Recent developments in heavy flavour tagging and new HH and HHH triggers for Run 3

Marina Kolosova

marina.kolosova@cern.ch

Heavy flavour jet tagging in CMS

Heavy flavour b/c-jet tagging crucial for Higgs SM and BSM physics at the LHC

Unique signature:

- Sizeable lifetime of b/c hadrons (ps)
 - Displaced tracks (few mm) form a secondary vertex (${
 m SV}$)
- Harder fragmentation and larger mass compared to light-flavour quarks/gluons
- Presence of charged leptons in 20% (10%) of b (c) hadrons decays

CMS collision event with 3 jets, 2 of which tagged with the **CSVv2** algorithm

Heavy flavour jet tagging in CMS

DeepJet

DeepJet heavy flavour tagger has been widely used in Run 2 Legacy results

- Successor of DeepCSV and state-of-the-art in Run 2
- Uses ~650 input features:
 - Low-level: charged and neutral Particle Flow (PF) candidates and SV
 - Global-level: jet kinematics, track and SV multiplicities in jet, number of primary vertices in event
- DeepJet architecture:

Multiclass output allows for b, c-jet identification and light quark vs gluon discrimination

DeepJet as a b tagger

E. Bols et al 2020 JINST 15 P12012

Usage in CMS analyses:

- 3 working points (WPs):
 - Loose : ≈91% b eff, 10% mis-id rate
 - Medium : ≈80% b eff, 1% mis-id rate
 - Tight : ≈65% b eff, 0.1% mis-id rate
- Per-jet scores used as inputs to ML algorithms

Fundamental role in HH \rightarrow 4b search: Most stringent observed constraints on HH cross section!

Phys. Rev. Lett. 129 (2022) 081802

CMS DP-2023-005

DeepJet b calibration

Different calibration techniques used to derive scale factors (SF) to ensure same performance of heavy-flavour tagging in simulation as in data

- b-tagging efficiency measured in **multijet** and **top pair production** events
 - System8, pT rel., Lifetime (LT)
 - Kin. Fit, Tag & Probe
- The **combination** of results is used to ensure robustness of the fixed WPs SF measurement
- Light-jet misidentification rate measured in multijet events
 - NegativeTag

Scale factors are also available for the full discriminant shape:

✓ Shape calibrations successfully applied in H→bb observation! [CMS Collaboration Phys. Rev. Lett. 121, 121801]

DeepJet as a c jet tagger

CMS DP-2023-006

1.0

DeepJet as a c jet tagger

MC only

With SF: Central

CvsL:

CMS Prelimina

tt jets pT > 20 DeepCS' DeepJet

Mistagging rate (udsg) ₀

 10^{-2}

0.0

CMS DP-2023-006

- Harder to distinguish c jets from light flavour jets, or even b jets
- Two discriminating variables: CvsL, CvsB

 10^{-2} — – MC only With SF: Central With SF: Stat Unc (68% CL) With SF: Stat Unc (68% CL) With SF: Stat ⊕ Syst Unc (68% CL) 10⁻³0.0 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Tagging efficiency (c) Tagging efficiency (c)

		CvsB cut			udsg eff.
Loose Medium Tight	0.030	0.400	89.9%	28.2%	93.0%
	0.085	0.340	60.5%	25.7%	26.0%
	0.520	0.050	26.4%	31.0%	0.60%

8

Improving robustness of DeepJet with adversarial training

CMS-DP-2022-049

Jet tagging algorithms trained in **simulation** only.

• Mismodellings can lead to non-negligible differences in performance in data

Adversarial attack: Adversarial inputs generated by the Fast Gradient Sign Method (FSGM):

$$x_{\text{FGSM}} = x_{\text{raw}} + \epsilon \cdot \text{sgn}\left(\nabla_{x_{\text{raw}}} J(x_{\text{raw}}, y)\right)$$

Adversarial training:

- Defense strategy to mitigate the impact of adversarial attacks
- Use of systematically distorted samples during training
- Apply FGSM attack in every step of the training
 - the network is less likely to learn simulation-specific properties of the training sample

x_{raw}: are the input features c : (small) distortion parameter J : loss function y : truth label

Improving robustness of DeepJet with adversarial training

Adversarial training:

- Two tasks: optimizing classification & withstand distortions of inputs
- Reduces data-to-simulation differences prior to any calibration

CMS-DP-2022-049

ParticleNet

• First graph-based tagger at the LHC!

- Jets represented as an **unordered set of particles in space** (*"particle clouds"*)
- Uses permutation-invariant graph-neural networks: Dynamic Graph Convolutional Neural Network (arXiv:1801.07829)
- Input nodes: (up to 100) PF jet constituents, SVs with set of features
- Neighboring nodes connected to learn relations
- Training performed on jets uniform in p_T /mass
- Initially used for boosted jet tagging:
 → Multi-class approach for t/W/Z/H tagging
- More recently explored for **small-cone** jet tagging

Run 2 physics highlights with ParticleNet

CMS HIG-21-008

First observation of $Z \rightarrow cc$

at hadron collider $(5.7\sigma)!$

12

Run 2 physics highlights with ParticleNet

CMS B2G-22-003

- Search for non-resonant HH production via ggF and VBF in the 4b final state, with Lorentz-boosted H pairs
- Use of ParticleNet to discriminate between
 H→bb and QCD-induced jets
- Significant improvements in tagging performance and jet mass decorrelation
- Increased statistics (Run 2) and novel tagging techniques led to a factor of 30 improvement on 95% C.L. upper limits of HH production cross section wrt. previous search (2016 only)

Calibration of ParticleNet MD H \rightarrow bb, H \rightarrow cc tagger performed for fixed WPs and as a function of jet p_T

Proxy jets: Using $g \rightarrow b\overline{b}/c\overline{c}$ jets obtained from QCD multijet events in data passing a BDT selection (sfBDT):

- sfBDT trained with simulated gluon-splitting $g \rightarrow b\overline{b}/c\overline{c}$ QCD multijet events
- Separates jets with a clean composition of quarks, resembling more the H→bb(cc) jets, against the ones with large contamination of extra gluons
- Final state gluon contamination rate κ_{g} defined as:

$$\kappa_g = \frac{\sum p_{T,g}}{\sum p_{T,g} + p_{T,q}}$$

- Quarks and gluons selected from parton-level truth particles associated with a jet
- Signal jets: $\kappa_g < 0.15$, background jets: $\kappa_g > 0.85$
- Input variables to the sfBDT:
 - basic kinematics of the subjets
 - \circ secondary vertices associated with the jet

Workflow:

- All jets from the QCD multijet MC categorised into b(bb), c(cc), and light based on the truth-level matching
- Proxy of H→bb or H→cc jets built from the b(bb) or c(cc) class with a specific selection on the sfBDT
- Proxy jets fitted to data with tag-and-probe, under the specific tagger WP
- 3 free-floating rate parameters SFb, SFc, SFl assigned to the 3 classes
- Fit performed individually on multiple pT bins
- The post-fit parameter SFb (SFc) is then regarded as the SF for the $H \rightarrow b\overline{b}$ (cc) signal jets

simulation (QCD jets)

CMS DP-2022-005

• Fit variable: log(mSV1) (SV1: leading SV associated with the jet with the highest impact parameter dxy significance)

Source	Uncertainties on three flavour templates		
-	b(bb)	c(cc)	light
Luminosity	1.2-2.5%	1.2-2.5%	1.2–2.5%
Pileup reweighting	<0.5%	<0.6%	<1.9%
sfBDT variable data-to-MC reweighting	<0.2%	<0.2%	<0.2%
ISR parton shower uncertainty	1–3%	4–6%	3–5%
FSR parton shower uncertainty	2–6%	8-12%	17–20%
Fragmentation uncertainty on bottom quarks	14–16%	_	—
Fragmentation uncertainty on charm quarks	_	13-16%	_
Fragmentation uncertainty on light quarks	_	—	20%

Additional systematic uncertainty:

- For each calibration point:
 - **11 selections of the sfBDT** \rightarrow 11 proxy jet collections \rightarrow 11 fits (and scale factors)
- Max distance between all 11 scale factors & central value taken as an additional systematic uncertainty

Pre/post-fit distributions for a single calibration point and

CMS DP-2022-005

• Fit variable: log(mSV1) (SV1: leading SV associated with the jet with the highest impact parameter dxy significance)

Source	Uncertainties on three flavour templates		
-	b(bb)	c(cc)	light
Luminosity	1.2–2.5%	1.2–2.5%	1.2–2.5%
Pileup reweighting	<0.5%	<0.6%	<1.9%
sfBDT variable data-to-MC reweighting	<0.2%	<0.2%	<0.2%
ISR parton shower uncertainty	1–3%	4–6%	3–5%
FSR parton shower uncertainty	2–6%	8-12%	17–20%
Fragmentation uncertainty on bottom quarks	14–16%	_	_
Fragmentation uncertainty on charm quarks	_	13-16%	_
Fragmentation uncertainty on light quarks	_	_	20%

Additional systematic uncertainty:

- For each calibration point:
 - **11 selections of the sfBDT** \rightarrow 11 proxy jet collections \rightarrow 11 fits (and scale factors)
- Max distance between all 11 scale factors & central value taken as an additional systematic uncertainty

CMS DP-2022-005

ParticleNet @ HLT

CMS DP-2023-021

Lighter version of ParticleNet deployed online since the beginning of Run 3

- Large improvements with respect to previous b taggers
 Closer online-offline performance
- ✓ 5-10% higher efficiency throughout the jet p_{τ} range wrt. DeepJet

Particle Transformers

- First attention-based tagger at the LHC!
- Inputs:
 - single particle inputs (kinematic variables, PID, trajectory displacements)
 - o pairwise (physics motivated) features between particles
- Learn which neighbour particles are relevant through attention mechanism
- Trained on substantially larger dataset (JetClass), more inclusive in jet types

Interaction features for each pair of particles a, b: $\Delta = \sqrt{(u - u)^2 + (\phi - \phi)^2}$

$$\begin{aligned} \Delta &= \sqrt{(y_a - y_b)^2 + (\phi_a - \phi_b)^2}, \\ k_{\rm T} &= \min(p_{{\rm T},a}, p_{{\rm T},b})\Delta, \\ z &= \min(p_{{\rm T},a}, p_{{\rm T},b})/(p_{{\rm T},a} + p_{{\rm T},b}), \\ m^2 &= (E_a + E_b)^2 - \|\mathbf{p}_a + \mathbf{p}_b\|^2, \end{aligned}$$

Particle Transformers performance

Probability of misidentifying $non-b \rightarrow b$ jets wrt. efficiency of identifying b jets Probability of misidentifying $non-c \rightarrow c jets$ wrt. efficiency of identifying c jets

Novel trigger strategy targeting HH and HHH productions in Run 3

Novel trigger strategy targeting HH \rightarrow 4b in Run 3

Run 2 trigger targeting 4b final states (8 Hz @ $2E10^{34}$ cm⁻² s⁻¹):

- Scalar sum of jets p_{T} (PF H_{T}) > 340 GeV
- ≥ 4 jets with p_T > 75, 60, 45, 40 GeV
- ≥ 3 jets tagged with **DeepCSV** algorithm

Run 3 2022 HH trigger (60 Hz):

- L1 H_T > 360 GeV
- \geq 4 jets with p_T > 70, 50, 40, 35 GeV
- 2 leading-in-**ParticleNet** jets have average b-disc > 0.65

Run 3 2023 HH trigger (180 Hz):

Data Parking

Trigger Efficiency

- L1 H_T > 280 GeV
 ≥ 4 jets with p_T > 30 GeV
- 2 leading-in-**ParticleNet** jets have average b-disc > 0.55

✓ Run 3 2023 HH trigger achieves an 82% efficiency, 57% (20%) increase with respect to Run 2 (Run 3 2022) trigger!

Novel trigger strategy targeting HH \rightarrow 4b in Run 3

- **Run 2 trigger** targeting 4b final states (8 Hz @ $2E10^{34}$ cm⁻² s⁻¹):
 - Scalar sum of jets p_T (PF H_T) > 340 GeV
 - ≥ 4 jets with p_T > 75, 60, 45, 40 GeV
 - ≥ 3 jets tagged with **DeepCSV** algorithm

Run 3 2022 HH trigger (60 Hz):

- L1 H_T > 360 GeV
- \geq 4 jets with p_T > 70, 50, 40, 35 GeV
- 2 leading-in-**ParticleNet** jets have average b-disc > 0.65

Run 3 2023 HH trigger (180 Hz):

Data Parking

Efficiency

Trigger

- L1 H_T > 280 GeV
 ≥ 4 jets with p_T > 30 GeV
- 2 leading-in-**ParticleNet** jets have average b-disc > 0.55

✓ Run 3 2023 HH trigger achieves an 64% efficiency, 78% (30%) increase with respect to Run 2 (Run 3 2022) trigger!

Novel trigger strategy targeting HH ${\rightarrow}2b2\tau_{had}$ in Run 3

Run 3 T_{had}-triggers require: [CMS DP-2023-024]

- $\geq 2 \tau_{had}$ with $p_T > 35$ GeV, $|\eta| < 2.1$ and tagged with DeepTau algorithm (50 Hz)
- $\geq 2 \tau_{had}$ with $p_T > 30$ GeV, $|\eta| < 2.1$ and tagged with DeepTau algorithm + 1 jet with $p_T > 60$ GeV (20 Hz)
- $\geq 1 \, \mathbf{T}_{had}$ with $p_T > 180 \, \text{GeV}, |\mathbf{\eta}| < 2.1 \, (17 \, \text{Hz})$

Novel trigger strategy targeting $HH \rightarrow 2b2\tau_{had}$ in Run 3

Run 3 T_{had}-triggers require: [CMS DP-2023-024]

- $\geq 2 \tau_{had}$ with $p_T > 35$ GeV, $|\eta| < 2.1$ and tagged with DeepTau algorithm (50 Hz)
- $\geq 2 \tau_{had}^{T}$ with $p_T^{T} > 30$ GeV, $|\eta| < 2.1$ and tagged with DeepTau algorithm + 1 jet with $p_T^{T} > 60$ GeV (20 Hz)
- $\geq 1 \tau_{had}^{T}$ with $p_{T}^{T} > 180 \text{ GeV}, |\eta| < 2.1 (17 \text{ Hz})$

Run 3 E_{T}^{miss}-triggers require $E_{T}^{miss} > 120 \text{ GeV} [CMS DP-2023-016]$

Run 3 2023 HH trigger (180 Hz):

- L1 H_T > 280 GeV
- \geq 4 jets with $p_T > 30 \text{ GeV}$
- 2 leading-in-ParticleNet jets have average b-disc > 0.55

✓ Run 3 2023 HH trigger increases the acceptance in the intermediate m_{HH} region

Non-resonant HH \rightarrow 2b2T_{had} (κ_{λ} =1)

Novel trigger strategy targeting $HH \rightarrow 2b2\tau_{had}$ in Run 3

Run 3 T_{had}-triggers require: [CMS DP-2023-024]

- $\geq 2 \tau_{had}$ with $p_T > 35$ GeV, $|\eta| < 2.1$ and tagged with DeepTau algorithm (50 Hz)
- $\geq 2 \tau_{had}^{n}$ with $p_T > 30 \text{ GeV}$, $|\eta| < 2.1$ and tagged with DeepTau algorithm + 1 jet with $p_T > 60 \text{ GeV}$ (20 Hz)
- $\geq 1 \, \mathbf{T}_{had}^{T}$ with $p_{T} > 180 \, \text{GeV}, |\mathbf{\eta}| < 2.1 \, (17 \, \text{Hz})$

Run 3 E_T^{miss}-triggers require E_T^{miss} > 120 GeV [<u>CMS DP-2023-016</u>]

Run 3 2023 HH trigger (180 Hz):

- L1 H_T > 280 GeV
- \geq 4 jets with $p_T > 30 \text{ GeV}$
- 2 leading-in-ParticleNet jets have average b-disc > 0.55

✓ Run 3 2023 HH trigger increases the acceptance in the intermediate m_{HH} region

Non-resonant HH \rightarrow 2b2T_{bad} (κ_{λ} =5)

Novel trigger strategy targeting triple Higgs production

Same trigger(s) can be used in the search for triple Higgs production in the **4b2** τ_{had} and **6b** final states, achieving **94%** and **92%** overall efficiency, respectively!

Summary

- Modern neural networks with sophisticated architectures bring considerable performance improvements in (heavy flavour) jet tagging in Run 3
- CMS introduces a novel method to calibrate $H \rightarrow bb/cc$ taggers
- Tagging algorithms can become more robust against simulation mismodellings with adversarial trainings
- ParticleNet@HLT introduced in Run 3 shows improved b-tagging performance
- New trigger targeting HH \rightarrow 4b signals now operates at 180 Hz
 - Large efficiency gain observed in HH \rightarrow 4b, HHH \rightarrow 6b, HH \rightarrow 2b2 \mathbf{T}_{had} , HHH \rightarrow 4b2 \mathbf{T}_{had} final states!

Thank you for your attention

Stay tuned for Run 3 physics analysis results!

Backup Identification of highly Lorentz-boosted Higgs bosons

Backup b calibration methods

b-tagging efficiency measurements in multijet events:

- **p**_T**rel** Method to measure the b-tagging efficiency in multijet events based on the transverse momenta of muons within jets with respect to the jet axis [4].
- **System8** Method to measure the b-tagging efficiency in multijet events with muons within jets by solving a system of 8 equations [4].
- Lifetime (LT) Method to measure the b-tagging efficiency in multijet events with muons within jets based on template fits to the distributions of the JP discriminator and secondary vertex mass [4].
- mu+jets Combination of b-tagging efficiency measurements from multijet events with jets containing muons (p_T rel., System8, LT).

b-tagging efficiency measurements in top pair events:

- **t t t -** Top quark antiquark pair production.
- Kin. fit Method to measure the b-tagging efficiency in tt events with two leptons, based on a template fit to an MVA discriminator combining several kinematic observables [4].
- **Tag&Probe** Method to measure the b-tagging efficiency in tt events with one lepton, based on a tag and probe method, where the medium WP is applied to one of the two b-jets expected from top pair production, while the other b jet is used as a probe [4].
- **comb** Combination of b-tagging efficiency measurements from $t\bar{t}$ events (Kin. fit, Tag&Probe) and multijet events with a muon (p_T rel., System8, LT).
- Light-jet mistagging efficiency measurement in multijet events:
 - NegativeTag Method to measure the light jet mistagging efficiency in inclusive multijet events, using the tracks with negative sign of the impact parameter [4].

Backup Particle Transformers • Network Architecture

Particle Attention block:

Computes self attention between particles:

• The multi-head attention (P-MHA) module incorporates particle interaction features and modifies the dot-product attention weights

Class Attention block:

Computes the attention between a global class and all the particles though MHA

Variable	Definition	
$\Delta \eta$	difference in pseudorapidity between the particle and the jet axis	
$\Delta \phi$	difference in azimuthal angle between the particle and the jet axis	
$\log p_T$	logarithm of the particle's p_T	
$\log E$	logarithm of the particle's energy	
$\log \frac{p_T}{p_T(\text{jet})}$	logarithm of the particle's p_T relative to the jet p_T	
$\log \frac{E}{E(\text{jet})}$	logarithm of the particle's energy relative to the jet energy	
ΔR	angular separation between the particle and the jet axis $(\sqrt{(\Delta \eta)^2 + (\Delta \phi)^2})$	
q	electric charge of the particle	
isElectron	if the particle is an electron	
isMuon	if the particle is a muon	
isChargedHadron	if the particle is a charged hadron	
isNeutralHadron	if the particle is a neutral hadron	
isPhoton	if the particle is a photon	
$\tanh d_0$	hyperbolic tangent of the transverse impact parameter of the track (in units of mm)	
$ anh d_z$	hyperbolic tangent of the longitudinal impact parameter of the track (in units of mm)	
σ_{d_0}	error of the transverse impact parameter	
σ_{d_z}	error of the longitudinal impact parameter	

Backup Particle Transformers • jet types

Training dataset: 100 M jets!

Backup b calibration • discriminant shape calibrations

The full b discriminant shape is calibrated for b- and light-jet with an **iterative fit** method in top quark pair production events with two leptons (enriched in b jets) and Z+jet events (enriched in light-flavour jets)

 SFs are derived separately in bins of the b tagging discriminator distribution, p_T and η

Systematic uncertainties:

- Sample purity (the fraction of heavy-flavor jets is varied by ±20%)
- Jet energy scale
- Statistical uncertainty due to the limited statistics in each bin of the b discriminant
- Treatment of SF

Backup DeepJet c discriminant shape calibration

Calibration of c tagger done for both fixed WPs and full discriminant shapes

c discriminant shape calibrations performed in 3 samples:

W+c (c purity ~93%):

- p_{T}^{miss} , 1 isolated lepton coming from W \rightarrow IV (I=e, μ)
- At least 1 jet with a soft, non-isolated muon inside it (c jet)
- Events split into opposite-sign (OS), same-sign (OS)
- OS-SS subtraction to reduce main background

top pair (b purity ~81%):

Semileptonic: 1 leptonically decaying W boson, a jet with a soft muon from the b hadron decay + additional hadronic iets

subtracted

OS-SS

Jet yield,

Dileptonic: 2 leptonically decaying W bosons, two jets with at least one containing a soft muon.

DY+jet (udsg purity ~86%):

 \geq 1 jet in association with a leptonically decaying Z boson

Backup DeepJet c discriminant shape calibration

An **iterative fit** is performed on these samples to derive data-to-simulation SFs in the **2D plane of CvsL and CvsB** per jet flavour

- Light/c/b components free to float until data-to-simulation differences are **minimised**
- two binning choices → a combined SF obtained through interpolation

Main systematic uncertainties:

c-jets: interpolation & extrapolation

b-jets: factorisation scale

light-jets: ISR and FSR in the parton shower

0 100 - CMS

W+c

Post-calibration

subtract

OS-SS

, yield,

Jet

Data/MC

1.2 1-0.8 0.6 -0.2

80

60

Trigger	Requirement	Rates at HLT at 2x10^34 cm-2s-1
2023 HH trigger	HT > 280 GeV, 4 jets with pT > 30 GeV, PNet@AK4(mean 2 highest b-tag score) > 0.55	180 Hz
2022 HH trigger	4 jets pT > 70, 50, 40, 35 GeV, PNet@AK4(mean 2 highest b-tag score) > 0.65	60 Hz
2018 triple b-tag [2,3]	HT > 340 GeV, 4 jets pT > 75, 60, 45, 40 GeV, 3 b-tags with DeepCSV > 0.24	8 Hz
Run 3 tau-triggers [4]	Double medium DeepTau taus with pT > 35 GeV $ \eta < 2.1$ Double medium DeepTau taus with pT > 30 GeV $ \eta < 2.1$, PFJet 60 GeV Single loose DeepTau on hadronic tau with pT > 180 GeV $ \eta < 2.1$	50 Hz 20 Hz 17 Hz
Run 3 MET-trigger [5]	Missing transverse energy (MET) (no muon) > 120 GeV, HT (no muon) > 120 GeV	42 Hz

[2] <u>CMS-DP-2019/042</u> [3] <u>CMS-DP-2019/026</u> [4] <u>CMS-DP-2023/024</u> [5] <u>CMS-DP-2023-016</u>

Backup Run 3 triggers • trigger acceptance on HH \rightarrow 4b signal

