

What's new in 11.1: Electromagnetic physics

V. Ivantchenko, CERN & Princeton University

for the Geant4 Collaboration

2 February 2023

Outline

- Update of infrastructure for EM physics
- Selected model developments
- EM Physics Lists
- Geant4-DNA developments
- New approaches for EM physics
- Summary

For the release 11.1 general updates of EM libraries started for previous release were completed. Significant focus of new developments toward R&D on alternative methods for EM physics.

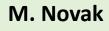
Not all names of developers are shown

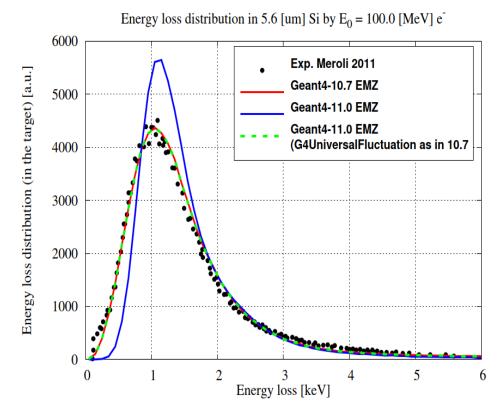
Updates for materials

- Mean ionization potential for carbon is changed from 81 to 78 eV
 - Choice, which NIST data to take
- G4MaterialPropertyVector, G4OpticalMaterialProperties:
 - Insist material property vectors are in increasing order of energy (PR #42);
 - default verbosity=1 as everywhere in Geant4 physics
- Updated bio-materials
 - the material descriptions for G4_ADENINE, G4_GUANINE, G4_CYTOSINE, G4_THYMINE and G4_DEOXYRIBOSE have been updated and G4_PHOSPHORIC_ACID has been added.
- Problems #2346, #2474, #2486 are fixed
 - handling of complex materials and parameterization of density effect correction
- G4DensityEffectData:
 - Matthew Strait fix typos in the density effect data table (#2423) for 8 materials, the most significant fix for G4_Tm, small for G4_Be, G4_Mg, G4_Fe, and G4_Y.

Updates in kernel libraries for physics

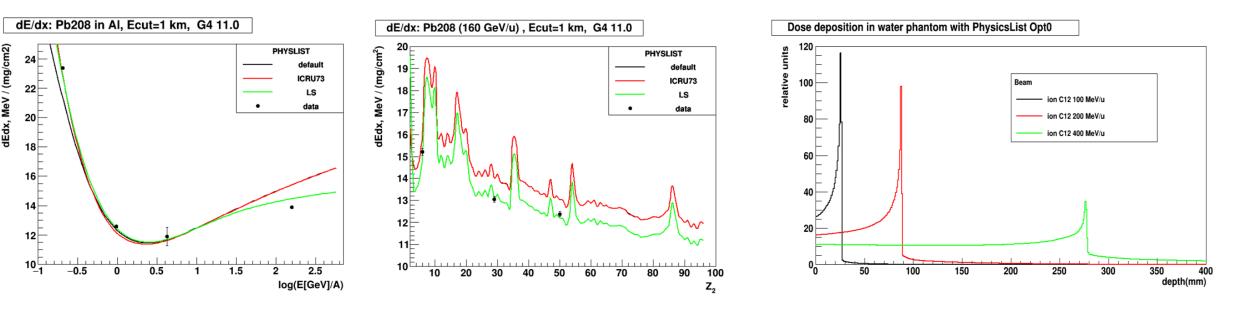
- Added virtual GetCrossSection(...) method for G4VDiscreteProcess to be used for initialisation
 - Needed for the integral method
- Added virtual GetCreatorProcess(...) method for G4VProcess
 - Needed for combined processes
- For particle change
 - G4VParticleChange, G4ParticleChangeForLoss, G4ParticleChangeForGamma, G4ParticleChangeForMSC:
 - SetNumberOfSecondaries(..) is not mandatory anymore
 - Improved diagnostic for wrong energy/momentum/time (useful for studies on #2353, #2368)
 - Substitute severity "EventShouldBeAborted" by "JustWarning"
- For G4SteppingManager:
 - Removed unused "ApplyCuts" facility
 - Updated code to identify CreatorProcess pointer having in mind combined processes
 - Important for gamma general, neutron general, transportation with msc

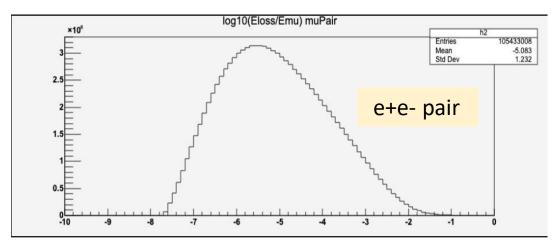

Updates in EM libraries

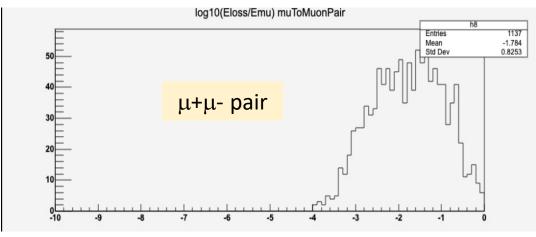

- G4VEmProcess, G4VEnergyLossProcess, G4VMultipleScattering:
 - Moved general part of initialisation to G4EmTableUtil and G4EmUtility
 - 27-30% class length reduction easier to navigate inside classes
 - Updated integral method for charged particles:
 - Implemented for processes without precomputed cross section tables
 - Allowed up to 3 maximum in cross section
- Updated data set
 - G4EMLOW8.2
 - Change the default Livermore DB from EPDL97 to EPICS2017
- Fixed problems:
 - #2495, #2492, #2480

Updates in standard EM processes/models

• Review was done of all processes and helper classes


- Linear interpolation of tables are used for smooth cross sections
- Introduced choice of model of fluctuations
 - G4UniversalFluctuation default fast
 - G4UrbanFluctuation most accurate model
 - used in Opt0, Opt3, Opt4, LIV, and PEN EM physics
 - G4IonFluctuations
 - G4LossFluctuationDummy
 - Also, an external model of fluctuation may be used
- G4UrbanMscModel technical improvements
 - Extended precomputed data structure
 - Reduced number of instructions


Lindhard-Sorensen ion ionization model


- G4LindhardSorensenIonModel is a combined models for the full energy range
 - Lindhard-Sorensen model above (J. Lindhard & A.H. Sorensen, Phys. Rev. A 53 (1996) 2443-2455)
 - Data are shared between threads, optimization of data access
 - Initialisation before the run and lazy initialization during the run
 - Is significantly faster than the old G4ParametrizedIonModel and includes extended data
 - ICRU73 and ICRU90 data at low energy below 2 MeV/amu

Updates in muons processes/models

- Review was done of all processes
 - Linear interpolation of tables are used for smooth cross sections
- Reduced low-energy limits
 - G4MuBetheBlochModel down to 0.2 MeV (was 100 MeV)
 - G4MuBremsstrahlungModel down to 100 MeV (was 1 GeV)
 - G4MuPairProductionModel down to 850 MeV (was 1 GeV)
- New process/model (CERN summer student S. Yajaman)
 - G4MuonToMuonPairProduction
 - G4MuonToMuonPairProductionModel
 - Cross section is ~10⁻⁵ of e+e- pair production
 - Spectrum of muons is much harder
 - High energy muon pair may be produced by energetic muon is a calorimeter

Modifications in EM physics for 11.1

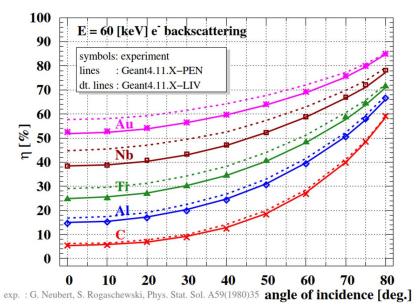
G4EmStandardPhysics

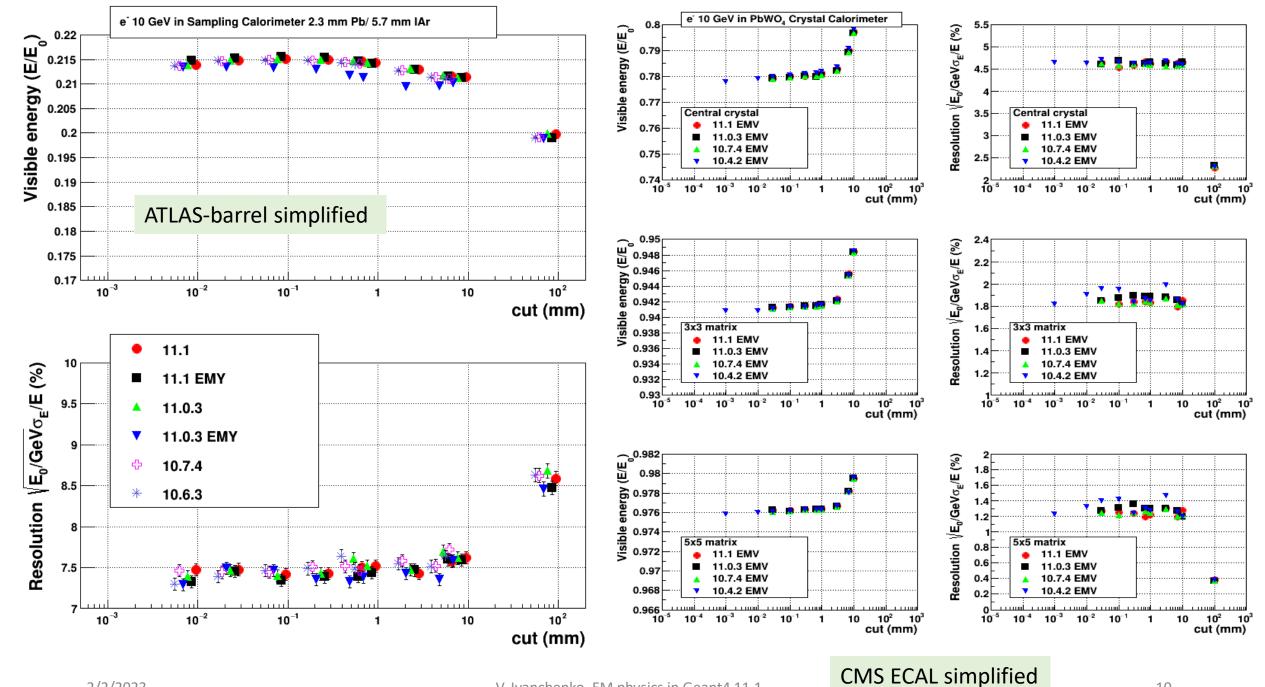
- Gamma general process
- G4UrbanFluctuation
- G4EmStandardPhysics_option1
 - G4TransportationWithMsc

G4EmStandardPhysics_option3

- Gamma general process
- G4UrbanFluctuation
- G4LinhardSorensen ion ionisation model
- MSC RangeFactor=0.03

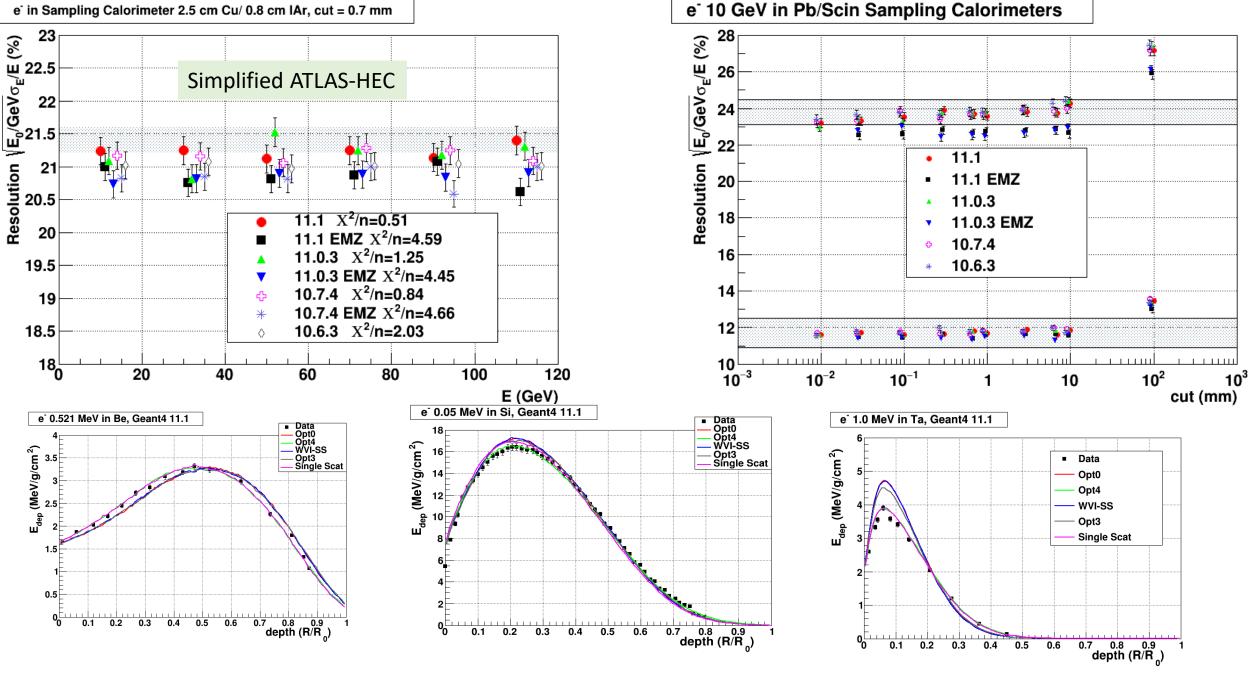
G4EmStandardPhysics_option4


- Gamma general process
- Penelope (instead of Livermore) ionisation for e- below 100 keV
- G4UrbanFluctuation
- G4LinhardSorensen ion ionisation model


G4EmLivermorePhysics

- G4UrbanFluctuation
- G4LinhardSorensen ion ionisation model
- EPICS2017 gamma cross sections

G4EmPenelopePhysics


- G4UrbanFluctuation
- G4LinhardSorensen ion ionisation model

V. Ivanchenko, EM physics in Geant4 11.1

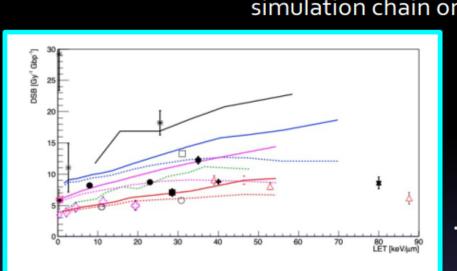
10

V. Ivanchenko, EM physics in Geant4 11.1

Updates in DNA processes/models

- DNA sub-library dependences are resolved (H. Tran)
- G4Pow, G4Log, G4Exp are used in DNA models (P. Dondero)
- Many updates for chemistry models (H. Tran)
- A new extended example "moleculardna" in Geant4 11.1 (H. Tran)
 - Full chain DNA example
 - Simulation of physics, physics-chemistry and chemistry processes in DNA geometries
 - Improvements of molecularDNA are on-going in context of ESA/BioRad3 project including combination with muti-scale framewok for DNA damage prediction
 - GRAS / Geant4 / Geant4-DNA : GCR, SPE -> lunar habitat -> ICRP human phantoms -> organs -> cells -> molecularDNA
- Extension proton transport to 300 MeV (M. A. Cortes-Girardo)
 - G4DNARPWBAExcitationModel, G4DNARPWBAIonisationModel

Extended utility classes to build EM physics

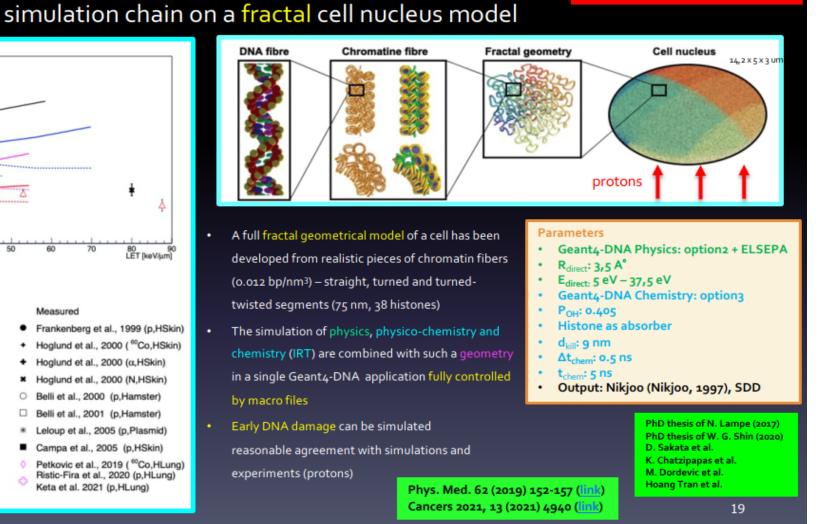

- G4EmBuilder
 - Added instantiation of G4TransportationWithMsc
- G4EmModelActivator
 - Fixed instantiation of PAI model per region
 - Fixed light ion instantiation per region
- All G4EmDNAPhysics_X are inheriting of G4EmDNAPhysics
 - Common method ConstructParticle()
 - ConstructProcess() is now implemented via G4EmDNABuilder utility
 - Set of parameters for G4EmDNABuilder is different for each X
 - Classes become much more compact; maintenance become significantly easier
 - Standard models are used for particle type and energy interval, where DNA models are not available
 - Upper energy limit is extended to 300 MeV

G4EmDNAPhysicsActivator

- Provides DNA physics configuration on top of any standard Physics List
- G4EmDNABuilder utility are used in the same way as inside G4EmDNAPhysics_X

Ready to use extended example in Geant4 11.1

New « molecularDNA » extended example :



Calculated

This work (60Co,5kbp Dist.) This work (p, Total) This work (p,10kbp Dist.) This work (a, 10kbp Dist.) G4DNA, 2020 (60 Co, 5kbp Dist.) G4DNA, 2020 (p,Total) G4DNA, 2020 (p,10kbp Dist.) G4DNA, 2017 (p,10kbp Dist.) PARTRAC, 2003 (p,Total) PARTRAC, 2003 (p,10kbp Dist.) KURBUC, 2001 (p,Total)

Measured

- Frankenberg et al., 1999 (p,HSkin)
- Hoglund et al., 2000 (60Co,HSkin)
- Hoglund et al., 2000 (a,HSkin) ٠
- Hoglund et al., 2000 (N,HSkin)
- Belli et al., 2000 (p,Hamster)
- Belli et al., 2001 (p,Hamster)
- Leloup et al., 2005 (p,Plasmid)
- Campa et al., 2005 (p,HSkin)
- Petkovic et al., 2019 (60 Co.HLung) Ristic-Fira et al., 2020 (p,HLung) Keta et al. 2021 (p.HLung)

« molecularDNA » example

0

New approaches for EM physics

- How to speed-up simulation without compromise of physics?
 - Perform less number of computations at a step and less number of steps
- G4GammaGeneralProcess
 - Adopted by both ATLAS and CMS
 - In Geant4 11.1 is the default for Opt0, Opt3, Opt4, Liv, Pen physics
- G4TransportationWithMSC (J. Hahnfeld)
 - A new combined process
 - User may enable this process via UI command and/or C++ interface
 - Cannot work with G4CoupleTransportation
- Custom tracking manager (J. Hahnfeld)
 - Simplified gamma, e+- transport
- G4HepEm external library (M.Novak + J.Hanhfeld, B. Morgan)
 - Optimized gamma, e+- transport
 - <u>https://github.com/mnovak42/g4hepem</u>
 - <u>https://g4hepem.readthedocs.io/en/latest/</u>
 - Gateway for GPU use for EM physics

The Problem

Step#	[]	KineE	dEStep	StepLeng	TrakLeng	Volume	Process
0	[]	10 MeV	0 eV	0 fm	O fm	World	initStep
1	[]	10 MeV	1.214e-15 meV	4 cm	4 cm	World	Transportation
2	[]	9.469 MeV	530.7 keV	442.5 um	4.044 cm	G4_Pb	msc
3	[]	8.78 MeV	689.5 keV	549.8 um	4.099 cm	G4_Pb	msc
4	[]	8.167 MeV	612.5 keV	576.7 um	4.157 cm	G4_Pb	msc
5	[]	7.287 MeV	678.7 keV	535.8 um	4.21 cm	G4_Pb	eBrem
6	[]	3.789 MeV	4.844 keV	5.203 um	4.211 cm	G4_Pb	eBrem
(7	[]	3.089 MeV	699.9 keV	560.4 um	4.267 cm	G4_Pb	msc
8	[]	2.912 MeV	177.5 keV	160.5 um	4.283 cm	G4_Pb	eBrem
9	[]	2.412 MeV	500 keV	490.5 um	4.332 cm	G4_Pb	msc
10	[]	1.938 MeV	473.7 keV	503 um	4.382 cm	G4_Pb	msc
11	[]	1.304 MeV	633.7 keV	502.7 um	4.433 cm	G4_Pb	msc
12	[]	796.1 keV	508.2 keV	437.5 um	4.476 cm	G4_Pb	msc
13	[]	173.7 keV	622.4 keV	462.1 um	4.523 cm	G4_Pb	msc
14	[]	0 eV	173.7 keV	65.48 um	4.529 cm	G4_Pb	eIoni

The Solved Problem (with Internal MSC Stepping)

* G4Track Information:	Particle = e-,	Track ID = 1,	Parent ID = 0			

Step#	[]	KineE	dEStep	StepLeng	TrakLeng	Volume	Process
0	[]	10 MeV	0 eV	0 fm	0 fm	World	initStep
1	[]	10 MeV	1.214e-15 meV	4 cm	4 cm	World	TransportationWithMsc
2	[]	7.461 MeV	2.406 MeV	2.105 mm	4.21 cm	G4_Pb	eBrem
3	[]	6.518 MeV	723.9 keV	597.6 um	4.27 cm	G4_Pb	eBrem
4	[]	3.433 MeV	1.807 MeV	1.304 mm	4.401 cm	G4_Pb	eBrem
5	[]	1.911 MeV	1.412 MeV	1.434 mm	4.544 cm	G4_Pb	eBrem
6	[]	566.5 keV	1.345 MeV	1.372 mm	4.681 cm	G4_Pb	eIoni
7	[]	102.8 keV	463.7 keV	245.9 um	4.706 cm	G4_Pb	eBrem
8	[]	0 eV	102.8 keV	28.64 um	4.709 cm	G4_Pb	eIoni

▶ No steps limited by msc, directly go to discrete interaction (or volume boundary)!

Summary

- Active developments were carried out in different EM physics domains
 - Improved EM related code quality
 - Fixed problems in EM sub-libraries
 - Improvement of CPU efficiency for HEP applications
 - New model for ions
 - New model of muon pair production by muons
 - Addition of new models and examples for DNA physics
 - DNA models up to 300 MeV
 - Improved Physics List configurations
- Geant4 EM inside 11.1 is in a good shape
 - There are no bug reports required prompt fixing
- EM physics in 11.1 allows different opportunities application specific
 - LHC experiments may benefit from existing new features
 - The G4HepEm library may be used together with 11.1
 - GPU and other R&D developments may be performed more effectively
- ATLAS and CMS already using these new developments