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Particles & Tracks

Consistent treatment of half-lives and mean-lifetimes for isomers:
default mean lifetime threshold for isomers is now 1 ns in all cases

Corrected triton and anti-triton lifetimes

 Half-live used instead of mean-lifetime; anti-triton set as stable

- Need patch G4 11.1.p01 (in a few weeks) to get correctly the radioactive decay of triton,
while the anti-triton still does not have radioactive decay (but acceptable in practice)

Introduced new methods in the G4Track class to provide information on
eventual short-lived parent hadronic resonances

e Suchasp,w,K*, A, etc. which do not have track objects

* Possible now to know if two or more tracks are the daughters of the same
resonance

 Requested by NA61/SHINE Collaboration, and likely useful also to other
fixed-target experiments



Hadronic Data Sets
* Updated :

* G4NDLA4.7

- Updated the ThermalScattering component, obtained from the thermal scattering data of JEFF-3.3,
and adding the ENDF/BVIII-0 materials not already present in JEFF-3.3

* Unchanged:

e GAPARTICLEXSA4.0

* GA4SAIDDATAZ2.0

e GA4ENSDFESTATE2.3
 PhotonEvaporation5.7

 RadioactiveDecay5.6
e GA4TENDL1.4

e GA4INCL1.0

e G4ABLA3.1



Cross Sections
Implemented the integral method in hadronics

* To take into account the change of hadronic cross-sections along a step for
charged hadrons due to the decrease of hadron's kinetic energy by ionization
loss

— Negligible effects for hadronic showers (whereas it is important for EM showers)

Extended the Glauber-Gribov elastic and inelastic nuclear cross sections
for light hypernuclei and anti-hypernuclel projectiles

* Simplified treatment
Introduced new cross sections for tau-neutrinos

 Based on energy scaled cross sections of muon-neutrinos



FTF (Fritiof) string model

* Improved string fragmentation in FTF

* To better describe the production of strange mesons and baryons in proton-
proton interactions, as measured by the NA61/SHINE Collaboration

* Also improved leading particle spectra in meson-nucleon interactions
* Improved production of vector mesons and pseudo-scalar mesons

* For both FTF and QGS string fragmentation, to improve the description of
NAG61/SHINE experimental data

- Revised the mixing probability between vector mesons (p° and w), as well as the
probabilities for the ratios between pseudo-scalar and vector mesons

 Extended and revised treatment of FTF annihilation (at all energies)
* To deal with the annihilation of light anti-hypernuclei
* General improvement of the algorithm used to sample kinematical variables



FTF (Fritiof) string model 2

e Alternative sets of FTF “tunes”

* New singleton class G4FTFTunings to allow to specify alternative sets of
FTF parameters, called "tunes"; added also specific Ul messenger

— Currently, the feature is mostly meant for use in internal tests, further study and
development; in the future, such tunes may be offered to users for specific studies

e Control of nucleon diffraction dissociation

* Added option to G4HadronicParameters to control the diffraction dissociation
for nucleon projectile on target nucleus with baryon number greater than 10

— By default, both projectile and target diffraction are switched off (but they are both
active in the case of target nucleus with baryon number below or equal to 10;
iIf instead the flag is set to "true", then both projectile and target diffraction are

activated regardless of the target nucleus).



Intra-nuclear Cascade models
* Bertini-like (BERT)
e Stable, no developments
* Binary (BIC)
e Stable, no developments
* Liege (INCLXX)
e Stable, no developments

— But on-going work, not yet released (expected for G4 11.2),
to extend the model to anti-proton annihilation (at rest and in-flight)



Nuclear de-excitation

Added limitation on the decays of unphysical fragments, allowing for removal

of light unphysical states and providing improved isotope production for the
spallation fragments

e |In particular, better and more consistent treatment of floating levels
Better treatment of Coulomb barrier

Extended upper limit of atomic de-excitation from Z=100 to Z=104

Extended nuclear de-excitation for hyper-fragments (i.e. fragments with
Lambdas inside)

* Do not perform pre-compound emission but only equilibrium emission
* Simplified treatment for equilibrium emission



Others

New G4NeutronGeneralProcess combined process;
enabled in the reference physics list QBBC

* Similar to the G4GammaGeneralProcess , the physics remain unchanged
but can speed-up the simulation by reducing the number of cross section
evaluations (in particular for granular geometries)

Extended atomic de-excitation in radioactive decays

* In G4ECDecay and G4ITDecay , extended upper limit of atomic de-excitation
from Z=100 to Z=104

Tau-neutrino nuclear interactions

* New final-state models for tau and anti-tau neutral and charged current
neutrino-nucleus interactions

Extended nuclear elastic scattering for light hypernuclei and anti-nypernuclei

projectiles on target nuclei
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e Simplified treatment



Light Hypernuclei and Anti-hypernuclel
 Complete (but simplified) treatment of light (anti-)hypernuclei

* By default, no light hypernuclei and anti-hypernuclei
* If enabled, via:

— G4HadronicParameters::Instance() — SetEnableHyperNuclei( true ),
then, the following interactions are included in all reference physics lists:

- simplified treatment of weak decays
— Ionization and multiple scattering for the charged particles

moreover, only for FTFP_BERT and FTFP_INCLXX physics lists, also the
following hadronic interactions are included:

— nuclear elastic scattering

— nuclear inelastic scattering, handled by either the FTF string model or by the INCL
intranuclear cascade model, with a very simplified treatment of nuclear de-excitation
* INCL is applicable only to hypernuclei, not to anti-hypernuclei;

FTF is applicable to both hypernuclei and anti-hypernuclei (at all energies for the latter); 10
note that QGS is not applicable to ion projectiles (of any kind)



Hadronic showers (see plots in backup slides)

Small changes in hadronic showers in G4 11.1, with FTF- and QGS-showers
getting a bit closer to each other

* With respect to G4 11.0.p03

- FTFP_BERT pion showers have slightly (~0.5%) higher energy response
and (~2%) narrower lateral shapes

- QGSP_BERT pion showers have slightly (~0.5%) lower energy response
and (~2%) wider lateral shapes

* QGSP_BERT showers with respectto FTFP_BERT ones:

- ~1-2% higher energy response

- ~10% wider (i.e. less optimistic) energy resolution
- ~ 5% longer showers

- ~ 7% narrower showers

Reminder: we recommend to fit the Birks quenching coefficient from the 1
h/e test-beam data !



geant-val.cern.ch

* We rely heavily on this tool for testing and validating Geant4

For major, minor, patches and monthly development versions

* The only validation tool in Geant4

* On-going work to extend its coverage

In particular, by importing calorimeter
test-beams, e.g. ATLAS HEC,
ATLAS TileCal, CALICE SiW,

new Dual-Readout calorimeter, etc.
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Too optimistic energy resolution for pion showers in ATLAS calorimeters
 ~20% disagreement since G4 10.5, seen in both ATLAS HEC and TileCal

geant-val.cern.ch
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Examples related to hadronics
* ParticleFluence

* New set of examples implementing different setups — Sphere,
Concentric Spheres, Layer, Calo — for scoring particle fluences

e Hadr01

* Extended to charm and bottom hadrons projectiles
* Extended to light hypernuclel and anti-hypernuclei projectiles
* Hadr09

* Extended to light hypernuclei and anti-hypernuclei inelastic nuclear
Interactions

14



Backup slides



Pion— showers:

G411.1  FTFP BER
G4 11.0.p03 FTFP_BERT

G411.1  QGSP BERT
G4 11.0.p03 QGSP BERT

Note : conventional Birks treatment

(easier and no experimental h/e to fit !)
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Energy Response

Energy response | Beam: pi- | Target: TileCal Energy response | Beam: pi- | Target: AtlasHEC
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Energy

Normalized width | Beam: pi- | Target: TileCal
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Energy Resolution

Energy resolution | Beam: pi- | Target: TileCal Energy resolution | Beam: pi- | Target: AtlasHEC
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Longitudinal Shape

Longitudinal shower shape | Beam: pi- | Target: TileCal Longitudinal shower shape | Beam: pi- | Target: AtlasHEC
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Lateral Shape

Lateral shower shape | Beam: pi- | Target: TileCal Lateral shower shape | Beam: pi- | Target: AtlasHEC
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