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•  has a complex final state with many different types of (partial) reconstruction 
possible, including overlapping small- and large-radius jets


• Idea: use ML to optimize reconstruction efficiency


• Existing approach (SPA-Net [1, 2]) may work out of the box for fully-resolved case 
(6 small-radius b jets), would like to generalize to mixed resolved/boosted cases


• Fully exploit event topology and kinematic correlations of jets to pair the 3 Higgs 
correctly


• Outline of rest of talk


• Overview of SPA-Net


• Baseline methods for 


• Preliminary results with 


• Discussion

HHH

HHH

HHH

H1(b1b2)

H2(b3b4)

H3(b5b6)

Introduction & Outline
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[2] arXiv:2106.03898
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Symmetry Preserving Attention Networks (SPA-Net)
• Consider all valid permutations using symmetric tensor attention 


• Resonance particle  (e.g., Higgs) is associated with  partons (e.g., 2 b 

quarks); maximum of  reconstructed jets (e.g., 10)


• Input: matrix of transformer-encoded jets  


• Output: rank-  tensor  the joint distribution over -jet 
assignments


• 


• Valid solutions =>  



•

p kp

N

Xp ∈ ℝN×D

kp 𝒫p ∈ ℝN×N×⋯×N kp

∑ 𝒫p = 1

diag(𝒫p) = 0
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Figure 2: A visualization of the high level structure of SPA-NET.

these larger events. Other methods have been tested for leptonic topologies of t t̄, t t̄H, or t t̄ t t̄,
such as KLFitter [36], boosted decision trees [31,37,38], and fully connected networks [39].
While these may perform better than the extended �2 for t t̄H or t t̄ t t̄, none have ever been
demonstrated to outperform the �2 in all-jet t t̄. As all of these methods rely on a permutation
approach, they are at least as cumbersome and indeed often impossible to work with in a
realistic setting, where many millions of events must be evaluated, often hundreds of times due
to systematic uncertainties. It is thus beyond the scope of this paper to study the applications
of extended permutation techniques for the all-jet channel.

3 Symmetry Preserving Attention Networks

We introduce a general architecture for jet-parton assignment named SPA-NET: an attention-
based neural network, first described for a specific topology in [40]. In this paper, we gener-
alize the SPA-NET approach from one specific to t t̄ to a much more general approach that can
accommodate arbitrary event topologies.

Overview The high level structure of SPA-NET, visualized in Figure 2, consists of four distinct
components: (1) independent jet embeddings to produce latent space representations for each
jet; (2) a central stack of transformer encoders; (3) additional transformer encoders for each
particle; and finally (4) a novel tensor-attention to produce the jet-parton assignment distribu-
tions. The transformer encoders employ the fairly ubiquitous multi-head self-attention [16].
We replicate the transformer encoder with one modification where we exchange the positional
text embeddings with position-independent jet embeddings to preserve permutation invariance
in the input.

SPA-NET improves run-time performance over baseline permutation methods by avoiding
having to construct all valid assignment permutations. Instead, we first partition the jet-parton
assignment problem into sub-problems for each resonance particle, as determined by the event
Feynman diagram’s tree-structure (ex. Figure 1). Then we proceed in two main steps: (1) we
solve the jet-parton assignment sub-problems within each of these partitions using a novel
form of attention which we call Symmetric Tensor Attention; and (2) we combine all the sub-
problem solutions into a final jet-parton assignment (Combined Symmetric Loss). This two-
step approach also allows us to naturally handle both symmetries described in Section 2.1
within the network architecture.

Symmetric Tensor Attention Every resonance particle p has associated with it kp partons.
Symmetric Tensor Attention takes a set of transformer-encoded jets Xp 2 RN⇥D - with N the
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SPA-Net Output
• [Detection probability, assignment distribution] x  candidates


• For each particle candidate in  candidates


• 1. If DP is lower than the threshold, SPANet did not find the particle, and the 
corresponding AD is ignored. 


• 2. The peak of AD indicates which combination SPANet predicts correct:


• E.g. If  = 3  and , then jet 1, 2, 3 reconstruct this 
particle candidate. The AD tensor is symmetric by design.


• Optional auxiliary output:


• Classifications, regressions learned from your customized dataset.


• MLP classifiers and regressors can take selected or grouped inputs from 
different depth (event level, particle level, jet level).

Nc

Nc

kp argmax(Pijk) = (1,2,3)
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Inputs: start from signal samples HHH used for analysis

• Inputs: 10 AK5 jets with pT, eta, phi, b-tagging, mass


Advantages of SPANET:

•Exploit kinematic information of all jets (not just 6)

•Dynamical: each event has a different number of jets, AK8, …

• Interesting interplay between boosted and resolved

Inputs: 50


10 jets

pT, Eta, cos(Phi), 

sin(phi), b-tagging

SPANET

H1 assignment 
probability 


(10x10 matrix)

H2 assignment 
probability 


(10x10 matrix)

H3 assignment 
probability 


(10x10 matrix)

H1 detection 
probability 


(Float number)

H2 detection 
probability 


(Float number)

H3 detection 
probability 


(Float number)

SPA-Net Output



Resolved HHH topologies
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Event Configuration: fully resolved
• To give a flavor of how we use it, we can compare the event configurations for 

 (one of the original use cases) and tt̄ → (bqq̄)(b̄qq̄) HHH → (bb̄)(bb̄)(bb̄)
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# ----------------------------------------------------------------------

# REQUIRED - EVENT - Complete list of resonance particles and daughters.

# ----------------------------------------------------------------------

EVENT:

  h1:

    - b1: Jets

    - b2: Jets

  h2:

    - b1: Jets

    - b2: Jets

  h3:

    - b1: Jets

    - b2: Jets

# ---------------------------------------------------------

# REQUIRED KEY - PERMUTATIONS - List of valid permutations.

# ---------------------------------------------------------

PERMUTATIONS:

    EVENT:

      - [ h1, h2, h3 ]

    h1:

      - [ b1, b2 ]

    h2:

      - [ b1, b2 ]

    h3:

      - [ b1, b2 ]


# ----------------------------------------------------------------------

# REQUIRED - EVENT - Complete list of resonance particles and daughters.

# ----------------------------------------------------------------------

EVENT:

  t1:

    - q1: Jets

    - q2: Jets

    - b:  Jets

  t2:

    - q1: Jets

    - q2: Jets

    - b:  Jets

# ---------------------------------------------------------

# REQUIRED KEY - PERMUTATIONS - List of valid permutations.

# ---------------------------------------------------------

PERMUTATIONS:

    EVENT:

      - [ t1, t2 ]

    t1:

      - [ q1, q2 ]

    t2:

      - [ q1, q2 ]



Dataset & Input Features
• Using 14 TeV pp-collisions simulated HHH6b Madgraph+Py8+Delphes:


• ~1M events for training+validation; ~300k events for testing


• Truth matching condition: 


• Gen b-quark from Higgs boson decay is within  of AK5 jet


• Added hadron “b” flavor requirement on AK5 jet


• Higgs boson is “reconstructible” if both b quark daughters match to AK5 jets


• Up to 10 AK5 Jets are considered per event (ranked by pT)


• Input jet features: 


•  (log-normalized),  (normalized), , , and boolean b-tag score

ΔR ≤ 0.5

pT η sin ϕ cos ϕ
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Madgraph model provided by

A. Papaefstathiou, T. Robens, G. Tetlalmatzi-Xolocotzi 

JHEP 05 (2021) 193 

https://arxiv.org/abs/2101.00037


Partial vs Complete events
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• SPANet allows to reconstruct partial events as well as complete events

• 10% of events have 0 Higgs Boson reconstructible

• 20% have 1 Higgs reconstructible and 50% with 2 Higgs reconstructible

• 20% have 3 Higgs Boson reconstructible from 2 AK5 jets

Inclusive >= 6 AK5 jets Event proportion

0 H 10%

1 H 20%

2 H 50%

3 H 20%



• Baseline (Higgs mass): 


• Note: background mass sculpting


• Estimate SPA-Net performance improvements with respect to Chi2 baseline

mH = 125 GeV

HHH — Baseline Method

χ2 = (mb1b2
− mH)2 + (mb3b4

− mH)2 + (mb5b6
− mH)2
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Baseline Method 1 (mH = 125 GeV) — HHH
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Note: using top 6 jets in each event ordered by b-tag and pT

• For 1-3 reconstructible Higgs, 22% of events correctly reconstructed; 39% of Higgs 
correctly reconstructed


• For 3 reconstructible Higgs, 23% of events correctly reconstructed; 52% of Higgs 
correctly reconstructed

Event Type Event Purity H Purity

1-3 H 22% 39%

3H 23% 43%

Event Purity =
Number of events that all Higgs are reconstructed

Total number of events

H Purity =
Number of reconstructed HIggs

Total number of Higgs



SPA-Net — HHH
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• For 1-3 reconstructible Higgs, 34% (+54%) of events correctly reconstructed; 52% (+33%) 
of Higgs correctly reconstructed


• For 3 reconstructible Higgs, 38% (+65%) of events correctly reconstructed; 58% (+34%) 
of Higgs correctly reconstructed

Event Type Event Purity H Purity

1-3 H 34% 52%

3H 38% 58%

Event Purity =
Number of events that all Higgs are reconstructed

Total number of events

H Purity =
Number of reconstructed HIggs

Total number of Higgs



SPA-Net — HHH
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• Performance improvements in H purity:

• Largest improvements observed with higher number of jets

• SPA-Net: achieves similar H purity in different jet multiplicity categories

H purity 1-3h 3h

Chi2 baseline SPA-Net Chi2 baseline SPA-Net

6 jets 46.3% 53.4% (+15%) 64.1% 67.8% (+6%)

7 jets 40.2% 53.3% (+33%) 47.0% 61.9% (+32%)

>= 8 jets 33.8% 49.8% (+47%) 36.4% 54.2% (+49%)

Full 38.6% 51.7% (+33%) 43.1% 58.2% (+35%)



Mass Reconstruction
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• SPA-Net reconstructs the mass of each Higgs candidate appropriately


• Work in progress: investigating mass sculpting of backgrounds
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Differential matching efficiency
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• Matching efficiency: strong dependence on momentum of the Higgs bosons
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Differential matching efficiency
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• At low momentum, jets scattered around detector = complicated pairing

• At higher momentum, jets from Higgs boson more and more collimated, clearer correlation

• At very high momentum ( pT > 400 GeV), matching efficiency drops and Higgs reconstructed in AK8 jets



Differential matching efficiency
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• At 400 GeV, Higgs more likely to be reconstructed in 1 AK8 than 2 AK5

• Optimal performance: generalize approach to both boosted + resolved topologies
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Boosted + Resolved topologies
• Generalizing to boosted + resolved topologies


• Idea is to help us divide phase space between boosted and resolved in 
more intelligent way
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Event Configuration: resolved + boosted
• Comparison boosted+resolved configurations HHH → (bb̄)(bb̄)(bb̄)

# ----------------------------------------------------------------------

# REQUIRED - EVENT - Complete list of resonance particles and daughters.

# ----------------------------------------------------------------------

EVENT:

  h1:

    - b1: Jets

    - b2: Jets

  h2:

    - b1: Jets

    - b2: Jets

  h3:

    - b1: Jets

    - b2: Jets
  
  bh1:

    - bb: BoostedJets
  

  bh2:

    - bb: BoostedJets
  

  bh3:

    - bb: BoostedJets


# ---------------------------------------------------------

# REQUIRED KEY - PERMUTATIONS - List of valid permutations.

# ---------------------------------------------------------

PERMUTATIONS:

    EVENT:

      - [[h1, h2], [bh1,bh2]]


- [[h1, h3], [bh1,bh3]]


- [[h2, h3], [bh2,bh3]]


    h1:

      - [ b1, b2 ]

    h2:

      - [ b1, b2 ]

    h3:

      - [ b1, b2 ]


All permutations of AK5 and AK8 jets

# ----------------------------------------------------------------------

# REQUIRED - EVENT - Complete list of resonance particles and daughters.

# ----------------------------------------------------------------------

EVENT:

  t1:

    - q1: Jets

    - q2: Jets

    - b:  Jets

  t2:

    - q1: Jets

    - q2: Jets

    - b:  Jets

# ---------------------------------------------------------

# REQUIRED KEY - PERMUTATIONS - List of valid permutations.

# ---------------------------------------------------------

PERMUTATIONS:

    EVENT:

      - [ t1, t2 ]

    t1:

      - [ q1, q2 ]

    t2:

      - [ q1, q2 ]



Boosted variables
• Use boosted jets mass, pT, eta, phi, and subjettiness variables as inputs

20

Mass pT Subjettiness 

• On-going work to include both resolved and boosted jets in one training


• Currently studying network hyperparameters and metrics to compare to resolved


• Stay tuned: more results will be published in the paper



HH pairing comparisons
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H1

H2

• Baseline (Higgs mass): 


• Note: background mass sculpting


• Mass agnostic distance method:


• Find pairs based on minimal distance between 2 Higgs masses

mH = 125 GeV

χ2 = (mb1b2
− mH)2 + (mb3b4

− mH)2

D = |m(b1, b2) − k × m(b3, b4) | / 1 + k2, k = 125/120



Baseline Method 1 (mH = 125 GeV) — HH
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Note: using top 4 jets in each event

• For 1-2 reconstructible Higgs, 44% of events correctly reconstructed; 57% of Higgs 
correctly reconstructed


• For 2 reconstructible Higgs, 21% of events correctly reconstructed; 53% of Higgs 
correctly reconstructed

Event Type Event Purity H Purity

1-2 H 44% 57%

2H 21% 53%

Event Purity =
Number of events that all Higgs are reconstructed

Total number of events

H Purity =
Number of reconstructed HIggs

Total number of Higgs



SPA-Net — Resolved HH training

23

• For 1-2 reconstructible Higgs, 76% (+72%) of events correctly reconstructed; 81% (+42%) of Higgs 
correctly reconstructed


• For 2 reconstructible Higgs, 77% (+360%) of events correctly reconstructed; 84% (+58%) of Higgs 
correctly reconstructed - result to be understood in context of analysis, limitations of Delphes…

Event Type Event Purity H Purity

1-2 H 76% 81%

2H 77% 84%

Event Purity =
Number of events that all Higgs are reconstructed

Total number of events

H Purity =
Number of reconstructed HIggs

Total number of Higgs



Method comparison
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• SPA-Net: clear performance improvements with respect to both baselines


• Short-comings: chi2 methods consider only 4 jets so far, boolean b-tagging


• Likely lower improvements than in analysis specific reconstruction


• However, great potential for SPA-Net to improve HH and HHH analyses
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• SPA-Net reconstructs the mass of each Higgs candidate appropriately


• Work in progress: investigating mass sculpting of backgrounds


• Investigating boosted + resolved reconstruction to validate SPA-Net method

1-2h events 2h events



Differential matching efficiency
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• At 400 GeV, Higgs more likely to be reconstructed in 1 AK8 than 2 AK5

• Optimal performance: generalize approach to both boosted + resolved topologies


• On-going work to define best strategy and compare results with HHH
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Summary
• SPANet: A transformer model for particle reconstruction.


• SPANet shows better performance than chi2 in our preliminary study of HHH6b.


• Unique algorithm to pair fully resolved, semi-boosted, fully boosted 
simultaneously


• Performance improvements validated on HH4b signal too


• Stay tuned: paper being finalised and will be published soon!
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Backup



Symmetric Tensor Attention
• Note  is an “overparameterization” of the valid jet assignments: many 

represent the same physical combinations.


• For example for the  case, 10 jets maximum


• Each  has 100 entries


• But we can swap  for each , and can swap 


• In the end we end up with only 3150 unique physical assignments!

𝒫p

HHH → 6b

𝒫p

(b1, b2) H H1, H2, H3
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𝒮i1i2…ikp = ∑
σ∈Gp

Θ
iσ(1)iσ(2)…i

σ(kp) ,

𝒪 j1 j2…jkp = Xj1
i1

Xj2
i2

…Xjpk
ipk

𝒮i1i2…ikp ,

𝒫 j1 j2…jkp
p =

exp(𝒪 j1 j2…jkp)
∑j1,j2,…,jpk

exp(𝒪 j1 j2…jkp)
.

∀σ ∈ Gp (j1, j2, …, jkp) ≃ (jσ(1), jσ(2), …, j
σ(kp)) ⟺ 𝒫 j1 j2…jkp

p = 𝒫
jσ(1) jσ(2)…j

σ(kp)
p



Combined Symmetric Loss
• Symmetric attention layers produce solutions  for each 

particle’s jet-carton assignment sub-problem


• True assignments are delta-distributions containing one possible valid jet 
assignment .


• Loss for each sub-problem is the categorical cross entropy for each particle 


• Permutation group  induces an equivalence relation over particles: 



• Incorporate these symmetries by allowing network to fit any equivalent jet 
assignment (minimize loss over a given equivalence class)

{𝒫1, 𝒫2, …, 𝒫m}

{𝒯1, 𝒯2, …, 𝒯m}

p

GE
∀σ ∈ GE, (𝒯1, 𝒯2, …, 𝒯m) ≃ (𝒯σ(1), 𝒯σ(2), …, 𝒯σ(m))
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Partial Event Reconstruction
• Though each parton is usually expected to produce a jet, some particles are 

impossible to reconstruct


• Mask unreconstrable particles and only include the loss contributed by 
reconstructable particles


• Also, scale the loss based on the distribution of events present in the training 
dataset by computing the effective class count for each partial combination

31

ℒmasked
min = min

σ∈GE (
m

∑
i=1

ℳσ(i)CE(𝒫i, 𝒯σ(i))

CB (ℳσ(1), ℳσ(2), …, ℳσ(m)) ) .



•  : number of AK4 jets;  : number of AK8 jets


• Two sets of reconstruction targets: [h1, h2] and [bh1 (boosted H 1), bh2]


• Output AK4 jet AD tensor is a  x  symmetric matrix, 


• Output AK8 jet AD tensor is a vector of size .


•  {h_i} and {bh_i} are the same set of particles ordered by pT, so h_i and bh_i 
have one-to-one correspondence.


• bh_i will be selected if it is detected. If not, h_i will be selected if it is 
detected. 

Nj Nfj

Nj Nj

Nfj

Generalization to Boosted & Resolved



Model Configuration
• Many hyperparameters to tune!


• We suggested the following:
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linear_prelu_activation: true

mask_sequence_vectors: 1

masking: Filling

normalization: LayerNorm

normalize_features: 1
num_attention_heads: 4
num_branch_embedding_layers: 3
num_branch_encoder_layers: 3
num_classification_layers: 3
num_dataloader_workers: 4
num_detector_layers: 2
num_embedding_layers: 10
num_encoder_layers: 4
num_gpu: 1
num_jet_embedding_layers: 0
num_jet_encoder_layers: 2
num_regression_layers: 3
optimizer: AdamW

partial_events: 1
position_embedding_dim: 16
regression_loss_scale: 0.0
skip_connections: 1
split_symmetric_attention: 1
testing_file: ''
train_validation_split: 0.95
training_file: data/hhh_training_masses.h5

transformer_activation: gelu

transformer_dim: 32
transformer_dim_scale: 2.0
transformer_type: Gated

trial_output_dir: ./test_output

trial_time: ''
usable_gpus: ''
validation_file: ''
verbose_output: false

assignment_loss_scale: 1.0

balance_classifications: false

balance_jets: 0

balance_losses: true

balance_particles: 1

batch_size: 4096

classification_loss_scale: 0.0

combinatorial_scale: 0.0

combine_pair_loss: min

dataset_limit: 1.0

dataset_randomization: 0

detection_loss_scale: 0.0

dropout: 0.2

epochs: 250

event_info_file: event_files/hhh_masses.yaml

focal_gamma: 0.0

gradient_clip: 0.0

hidden_dim: 64

initial_embedding_dim: 16

initial_embedding_skip_connections: 1

kl_loss_scale: 0.0

l2_penalty: 0.0002

learning_rate: 0.0015

learning_rate_cycles: 1

learning_rate_warmup_epochs: 1.0

limit_to_num_jets: 0

linear_activation: gelu

linear_block_type: GRU



