b-jet Trigger at ATLAS

Maggie Chen – University of Oxford
On behalf of the ATLAS b-jet trigger group
HHH workshop Dubrovnik 2023
• b-jets are important in many physics searches (e.g. $HH \rightarrow b\bar{b}b\bar{b}$)
• b-tagging algorithms exploit the b-hadron decay properties to identify b-jets
 o Used in multiple stages in the b-jet trigger preselection
 o With many updates in Run 3!
• $HH \rightarrow b\bar{b}b\bar{b}$ trigger strategy update
 o Gain in efficiency from delayed stream
• Challenges in HL-LHC and HHH searches
 o Specific kinematic phase space currently not within reach?
 o More final-state specific triggers?

Bunch crossings
40 MHz
L1 trigger
< 100 kHz
HLT
~100 Hz

Data for physics analysis
(b-jet trigger)
• Precision b-tagging requires precise tracking information to reconstruct secondary vertices → CPU intensive!
 o Can utilize b-tagging at earlier stages for pre-select candidates for full scan tracking
• Significant improvement in the ability to reject background from b-tagging
• Precision b-tagging requires precise tracking information to reconstruct secondary vertices → CPU intensive!
 o Can utilize b-tagging at earlier stages for pre-select candidates for full scan tracking
• Significant improvement in the ability to reject background from b-tagging

Calorimeter topo clusters → Fast ROI tracking → fastDIPS

Trained on jets from calorimeter without PV

Level 1 trigger seed → Full scan tracking → Primary vertex finding → Particle flow → Precision tracking → GN1

Trained on Particle flow jets + PV + precision tracking

Trigger level analysis

Precision b-tagging requires precise tracking information to reconstruct secondary vertices → CPU intensive!
 o Can utilize b-tagging at earlier stages for pre-select candidates for full scan tracking
• Significant improvement in the ability to reject background from b-tagging
b-tagging exploits the b-hadron decay properties:

- Hard b-quark fragmentation
 - $\sim 70\%$ of the b-quark energy goes to the B-hadron
- Relatively long lifetime: $\sim 1.5\text{ps}$
- Displaced secondary vertex
- Large transverse impact parameter (d_0) in B-hadron decay tracks
- Large decay multiplicity

Objective:

- Classify jets originating from b-quarks, c-quarks and light-flavour quarks
Update to GN1

DNN \rightarrow GNN (represents jets with variable number of unordered tracks naturally)

- **Previously:** DL1d relies on "low-level" algorithms
- **Now:** GN1 – a single algorithm
 - Uses auxiliary tasks to learn jet substructure
 1. Group tracks from common vertices
 2. Predict physics origins of tracks
- **Benefits:**
 - Better background rejection
 - No "low-level" algorithms to retune/maintain
 - Useful auxiliary tasks outputs
Combine the GNN outputs p_b, p_c, p_{light} into a single discriminant:

$$D_b = \log\left(\frac{p_b}{(1 - f_c) \cdot p_{\text{light}} + f_c \cdot p_c}\right)$$

f_c - effective charm fraction

Define working points for b-jet efficiency:

Evaluate background rejection:

GN1 performance

GN1 public results
Higher background rejection means lower trigger rates!

- Rates estimated by rerunning the Run 3 HH4b trigger on Run 3 Enhanced Bias data
- Replacing DL1d with GN1 in the same trigger
- At most a 20% reduction in readout rate → highly relevant in HL-LHC
Rejecting bb-jets from $g \to b\bar{b}$ splitting can further reduce readout rates

- Currently bb-jets are identified as b-jets by GN1
- DL1dbb – a dedicated DNN to separate b-jets and bb-jets
Combining GN1 + DL1dbb:

- Higher background rejection while maintaining HH4b signal efficiency
- Most significantly at tighter GN1 b-tagging working points
- Reduce readout rates, and maintain high signal purity for final states with multiple b-jets
• Run 3 triggers use full scan tracking to reconstruct PFlow objects
 - Better reconstruction but CPU intensive
• Fast track finding + fastDIPS: reduces tracking to high-energetic jets only

FastDIPS algorithm – deep sets network

\[
D_b = \log \left(\frac{p_b}{(1 - f_c) \cdot p_{\text{light}} + f_c \cdot p_c} \right)
\]

DIPS paper

Features
- Track 1
- Track 2
- \ldots
- Track N

Calorimeter topo clusters
- Fast track finding
- FastDIPS
- Full scan tracking
- Level 1 trigger seed
FastDIPS pre-selection

RoI width for fast track finding – 0.5 to 0.3
Track p_T threshold – 0.5 to 1 GeV

Fast tracking finding + FastDIPS – 30% of CPU cost

Smaller RoI width + higher track p_T cut:
no large degradation in light-jet rejection
Impact on $HH \rightarrow b\bar{b}b\bar{b}$ signal acceptance:

- From tightening the working point on fastDIPS from 85% to 80%
 - Very small impact on $HH \rightarrow b\bar{b}b\bar{b}$ signal trigger acceptance (-2%)
 - But reduces the rates of event-wide tracking significantly

- CPU reduction will be highly relevant in HL-LHC data-taking

ATLAS Preliminary

<table>
<thead>
<tr>
<th>Trigger selection</th>
<th>Presel. rejection factor on top of L1</th>
<th>$HH \rightarrow b\bar{b}b\bar{b}$ relative trigger acceptance</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 + presel. (85% WP) + selection ($HH \rightarrow b\bar{b}b\bar{b}$)</td>
<td>5</td>
<td>0.98</td>
</tr>
<tr>
<td>L1 + presel. (80% WP) + selection ($HH \rightarrow b\bar{b}b\bar{b}$)</td>
<td>10</td>
<td>0.96</td>
</tr>
</tbody>
</table>
Impact on $HH \rightarrow b\bar{b}b\bar{b}$ signal acceptance:

- From tightening the working point on fastDIPS from 85% to 80%
 - Very small impact on $HH \rightarrow b\bar{b}b\bar{b}$ signal trigger acceptance (-2%)
 - But reduces the rates of event-wide tracking significantly

- CPU reduction will be highly relevant in HL-LHC data-taking

<table>
<thead>
<tr>
<th>Trigger selection</th>
<th>Presel. rejection factor on top of L1</th>
<th>$HH \rightarrow b\bar{b}b\bar{b}$ relative trigger acceptance</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 + presel. (85% WP) + selection ($HH \rightarrow b\bar{b}b\bar{b}$)</td>
<td>5</td>
<td>0.98</td>
</tr>
<tr>
<td>L1 + presel. (80% WP) + selection ($HH \rightarrow b\bar{b}b\bar{b}$)</td>
<td>10</td>
<td>0.96</td>
</tr>
</tbody>
</table>
Run 3 $HH \rightarrow 4b$ trigger strategy

- $HH \rightarrow 4b$ is challenging due to all-hadronic final state
 - Analysis operates on trigger turn-on region
 - Several multi-jet triggers for acceptance across m_{HH}

Non-resonant analysis:

- $2b2j$ – 2 35GeV b-tagged jets
 - + 1 35GeV extra jet
- $2b1j$ – 2 55 GeV b-tagged jets
 - + 1 100-150 GeV extra jet
Run 3 $HH \rightarrow 4b$ trigger strategy

Changes in L1:

Run 2:
- Sensitivity limited by requiring 4 jets with $p_T > 15$ GeV
- Plateaus at 65 GeV in offline \rightarrow low acceptance for the 4th soft jet

Run 3:
- Pre-selection upgrade allows for more L1 accept rates \rightarrow requiring 2 jets $p_T > 15$ GeV, 1 jet $p_T > 45$ GeV
- lower L1 threshold for 4th soft jet
Run 3 $HH \rightarrow 4b$ trigger strategy

Changes in HLT:

Run 2:
- Symmetric triggers: same p_T cut on triggered jets ($p_T > 35$ GeV)

Run 3:
- Asymmetric trigger: different p_T cuts on triggered jets ($p_T > 80$ GeV, 55 GeV, 28 GeV, 20 GeV)
 → reduces trigger rates
- Delayed stream – events stored for later reconstruction

Run 3 expected HH4b trigger performance

Largest improvement in the low m_{HH} region
Conclusion & HHH trigger challenges

- Upgrades to reduce readout rates and maintain signal purity are highly relevant for HL-LHC, where HHH signatures might become accessible.
- Upgrades in $HH \rightarrow 4b$ trigger strategies also relevant for HHH.
- However HHH signatures are more challenging:
 - More b-quarks in the final states ($HHH \rightarrow 6b$).
 - Softer b-quarks in the final states in many BSM models
 → Tania will give an overview on a range of models.

Challenges to consider:
- Challenges to calibrate b-tagging for b-jets at very low p_T.
- How much can we rely on delayed stream in HL-LHC?
- More final-state-specific trigger strategies for more complex signatures?
Backup
bb-jet features

Compared to b-jets:

- Contains 2 b-hadrons instead of 1
- Larger track multiplicity within the jet cone
- Lower fraction of energy carried by tracks from b-hadron decay
- Larger jet width
DL1d discriminant

ATLAS Simulation Preliminary
- $t\bar{t}$ and multijet events, $\sqrt{s} = 13$ TeV
- Trigger PFlow Jets
- $p_T > 20$ GeV, $|\eta| < 2.5$
- $f_c = 0.018$

- b-jets
- c-jets
- bb-jets
- light-flavour jets
- stat. unc.

-77%
DL1dbb discriminant

ATLAS Simulation Preliminary
$t\bar{t} +$ multijet events, $\sqrt{s} = 13$ TeV
Trigger PFlow Jets
$p_T >$ 20 GeV, $|\eta| < 2.5$

77%
fastDIPS performance

fastDIPS | EMTopo jets is not trained with any primary vertex info
- However still decent performance in light-jet rejection compared to precision b-tagging algorithms
L1 jet turn-on

3J15 at L1 plateaus at 65 GeV for offline jet
- L1 jet energy resolution is low, therefore jet E_T at L1 spreads more widely at offline jet p_T
- The 65 GeV threshold limits the acceptance of the 4th soft jet in the HH4b signal