(ImT)(s')}{(s'-s)(s'-s_0)} \binom{ReA^{\pi}(s')}{ReA^{\kappa}(s')} + \binom{ReA^{\pi}_0(s_0)}{ReA^{\kappa}_0(s_0)}$$

• We discretise following the method from [Moussallam et al. hep-ph/9909292] into

$$\binom{\mathsf{ReA}^{\pi}(\mathsf{s}_i)}{\mathsf{ReA}^{\kappa}(\mathsf{s}_i)} = \frac{\mathsf{s}_i - \mathsf{s}_0}{\pi} \sum_j \hat{w}_j \frac{(\mathsf{ReT})^{-1}(\mathsf{ImT})(\mathsf{s}_j)}{(\mathsf{s}_j - \mathsf{s}_i)(\mathsf{s}_j - \mathsf{s}_0)} \binom{\mathsf{ReA}^{\pi}(\mathsf{s}_j)}{\mathsf{ReA}^{\kappa}(\mathsf{s}_j)} + \binom{\mathsf{ReA}^{\pi}_0(\mathsf{s}_0)}{\mathsf{ReA}^{\kappa}_0(\mathsf{s}_0)}$$

- This creates an invertible matrix which gives a (discrete) solution
- Subtleties taken care of as in [Moussallam et al. hep-ph/9909292]
- To pick the *fundamental* solutions, we fix the vector at an unphysical point s < 0 and
 check they behave as ¹/_s for large s
 - make sure the numerical determinant behaves as the (known) analytical determinant

CPV in mesons

$$A_{CP}(f) = \frac{\Gamma(D^{0} \to f) - \Gamma(\overline{D^{0}} \to \overline{f})}{\Gamma(D^{0} \to f) + \Gamma(\overline{D^{0}} \to \overline{f})}$$
$$\approx \frac{A(D^{0} \to f) - A(\overline{D^{0}} \to \overline{f})}{A(D^{0} \to f) + A(\overline{D^{0}} \to \overline{f})} + \frac{\langle t_{f} \rangle}{\tau_{D^{0}}} a_{CP}^{ind}$$

•
$$A_{\Gamma} = -a_{CP}^{ind} = (-2.8 \pm 2.8) \cdot 10^{-4}$$

• For the decay $D^0 \rightarrow \pi^+ \pi^-$: apply unitarity of the CKM matrix $A(D^0 \rightarrow \pi^+ \pi^-) = \lambda_d A_d + \lambda_b A_b$ $\rightarrow a_{CP}^{dir} \sim |\lambda_d| |\lambda_b| |A_d| |A_b| \sin arg \frac{V_{cd}^* V_{ud}}{V_{cb}^* V_{ub}} \cdot \sin arg \frac{A_d}{A_b}$

• $\pi\pi$ states can have isospin=0,2. *KK* can have isospin=0,1.

$$\begin{pmatrix} \mathcal{A}(\pi^{+}\pi^{-}) \\ \mathcal{A}(\pi^{0}\pi^{0}) \\ \mathcal{A}(K^{+}K^{-}) \\ \mathcal{A}(K^{0}\overline{K}^{0}) \end{pmatrix} = \begin{pmatrix} -\frac{1}{2\sqrt{3}} & \frac{1}{\sqrt{6}} & 0 & 0 \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & 0 & 0 \\ 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & -1/2 & 1/2 \end{pmatrix} \begin{pmatrix} \mathcal{A}_{\pi}^{2} \\ \mathcal{A}_{\pi}^{0} \\ \mathcal{A}_{K}^{1} \\ \mathcal{A}_{K}^{0} \end{pmatrix}$$

$$\begin{pmatrix} A^{\pi} \\ A^{\kappa} \end{pmatrix} = \begin{pmatrix} \Omega_{11} & \Omega_{12} \\ \Omega_{21} & \Omega_{22} \end{pmatrix} \begin{pmatrix} Re\lambda_d T^{\pi} + \dots \\ Re\lambda_s T^{\kappa} + \dots \end{pmatrix}$$
$$\begin{pmatrix} B^{\pi} \\ B^{\kappa} \end{pmatrix} = \begin{pmatrix} \Omega_{11} & \Omega_{12} \\ \Omega_{21} & \Omega_{22} \end{pmatrix} \begin{pmatrix} Im\lambda_d T^{\pi} + \sum_i Im\lambda_{d_i} P^{\pi}_i \\ Im\lambda_s T^{\kappa} + \sum_i Im\lambda_{d_i} P^{\pi}_i \end{pmatrix}$$

Can consider either $Im\lambda_d = 0$ or $Im\lambda_s = 0$, not both simultaneously \Rightarrow In a_{CP}^{dir} there always exists a term $\sim T^{\pi}T^{\kappa}$, both for $\pi\pi$ and for KK

Large N_C limit & effective operators

•
$$T_{fac}(D^{0} \to \pi^{+}\pi^{-}) = \lambda_{d} C_{1} \frac{G_{F}}{\sqrt{2}} F_{0}^{D\pi}(m_{\pi}^{2}) f_{\pi} \cdot (m_{D}^{2} - m_{\pi}^{2})$$

• $P_{fac}(D^{0} \to \pi^{+}\pi^{-}) = \lambda_{d} (C_{4} - 2C_{6} \frac{M_{\pi}^{2}}{(m_{u}+m_{d})(m_{c}+m_{d})}) \frac{G_{F}}{\sqrt{2}} F_{0}^{D\pi}(m_{\pi}^{2}) f_{\pi} \cdot (m_{D}^{2} - m_{\pi}^{2})$
• $Q_{1}(i) = (\overline{d}_{i}c)_{V-A}(\overline{u}d_{i})_{V-A}, Q_{2}(i) = (\overline{d}_{i}d_{i})_{V-A}(\overline{u}c)_{V-A}, Q_{5,3} = (\overline{u}c)_{V-A} \sum_{q} (\overline{q}q)_{V\pm A}, Q_{4} = \sum_{q} (\overline{u}q)_{V-A} (\overline{q}c)_{V-A}, Q_{6} = -2 \sum_{q} (\overline{u}q)_{S+P} (\overline{q}c)_{S-P}$
• $C_{1} = 1.15, C_{2} = -0.31, C_{3} = 0.01, C_{4} = -0.04, C_{5} = 0.01, C_{6} = -0.03$

•
$$\lambda_d = V_{cd}^* V_{ud} \approx 0.22$$

- $\overline{m_c}(2GeV) = 1.045GeV$
- Compare $m_D = 1865$ MeV to $\Lambda_{\chi PT} pprox m_
 ho = 775$ MeV