Geant4 Optimization Task Force Group Report

Mustafa Schmidt on behalf of the ATLAS Simulation Group

February 2, 2023

BERGISCHE UNIVERSITÄT WUPPERTAL

▲□→▲目→▲目→ 目 のへで

Outline

Overview over validated and ongoing tasks:

Overview

Validated & Ongoing Tasks

Performance Comparison

We highly acknowledge the work of the Geant4 collaboration

February 2, 2023

Mustafa Schmidt

▲□ ▼ ▲ □ ▼ ▲ □ ▼

G4 Optimization Task Force

Simulation Group – conveners : M. Bandieramonte, T. Lari				
Full Simulation Convener : W. Hopkins	Fast Calorimeter Simulation (FCS/FastCaloGAN) Conveners : M.F. Giannelli, C. Young	Fast Chain Conveners : M. Javurkova, L. Mijovic	Simulation Quality Group Convener : B. Wynne	

Full Simulation Group evolution of the former "G4 Optimization Task Force"
Close collaboration with G4 developers (especially CERN-EP-SFT) is implied
Recently validated tasks:

- **Woodcock Tracking**: Major impact on speed
- ▶ Voxelization Optimization: Optimizing CPU time and memory
- Monopole Bug: Crash for monopoles in G4
- Ongoing tasks: EMEC from standard Geant4/VecGeom Shapes, GMClash, ISF Particle Killer, Advanced Compiler Optimisation, In-Field Parameter Tuning

Mustafa Schmidt

▲御▶★理▶★理▶ = 理

Woodcock Tracking

- Goal: Reduce simulation steps + CPU time without approximations
 - Very powerful in highly granular detectors (e.g. the EMEC) where geometric boundaries limit steps rather than interactions
 - Performs tracking in one material without boundaries (e.g. Pb - the densest)
 - Interaction probability proportional to the cross-section ratio between real material and Pb
 - ▶ Boundaries can be ignored ⇒ reduction of simulation steps

Investigated by Mihaly Novak & John Apostolakis

BERGISCHE UNIVERSITA

February 2, 2023

Mustafa Schmidt

くぼう くほう くほう

Woodcock Tracking

- Implemented as a modification to the G4GammaGeneralProcess -GammaGeneralProcess also reduces the cost of a step
- Physics validation completed
- Total speedup for Woodcock Tracking from Run3Opt
- Speedup from ≈ 33% to ≈ 48% (50% gain from Woodcock)

BNL Cluster, 1000 Jobs	Walltime,s	sigma	Speedup CPU time	Job ID
Athena 22.0.47 (baseline)	288	23.2	-	27857092
Athena 22.0.67 "out the box" (BigLibrary only)	274	21.9	-4.9%	31366397
Athena 22.0.67 "out the box" (BigLibrary only) +Run3Opt	193	16.2	-33%	<u>31366406</u>
Athena 22.0.93 private build (BigLibrary + VecGeom)	257	20.9	-10.8%	<u>31548908</u>
Athena 22.0.93 private build (BigLibrary + VecGeom)+ +WoodcockTrack&G4GammaGeneralProc	198	20.2	-31.2%	<u>31548954</u>
Athena 22.0.93 private build (BigLibrary + VecGeom)+ +WoodcockTrack&G4GammaGeneralProc+Run3opt imizations	150	15.9	-47.9%	31544224

February 2, 2023

Mustafa Schmidt

くぼう くほう くほう

Voxel Density Optimization

- Goal: Find the optimal values of voxel density in Run-3 geometry for optimization of CPU time and memory consumption
 - Size/Granularity of the voxels can be tuned by users
 - Voxel density member variable in Geant4 logical volume class
 - Changes studied in FullSimLight and Athena
 - Improvement in memory consumption for geometry optimizations

Investigated by Mustafa Schmidt

- Physics validation completed
- Follow-up study is ongoing (increase of CPU observed)

February 2, 2023

Fixing Monopole Bug

Investigated by John Chapman, John Apostolakis, and Mustafa Schmidt

- Goal: Fix problems appearing during highly ionizing particles (HIP) trigger simulations
 - Problems related to the transportation of monopoles
 - Monopole tracking was not possible anymore because of using more than one field manager
 - All jobs failed
- Problem Resolved: ATLASSIM-5960, G4Extensions Monopole Repo

February 2, 2023

Mustafa Schmidt

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

EMEC Geant4 Shapes

Under Investigation by Akanksha Vishwakarma and Evgueni Tcherniaev

- Work was paused for some time and Evgueni took over around November 2022
- Goal: Define geometry of EMEC with Standard G4 shapes to speed up simulation as well as allow usage in other architecture (GPU prototype currently being developed by Benjamin Morgan)
 - ▶ EMEC: Computationally dominant part of full G4 simulation
 - Custom solid is not portable to GPU many ongoing efforts to provide GPU accelerated particle transport in the community (HPC)
 - ► No accordion shape available within G4 standard geometry shapes ⇒ Defined custom solid geometry according to "neutral fibre"
 - ▶ Use trapezoids (standard G4 shapes) for the EMEC geometry description.

February 2, 2023

Mustafa Schmidt

EMEC Geant4 Shapes

Comparison between G4Trap and G4TwistedTrap (Benchmark Run: 10000 events with 10 GeV)

G4Trap: More replicas than twistedTrap to address the twist

G4TwistedTrap

Particles	Time (s)	CPU usage (%)	
e-	209.36	99.3	
e+	209.46	99.3	
gamma	197.60	96.3	
geantino	0.402	99.4	

Particles	Time (s)	CPU usage (%)	
e-	3882.28	98.4	
e+	4027.08	97.9	
gamma	3170.14	98.3	

Very preliminary benchmarks (proper material & angle change missing) show preferences to G4Trap

February 2, 2023

Mustafa Schmidt

▲ 御 → ▲ 国 → ▲ 国 → 二 国

GMClash

Goal: Improve gmclash performances with faster random generator and changing navigation algorithm

- Under Investigation by Evgueni Tcherniaev
- gmclash: a MC-based package for detecting anomalies (clashes) in geometry trees
- Study comparing new version of gmclash with the old version, running with Geant4.10.06 and Geant4.11.0

	Current gmclash (N. of points = 1.000)		New gmclash (N. of points = 1.000)		
	Geant4.10.06	Geant4.11.00	Geant4.10.06	Geant4.11.00	
	M / S / E / I	M / S / E / I	M / S / E / I	M / S / E / I	
ATLAS-R3S-2021-03-00-00.db	1468/399/0/136	1485/407/0/136	1501/357/1/136	1465/356/1/136	
	Tot = 2003	Tot = 2028	Tot = 1995	Tot = 1958	
	CPU = 17':18"	CPU = 13':20''	CPU = 11':43"	CPU = 9':15"	
ATLAS-R3S-2021-03-00-00.gdml	3991/1872/0/120	3986/1879/0/120	2857/1809/2/120	2860/1824/3/120	
	Tot = 5983	Tot = 5985	Tot = 4788	Tot = 4807	
	CPU = 16':20''	CPU = 12':28''	CPU = 6':48''	CPU = 4':45''	

- Generating random points (default 1k) on surfaces of volumes \rightarrow position of points checked relative to other volume
- Types of Clashes: Clashes with a mother volume (M), Clashes with sister volume (S), Clashes with entirely encapsulated volume (E), Clashes with invalid solid (I)
- Confirmed problem with how GDML dumps specific volumes (especially displaced solids)
- Request: Support for displaced solids in Geant4 GDML implementation

Link: https://geomodel.web.cern.ch/home/fullsimlight/gmclash/

February 2, 2023

Mustafa Schmidt

ISF Particle Killer

- Goal: Kill primary particles generating secondaries close to the beam pipe at 5 6 m
 - Huge number of secondaries being produced 5–6 m away from IP (0,0,0) with small r (close to beam pipe)
 - Many of these secondaries will not cause any energy deposits in the calorimeters or a muon hit
 - Primary particles causing interactions could be dropped directly

Approach:

- 1. generate a large sample of single particles with $4.5 < |\eta| < 6$ with different energies
- 2. Map out η and ${\it E}$ combinations producing relevant signal
- 3. Drop others directly with new particle killer

Under Investigation by Dongwon Kim and Michael Duehrssen

February 2, 2023

In-Field Parameter Tuning

Under Investigation by Nitika Sangwan

- Goal: Find the optimal values of the in-field tracking parameters for physics performance and CPU savings
- Lists of tuning parameters + descriptions for tracking in a magnetic field
 - > DeltaIntersection: accuracy of intersection with boundary volume
 - DeltaOneStep: accuracy for endpoint of 'ordinary' integration step
 - DeltaChord: approximation of curve with linear sections
 - MaxStep: maximum step length
 - ▶ Tuning can be done for different detector regions and various particle energies

February 2, 2023

Mustafa Schmidt

くぼう くほう くほう

Advanced Compiler Optimization

Under Investigation by Benjamin Morgan & Caterina Macron

- Goal: Speed up simulation with link time and profile-guided optimization (LTO & PGO)
- Advanced compiler optimizations can lead to non-negligible speed-up factors
- CMS report: ≈ 10% speed in their software (https://indico.cern.ch/event/394788/contributions/2357347/attachments/1368686/ 2074705/slides.pdf)
- Two approaches to reducing application runtime, both relying on the compiler smarter usage of compiler \rightarrow more throughput \rightarrow efficient use of computing resources
- LTO: instrument compilation units with metadata
 - Consults to optimize when building shared objects
 - Expands scope of inter-procedural optimizations to encompass all objects visible at link time
- PGO: lets you optimize a whole executable (optimizer uses data from test runs)
 - build instrumented binaries, produce a profile for the application, rebuild from sources and profile
 - inlining, block ordering, register allocation, conditional branch optimisation, virtual call speculations, etc

Performance Comparison

MC21

- Geant4 version for mc21: Geant4 10.6.patch03.atlas03
- mc21: > 30% CPU speedup w.r.t. mc16

MC23

- Geant4 version for mc23: Geant4 10.6.patch03.atlas04
- mc23: \approx 2 times faster than release 22 (without optimization)!
- Colored boxes in table not using exactly same job settings in plots but convey same message
- Observation in CPU time speed-up!

BNL Cluster, 1000 Jobs 100 tt-bar events/job	Walltime,s	sigma	Speedup CPU time	Job ID
Athena 22.0.47 (baseline)	288	23.2	-	27857092
Athena 22.0.67 "out the box" (BigLibrary only)	274	21.9	-4.9%	31366397
Athena 22.0.67 "out the box" (BigLibrary only) +Run3Opt	193	16.2	-33%	<u>31366406</u>
Athena 22.0.93 private build (BigLibrary + VecGeom)	257	20.9	-10.8%	31548908
Athena 22.0.93 private build (BigLibrary + VecGeom)+ +WoodcockTrack&G4GammaGeneralProc	198	20.2	-31.2%	<u>31548954</u>
Athena 22.0.93 private build (BigLibrary + VecGeom)+ +WoodcockTrack&G4GammaGeneralProc+Run3opt imizations	150	15.9	-47.9%	31544224

Plot by Vangelis Kourlitis and Marilena **Bandieramonte**

BOISCHE

FRTAI

HEC Simulations

Investigated by Lorenzo Pezzoti

- Geant4 validation project exploiting test beams ongoing including ATLAS HEC+TileCal
- HEC simulation first one studied and successfully ported into Geant4 standalone simulation within the Geant Val testing suite
- Most observables (shower length, energy resolution, shower shape) in good agreement with test beam data
- Reproduction of ATLAS results (some cross-validation still possible and under disposal) for their mentorship

Other studies (Sven Menke): Neutron cross section changed significantly from Geant4 10.1 to 10.7 (most likely not improvement)

Link: https://www.mdpi.com/2410-390X/6/3/41

TileCal Simulations

Investigated by Lorenzo Pezzoti

- Developed new Geant4-based simulation of the 2017 ATLAS TileCal test-beam
- Features all main ingredients for a realistic simulation (RO cell description, Birks' Law, U-shape correction, PMT emulation, and energy calibration) without any ATHENA dependency
- Result: Jet energy resolution improved since 10.4 (better than data)
- Currently Geant4 reproduces π/e results with great accuracy but investigations needed for better description of the response fluctuations

Link: https://www.mdpi.com/2410-390X/6/3/41

February 2, 2023

ATLAS EM Showers

- Significant difference between data and MC simulations when modeling shower shapes in calorimeters
- Geant4-10.6 moved away from data compared to Geant4-10.1
- Solution for ATLAS: Switching off Urban-MSC correction for positrons in new release
- Default EMZ physics list providing results closer to data (but much slower)
- Most likely no further improvement in Geant4 physics possible (More studies in ATLAS required)

Under Investigation by Mihaly Novak

February 2, 2023

Mustafa Schmidt

17

Thank you very much for your attention!

February 2, 2023

Mustafa Schmidt

A (10) × (10) × (10) ×