b-jet Trigger at ATLAS

ATLAS EXPERIMENT Maggie Chen – University of Oxford

On behalf of the ATLAS b-jet trigger group

HHH workshop Dubrovnik 2023

Overview

- b-jets are important in many physics searches (e.g. $HH \rightarrow b\overline{b}b\overline{b}$)
- $HH \rightarrow b\overline{b}b\overline{b}$ trigger strategy update \circ Gain in efficiency from delayed stream
- Challenges in HL-LHC and HHH searches

 Specific kinematic phase space currently not within reach?
 More final-state specific triggers?

b-jet trigger preselection

- Precision b-tagging requires precise tracking information to reconstruct secondary vertices → CPU intensive!
 - Can utilize b-tagging at earlier stages for pre-select candidates for full scan tracking
- Significant improvement in the ability to reject background from b-tagging

b-jet trigger preselection

- Precision b-tagging requires precise tracking information to reconstruct secondary vertices → CPU intensive!
 - Can utilize b-tagging at earlier stages for pre-select candidates for full scan tracking
- Significant improvement in the ability to reject background from b-tagging

b-tagging algorithm

b-tagging exploits the b-hadron decay properties:

• Hard *b*-quark fragmentation

 \circ ~70% of the *b*-quark energy goes to the B-hadron

- Relatively long lifetime: \sim 1.5ps
- Displaced secondary vertex
- Large transverse impact parameter (*d_o*) in B-hadron decay tracks
- Large decay multiplicity

Objective:

• Classify jets originating from b-quarks, c-quarks and light-flavour quarks

Update to GN1

DNN \rightarrow GNN (represents jets with variable number of unordered tracks naturally)

- <u>Previously:</u> DL1d relies on "low-level" algorithms
- <u>Now:</u> GN1 a single algorithm

 ${\rm \circ}$ Uses auxiliary tasks to learn jet substructure

- 1. Group tracks from common vertices
- 2. Predict physics origins of tracks

• <u>Benefits:</u>

 \odot Better background rejection

No "low-level" algorithms to retune/maintain

 \circ Useful auxiliary tasks outputs

GN1 performance

GN1 public results

Combine the GNN outputs p_b , p_c , p_{light} into a single discriminant:

$$D_{b} = \log\left(\frac{p_{b}}{(1 - f_{c}) * p_{light} + f_{c} * p_{c}}\right)$$

 f_c - effective charm fraction

Define working points for b-jet efficiency:

Evaluate background rejection:

GN1 public results

Higher background rejection means lower trigger rates!

- Rates estimated by rerunning the Run 3 HH4b trigger on Run 3 Enhanced Bias data
- Replacing DL1d with GN1 in the same trigger
- At most a 20% reduction in readout rate
 → highly relevant in HL-LHC

$g \rightarrow b\overline{b}$ rejection – DL1dbb

Rejecting bb-jets from $g \rightarrow b\overline{b}$ splitting can further reduce readout rates

- Currently bb-jets are identified as b-jets by GN1
- DL1dbb a dedicated DNN to separate b-jets and bb-jets

DL1dbb performance

DL1dbb public results

Combining GN1 + DL1dbb:

- Higher background rejection while maintaining HH4b signal efficiency
- Most significantly at tighter GN1 b-tagging working points
- Reduce readout rates, and maintain high signal purity for final states with multiple b-jets

FastDIPS algorithm

- Run 3 triggers use full scan tracking to reconstruct PFlow objects

 Better reconstruction but CPU intensive
- Fast track finding + fastDIPS: reduces tracking to high-energetic jets only

FastDIPS pre-selection

ATL-PHYS-PUB-2020-014

Impact on $HH \rightarrow b\overline{b}b\overline{b}$ signal acceptance:

- From tightening the working point on fastDIPS from 85% to 80%
 Very small impact on HH → bbbb signal trigger acceptance (-2%)
 But reduces the rates of event-wide tracking significantly
- CPU reduction will be highly relevant in HL-LHC data-taking

Trigger selection	Presel. rejection factor on top of L1	$HH \rightarrow b\bar{b}b\bar{b}$ relative trigger acceptance
L1 + presel. $(85\% \text{ WP})$ + selection $(HH \rightarrow b\bar{b}b\bar{b})$	5	0.98
L1 + presel. (80% WP) + selection $(HH \rightarrow b\bar{b}b\bar{b})$	10	0.96

ATLAS Preliminary

Impact on $HH \rightarrow b\overline{b}b\overline{b}$ signal acceptance:

- From tightening the working point on fastDIPS from 85% to 80%
 Very small impact on HH → bbbb signal trigger acceptance (-2%)
 But reduces the rates of event-wide tracking significantly
- CPU reduction will be highly relevant in HL-LHC data-taking

Trigger selection	Presel. rejection factor on top of L1	$HH \rightarrow b\bar{b}b\bar{b}$ relative trigger acceptance
L1 + presel. (85% WP) + selection $(HH \rightarrow b\bar{b}b\bar{b})$	5	0.98
L1 + presel. (80% WP) + selection $(HH \rightarrow b\bar{b}b\bar{b})$	10	0.96

ATLAS Preliminary

Run 3 $HH \rightarrow 4b$ trigger strategy

• $HH \rightarrow 4b$ is challenging due to all-hadronic final state \circ Analysis operates on trigger turn-on region \circ Several multi-jet triggers for acceptance across m_{HH}

Non-resonant analysis:

Changes in L1:

<u>Run 2:</u>

- Sensitivity limited by requiring 4 jets with $p_T > 15$ GeV
- Plateaus at 65 GeV in offline \rightarrow low acceptance for the $4^{\rm th}$ soft jet

<u>Run 3:</u>

Pre-selection upgrade allows for more L1 accept rates
 → requiring 2 jets p_T > 15 GeV, 1 jet p_T > 45 GeV
 → lower L1 threshold for 4th soft jet

Run 3 expected HH4b trigger performance

Changes in HLT:

<u>Run 2:</u>

• Symmetric triggers: same p_T cut on triggered jets $(p_T > 35 \text{ GeV})$

<u>Run 3:</u>

- Asymmetric trigger: different p_T cuts on triggered jets ($p_T > 80$ GeV, 55 GeV, 28 GeV, 20 GeV)
 - \rightarrow reduces trigger rates
- Delayed stream events stored for later reconstruction

Conclusion & HHH trigger challenges

- Upgrades to reduce readout rates and maintain signal purity are highly relevant for HL-LHC, where HHH signatures might become accessible
- Upgrades in $HH \rightarrow 4b$ trigger strategies also relevant for HHH
- However HHH signatures are more challenging

 More b-quarks in the final states (HHH → 6b)
 Softer b-quarks in the final states in many BSM models
 → Tania will give an overview on a range of models

Challenges to consider:

- Challenges to calibrate b-tagging for b-jets at very low $\ensuremath{p_{\text{T}}}$
- How much can we rely on delayed stream in HL-LHC?
- More final-state-specific trigger strategies for more complex signatures?

100

pt b [GeV]

150

50

0.1

0.01

200

Backup

bb-jet features

Compared to *b*-jets:

- Contains 2 *b*-hadrons instead of 1
 - Larger track multiplicity within the jet cone
- Lower fraction of energy carried by tracks from *b*-hadron decay
- Larger jet width

DL1d discriminant

DL1dbb discriminant

fastDIPS performance

- fastDIPS | EMTopo jets is not trained with any primary vertex info
- However still decent performance in light-jet rejection compared to precision b-tagging algorithms

L1 jet turn-on

3J15 at L1 plateaus at 65 GeV for offline jet

- L1 jet energy resolution is low, therefore jet E_T at L1 spreads more widely at offline jet p_T
- The 65 GeV threshold limits the acceptance of the 4th soft jet in the HH4b signal

