Dissecting Multi-Higgs Boson Production in New Physics Models

Andreas Papaefstathiou 편륭
 [Kennesaw State University, GA, USA]

Based on (previous work):

AP, Tania Robens, Gilberto Tetlalmatzi-Xolocotzi, arXiv:2101.00037

$$
h h h \rightarrow 6 b-\text { jets }
$$

$$
[\mathrm{SM}+\underline{2} \text { scalar fields }=\text { "TRSM" }]
$$

AP, Gilberto Tetlalmatzi-Xolocotzi, Marco Zaro, arXiv:1909.09166

$$
h h h \rightarrow 6 b-\text { jets } \quad[\mathrm{SM}+\underline{1} \text { scalar field }=\text { "xSM"] }
$$

[\& see also:]

AP, Kazuki Sakurai, arXiv:1508.06524

$$
h h h \rightarrow 4 b-\text { jets }+\gamma \gamma
$$

AP, Graham White, arXiv:2010.00597 \& arXiv:2108.11394

Based on (upcoming work):

Alexandra Carvalho, AP, Marko Stamenkovic, Gilberto Tetlalmatzi-Xolocotzi, Alberto Tonero [...]

[hhh with Anomalous Couplings]

\&

Osama Karkout, Carlo Pandini, AP, Marieke Postma, Tristan du Pree, Gilberto Tetlalmatzi-Xolocotzi, Jorinde van de Vis [...]
[hhh in TRSM + Cosmology]

Did you know?

- \exists factor of $\mathcal{O}\left(10^{-3}\right)$ each time you "draw" an extra Higgs boson @ pp colliders.

Did you know?

- \exists factor of $\mathcal{O}\left(10^{-3}\right)$ each time you "draw" an extra Higgs boson @ pp colliders.

(with apologies to Peter Higgs!)

Did you know?

- \exists factor of $\mathcal{O}\left(10^{-3}\right)$ each time you "draw" an extra Higgs boson @ pp colliders.

Did you know?

- Cranking up the pp energy could help!

$\sim \times 60$ increase in cross section
$14 \mathrm{TeV} \rightarrow 100 \mathrm{TeV}$.

Did you know?

- Cranking up the pp energy could help!

$\sim \times 60$ increase in cross section
$14 \mathrm{TeV} \rightarrow 100 \mathrm{TeV}$.

Did you know?

- Cranking up the pp energy could help!

$\sim \times 60$ increase in cross section
$14 \mathrm{TeV} \rightarrow 100 \mathrm{TeV}$.

THE SECRET iNgREDiENT is ALWAYS LOVE

THE SECRET iNgREDiENT is ALWAYS LD: E NEW PHysics

The Secret iNGREDiENT is ALWAYS
 Le'e NEW PHYSICS
 Goals of this talk:

A. hhh and new gauge-singlet scalar fields, B. hhh with anomalous couplings.
$\xrightarrow[\substack{\text { KENNESAW STATE } \\ \text { UNVER STM }}]{ }$

A. hhh \& New Gauge-Singlet Scalar Fields

Higgs Portals and Singlet Scalars

- The Higgs doublet bilinear $\phi^{\dagger} \phi$:
the only SM gauge- and Lorentz-invariant $D=2$ operator!
- Can act as a "portal": you can always multiply $\phi^{\dagger} \phi$ by another singlet operator, S !

$$
\text { e.g.: } \mathscr{L} \supset \triangle \phi^{\dagger} \phi S+\square \phi^{\dagger} \phi S^{2}
$$

- Then, following Electro-Weak Symmetry Breaking (EWSB):

$$
\begin{gathered}
\phi \rightarrow\langle\phi\rangle+h \\
S \rightarrow\langle\underset{\uparrow}{S\rangle}+\chi
\end{gathered} \Rightarrow \mathscr{L} \supset \Delta h \chi^{2}+\Delta h^{2} \chi+\square h^{2} \chi^{2}+\ldots
$$

Vacuum Expectation Values (VEVs)

SM + New Singlet Scalars

- Diagonalize mass matrix \rightarrow get eigenstates: $h_{1}, h_{2}, h_{3} \ldots \rightarrow h_{1} \approx$ SM-like Higgs boson!

$$
\mathscr{L} \supset \triangle h_{1} h_{2}^{2}+\Delta h_{1}^{2} h_{2}+■ h_{1}^{2} h_{2}^{2}+\ldots
$$

\Rightarrow Modified \& new triple/ quartic couplings,
\Rightarrow Additional contributions to hhh, e.g.:

SM + New Singlet Scalars

- Diagonalize mass matrix \rightarrow get eigenstates: $h_{1}, h_{2}, h_{3} \ldots \rightarrow h_{1} \approx$ SM-like Higgs boson!

$$
\mathscr{L} \supset \Delta h_{1} h_{2}^{2}+\Delta h_{1}^{2} h_{2}+■ h_{1}^{2} h_{2}^{2}+\ldots
$$

\Rightarrow Modified \& new triple/ quartic couplings,
\Rightarrow Additional contributions to hhh, e.g.:

\Rightarrow Triple Higgs boson production could be enhanced in models with extended scalar sectors!
\& Measuring it could probe multi-scalar interactions!

SM + Two Real Singlet Scalars [= TRSM]

- Let's now consider adding two real singlet scalar fields $S, X \rightarrow$ the TRSM.
- And: impose discrete \mathscr{Z}_{2} symmetries: $\mathscr{Z}_{2}^{S}: S \rightarrow-S, X \rightarrow X$

$$
\mathscr{Z}_{2}^{X}: X \rightarrow-X, S \rightarrow S
$$

\Rightarrow TRSM scalar potential:

$$
\begin{aligned}
\mathcal{V}(\phi, S, X)= & \bullet|\phi|^{2}+\square|\phi|^{4}+\bullet S^{2}+\square S^{4}+\bullet X^{2}+\square X^{4} \\
& +\square S^{2} X^{2} \\
& +\square|\phi|^{2} S^{2}+\square|\phi|^{2} X^{2}
\end{aligned}
$$

SM + Two Real Singlet Scalars [= TRSM]

- Let's now consider adding two real singlet scalar fields $S, X \rightarrow$ the TRSM.
- And: impose discrete \mathscr{Z}_{2} symmetries: $\mathscr{Z}_{2}^{S}: S \rightarrow-S, X \rightarrow X$

$$
\mathscr{Z}_{2}^{X}: X \rightarrow-X, S \rightarrow S
$$

\Rightarrow TRSM scalar potential:

$$
\begin{aligned}
\mathcal{V}(\phi, S, X)= & \bullet|\phi|^{2}+\square|\phi|^{4}+\bullet S^{2}+\square S^{4}+\bullet X^{2}+\square X^{4} \\
& +\square S^{2} X^{2} \\
& +\square|\phi|^{2} S^{2}+\square|\phi|^{2} X^{2} \quad \leftarrow \text { "Portal" interactions. }
\end{aligned}
$$

SM + Two Real Singlet Scalars [= TRSM]

- Go through EWSB...

\Rightarrow Get three scalar bosons: $h_{1}, h_{2}, h_{3} \rightarrow h_{1} \approx$ SM-like Higgs boson.
\Rightarrow Seven independent parameters: $M_{2}, M_{3}+$ three mixing angles + two VEVs.
\Rightarrow Modified / Additional interactions between scalars.
\Rightarrow hhh that may even be detectable at the LHC! [AP, Robens, Tetlalmatzi-Xolocotzi, arxiv:2101.00037]

$$
\text { e.g.: } p p \rightarrow h_{3} \rightarrow h_{2} h_{1} \rightarrow h_{1} h_{1} h_{1}
$$

SM + Two Real Singlet Scalars [= TRSM]

- Go through EWSB...

\Rightarrow Get three scalar bosons: $h_{1}, h_{2}, h_{3} \rightarrow h_{1} \approx$ SM-like Higgs boson.
\Rightarrow Seven independent parameters: $M_{2}, M_{3}+$ three mixing angles + two VEVs.
\Rightarrow Modified / Additional interactions between scalars.
\Rightarrow hhh that may even be detectable at the LHC! [AP, Robens, Tetlalmatzi-Xolocotzi, arxiv:2101.00037]

$$
\text { e.g.: } p p \rightarrow h_{3} \rightarrow h_{2} h_{1} \rightarrow h_{1} h_{1} h_{1}
$$

hhh in the TRSM [14 TeV]

- Focus on a particular family of benchmark points: "Benchmark Plane 3" = "BP3" in [Robens, Stefaniak, Wittbrodt, arXiv:908.08554].

| Label | $\left(M_{2}, M_{3}\right)$ |
| :---: | :---: | :---: |
| $[\mathrm{GeV}]$ | $\sigma\left(p p \rightarrow h_{1} h_{1} h_{1}\right)$ |
| $[\mathrm{fb}]$ | |

Cross section can be much higher than the SM hhh! \rightarrow c.f. SM $\sigma \sim 0.1 \mathrm{fb} @ 14 \mathrm{TeV}$.

[AP, Tania Robens, Gilberto Tetlalmatzi-Xolocotzi, arXiv:2101.00037]

hhh in the TRSM "BP3" [14 TeV]

- Search for hhh via: $p p \rightarrow(b \bar{b})(b \bar{b})(b \bar{b})$.
- About $\mathbf{2 0 \%}$ of the hhh final state!
- Significances large even when including systematic uncert.:
[AP, Tania Robens, Gilberto Tetlalmatzi-Xolocotzi, arXiv:2101.00037]

Label	$\left.\operatorname{sig}\right\|_{300 \mathrm{fb}^{-1}}$ (syst.)	$\mathrm{sig}_{3000 \mathrm{fb}-1}$ (syst.)
\mathbf{A}	$2.92(2.63)$	$9.23(5.07)$
\mathbf{B}	$4.78(4.50)$	$15.10(10.14)$
\mathbf{C}	$4.01(3.56)$	$12.68(6.67)$
\mathbf{D}	$5.02(4.03)$	$15.86(6.25)$
\mathbf{E}	$3.76(2.87)$	$11.88(4.18)$
\mathbf{F}	$3.56(3.18)$	$11.27(5.98)$
\mathbf{G}	$5.18(4.16)$	$16.39(6.45)$
\mathbf{H}	$4.64(3.47)$	$14.68(4.94)$
\mathbf{I}	$4.09(2.88)$	$12.94(3.87)$
\mathbf{J}	$4.00(3.56)$	$12.65(6.66)$

hhh in the TRSM "BP3" [14 TeV]

- hhh will (probably?) not be a discovery channel,
- but could be important in determining the parameters of the model, if scalars are discovered!

Solve the "inverse problem"?
$(\rightarrow$ see also: [AP, White, arXiv:2108.11394] for first steps in the $x S M+$ SFO-EWPT.)

TRSM Monte Carlo Event Generation

- We have implemented a MadGraph5_aMC@NLO (MG5_aMC) "loop" model for the TRSM:
- MG5_aMC input parameters: the three mixing angles, two masses/widths and all the scalar couplings (only 7 are independent in TRSM).
- Comes with a Python script that:
- allows conversion of $M_{2}, M_{3}+$ three mixing angles + two VEVs to the MG5_aMC model input,
- calculates several single-production cross sections, branching ratios, widths,
- and writes associated MG5_aMC parameter card (param_card.dat) automatically.
- Get it at: https:/ / gitlab.com/apapaefs/twosinglet.
[AP, Tania Robens, Gilberto Tetlalmatzi-Xolocotzi, arXiv:2101.00037]

More TRSM hhh Pheno In Progress!

Q : Can there be a first-order electro-weak phase transition in the TRSM, related to electro-weak baryogenesis?

And if so, will this lead to enhanced multi-Higgs boson production?

[Osama Karkout, Carlo Pandini, AP, Marieke Postma, Tristan du Pree, Gilberto TetlalmatziXolocotzi, Jorinde van de Vis, ...]

B. hhh with Anomalous Couplings

D=6-Inspired Anomalous Couplings

- Add higher-dimensional operators to the SM Lagrangian!
\rightarrow To capture the effects of new particles at scales \gg collision energies.
- e.g. Add $D=6$ operators relevant to multi-Higgs boson production, of the form $\frac{\mathcal{O}_{6}}{\Lambda^{2}}$:

$$
\begin{aligned}
\mathscr{L}_{h^{n}}= & -\mu^{2}|H|^{2}-\lambda|H|^{4}-\left(y_{t} \bar{Q}_{L} H^{c} t_{R}+y_{b} \bar{Q}_{L} H b_{R}+\mathrm{h} . \mathrm{c} .\right) \\
& +\frac{c_{H}}{2 \Lambda^{2}}\left(\partial^{\mu}|H|^{2}\right)^{2}-\frac{c_{6}}{\Lambda^{2}} \lambda_{\mathrm{SM}}|H|^{6}+\frac{\alpha_{s} c_{g}}{4 \pi \Lambda^{2}}|H|^{2} G_{\mu \nu}^{a} G_{a}^{\mu \nu} \\
& -\left(\frac{c_{t}}{\Lambda^{2}} y_{t}|H|^{2} \bar{Q}_{L} H^{c} t_{R}+\frac{c_{b}}{\Lambda^{2}} y_{b}|H|^{2} \bar{Q}_{L} H b_{R}+\text { h.c. }\right)
\end{aligned}
$$

D=6-Inspired Anomalous Couplings

- Go through EWSB...

\rightarrow in terms of the physical scalar Higgs boson h :

$$
\begin{aligned}
\mathscr{L}_{\mathrm{D}=6}= & -\frac{m_{h}^{2}}{2 v}\left(1+c_{6}\right) h^{3}-\frac{m_{h}^{2}}{8 v^{2}}\left(1+6 c_{6}\right) h^{4} \\
& +\frac{\alpha_{s} c_{g}}{4 \pi}\left(\frac{h}{v}+\frac{h^{2}}{2 v^{2}}\right) G_{\mu \nu}^{a} G_{a}^{\mu \nu} \\
& -\left[\frac{m_{t}}{v}\left(1+c_{t}\right) \bar{t}_{L} t_{R} h+\frac{m_{b}}{v}\left(1+c_{b}\right) \bar{b}_{L} b_{R} h+\text { h.c. }\right] \\
& -\left[\frac{m_{t}}{v^{2}}\left(\frac{3 c_{t}}{2}\right) \bar{t}_{L} t_{R} h^{2}+\frac{m_{b}}{v^{2}}\left(\frac{3 c_{b}}{2}\right) \bar{b}_{L} b_{R} h^{2}+\text { h.c. }\right] \\
& -\left[\frac{m_{t}}{v^{3}}\left(\frac{c_{t}}{2}\right) \bar{t}_{L} t_{R} h^{3}+\frac{m_{b}}{v^{3}}\left(\frac{c_{b}}{2}\right) \bar{b}_{L} b_{R} h^{3}+\text { h.c. }\right],
\end{aligned}
$$

D=6-Inspired Anomalous Couplings

- Go through EWSB...

\rightarrow in terms of the physical scalar Higgs boson h :

$$
\begin{aligned}
\mathscr{L}_{\mathrm{D}=6}= & -\frac{m_{h}^{2}}{2 v}\left(1+c_{6}\right) h^{3}-\frac{m_{h}^{2}}{8 v^{2}}\left(1+6 c_{6}\right) h^{4} \\
& +\frac{\alpha_{s} c_{g}}{4 \pi}\left(\frac{h}{v}+\frac{h^{2}}{2 v^{2}}\right) G_{\mu \nu}^{a} G_{a}^{\mu \nu} \\
& -\left[\frac{m_{t}}{v}\left(1+c_{t}\right) \bar{t}_{L} t_{R} h+\frac{m_{b}}{v}\left(1+c_{b}\right) \bar{b}_{L} b_{R} h+\text { h.c. }\right] \\
& -\left[\frac{m_{t}}{v^{2}}\left(\frac{3 c_{t}}{2}\right) \bar{t}_{L} t_{R} h^{2}+\frac{m_{b}}{v^{2}}\left(\frac{3 c_{b}}{2}\right) \bar{b}_{L} b_{R} h^{2}+\text { h.c. }\right] \\
& -\left[\frac{m_{t}}{v^{3}}\left(\frac{c_{t}}{2}\right) \bar{t}_{L} t_{R} h^{3}+\frac{m_{b}}{v^{3}}\left(\frac{c_{b}}{2}\right) \bar{b}_{L} b_{R} h^{3}+\text { h.c. }\right],
\end{aligned}
$$

D=6-Inspired Anomalous Couplings

- Go through EWSB...

\rightarrow in terms of the physical scalar Higgs boson h :

$$
\begin{aligned}
\mathscr{L}_{\mathrm{D}=6}= & -\frac{m_{h}^{2}}{2 v}\left(1+c_{6}\right) h^{3}-\frac{m_{h}^{2}}{8 v^{2}}\left(1+6 c_{6}\right) h^{4} \\
& +\frac{\alpha_{s} c_{g}}{4 \pi}\left(\frac{h}{v}+\frac{h^{2}}{2 v^{2}}\right) G_{\mu \nu}^{a} G_{a}^{\mu \nu} \\
& -\left[\frac{m_{t}}{v}\left(1+c_{t}\right) \bar{t}_{L} t_{R} h+\frac{m_{b}}{v}\left(1+c_{b}\right) \bar{b}_{L} b_{R} h+\text { h.c. }\right] \\
& -\left[\frac{m_{t}}{v^{2}}\left(\frac{3 c_{t}}{2}\right) \bar{t}_{L} t_{R} h^{2}+\frac{m_{b}}{v^{2}}\left(\frac{3 c_{b}}{2}\right) \bar{b}_{L} b_{R} h^{2}+\text { h.c. }\right] \\
& -\left[\frac{m_{t}}{v^{3}}\left(\frac{c_{t}}{2}\right) \bar{t}_{L} t_{R} h^{3}+\frac{m_{b}}{v^{3}}\left(\frac{c_{b}}{2}\right) \bar{b}_{L} b_{R} h^{3}+\text { h.c. }\right],
\end{aligned}
$$

D=6-Inspired Anomalous Couplings

- Go through EWSB...

\rightarrow in terms of the physical scalar Higgs boson h :

$$
\begin{aligned}
& \text { ? ? ? ? ? }
\end{aligned}
$$

$$
\begin{aligned}
& -\left[\frac{m_{t}}{v^{2}}\left(\frac{3 c_{t}}{2}\right) \bar{t}_{L} t_{R} h^{2}+\frac{m_{b}}{v^{2}}\left(\frac{3 c_{b}}{2}\right) \bar{b}_{L} b_{R} h^{2}+\text { h.c. }\right] \\
& -\left[\frac{m_{t}}{v^{3}}\left(\frac{c_{t}}{2}\right) \bar{t}_{L} t_{R} h^{3}+\frac{m_{b}}{v^{3}}\left(\frac{c_{b}}{2}\right) \bar{b}_{L} b_{R} h^{3}+\text { h.c. }\right],
\end{aligned}
$$

D=6-Inspired Anomalous Couplings

- Go through EWSB... \rightarrow in terms of the physical scalar Higgs boson h :

$$
\begin{aligned}
\mathscr{L}_{\mathrm{D}=6}= & -\frac{m_{h}^{2}}{2 v}\left(1+c_{6}\right) h^{3}-\frac{m_{h}^{2}}{8 v^{2}}\left(1+6 c_{6}\right) h^{4} \\
& +\frac{\alpha_{s} c_{g}}{4 \pi}\left(\frac{h}{v}+\frac{h^{2}}{2 v^{2}}\right) G_{\mu \nu}^{a} G_{a}^{\mu \nu}
\end{aligned}
$$

$$
\begin{aligned}
& -\left[\frac{m_{t}}{v}\left(1+c_{t}\right) \bar{t}_{L} t_{R} h+\frac{m_{b}}{v}\left(1+c_{b}\right) \bar{b}_{L} b_{R} h+\text { h.c. }\right] \\
& -\left[\frac{m_{t}}{v^{2}}\left(\frac{3 c_{t}}{2}\right) \bar{t}_{L} t_{R} h^{2}+\frac{m_{b}}{v^{2}}\left(\frac{3 c_{b}}{2}\right) \bar{b}_{L} b_{R} h^{2}+\text { h.c. }\right] \\
& -\left[\frac{m_{t}}{v^{3}}\left(\frac{c_{t}}{2}\right) \bar{t}_{L} t_{R} h^{3}+\frac{m_{b}}{v^{3}}\left(\frac{c_{b}}{2}\right) \bar{b}_{L} b_{R} h^{3}+\text { h.c. }\right],
\end{aligned}
$$

D=6-Inspired Anomalous Couplings

- A slightly more "general" picture is obtained by "dissociating" the operators as:

$$
\begin{aligned}
\mathscr{L}_{\text {Pheno }}= & -\frac{m_{h}^{2}}{2 v}\left(1+d_{3}\right) h^{3}-\frac{m_{h}^{2}}{8 v^{2}}\left(1+d_{4}\right) h^{4} \\
& +\frac{\alpha_{s}}{4 \pi}\left(c_{g 1} \frac{h}{v}+c_{g 2} \frac{h^{2}}{2 v^{2}}\right) G_{\mu \nu}^{a} G_{a}^{\mu \nu} \\
& -\left[\frac{m_{t}}{v}\left(1+c_{t 1}\right) \bar{t}_{L} t_{R} h+\frac{m_{b}}{v}\left(1+c_{b 1}\right) \bar{b}_{L} b_{R} h+\text { h.c. }\right] \\
& -\left[\frac{m_{t}}{v^{2}}\left(\frac{3 c_{t 2}}{2}\right) \bar{t}_{L} t_{R} h^{2}+\frac{m_{b}}{v^{2}}\left(\frac{3 c_{b 2}}{2}\right) \bar{b}_{L} b_{R} h^{2}+\text { h.c. }\right] \\
& -\left[\frac{m_{t}}{v^{3}}\left(\frac{c_{t 3}}{2}\right) \bar{t}_{L} t_{R} h^{3}+\frac{m_{b}}{v^{3}}\left(\frac{c_{b 3}}{2}\right) \bar{b}_{L} b_{R} h^{3}+\text { h.c. }\right],
\end{aligned}
$$

Recover $\mathrm{D}=6$ by setting:
$d_{3}=c_{6}$,
$d_{4}=6 c_{6}$,
$c_{g 1}=c_{g 2}=c_{g}$,
$c_{f 1}=c_{f 2}=c_{f 3}=c_{f}$.

D=6-Inspired Anomalous Couplings

- A slightly more "general" picture is obtained by "dissociating" the operators as:

$$
\begin{aligned}
\mathscr{L}_{\text {Pheno }}= & -\frac{m_{h}^{2}}{2 v}\left(1+d_{3}\right) h^{3}-\frac{m_{h}^{2}}{8 v^{2}}\left(1+d_{4}\right) h^{4} \\
& \left.\left.\left.+\frac{\alpha_{s}}{4 \pi}\left(C_{g}\right) \frac{h}{v}+C_{g 2}\right) \frac{h^{2}}{2 v^{2}}\right) G_{\mu \nu}^{a} G_{a}^{\mu \nu} \quad \text { instead of } c_{g}\right] \\
& -\left[\frac{m_{t}}{v}\left(1+c_{t 1}\right) \bar{t}_{L} t_{R} h+\frac{m_{b}}{v}\left(1+c_{b 1}\right) \bar{b}_{L} b_{R} h+\text { h.c. }\right] \\
& -\left[\frac{m_{t}}{v^{2}}\left(\frac{3 c_{t 2}}{2}\right) \bar{t}_{L} t_{R} h^{2}+\frac{m_{b}}{v^{2}}\left(\frac{3 c_{b 2}}{2}\right) \bar{b}_{L} b_{R} h^{2}+\text { h.c. }\right] \\
& -\left[\frac{m_{t}}{v^{3}}\left(\frac{c_{t 3}}{2}\right) \bar{t}_{L} t_{R} h^{3}+\frac{m_{b}}{v^{3}}\left(\frac{c_{b 3}}{2}\right) \bar{b}_{L} b_{R} h^{3}+\text { h.c. }\right],
\end{aligned}
$$

Recover $\mathrm{D}=6$ by setting:
$d_{3}=c_{6}$,
$d_{4}=6 c_{6}$,
$c_{g 1}=c_{g 2}=c_{g}$,
$c_{f 1}=c_{f 2}=c_{f 3}=c_{f}$.

D=6-Inspired Anomalous Couplings

- A slightly more "general" picture is obtained by "dissociating" the operators as:

$$
\begin{aligned}
\mathscr{L}_{\text {Pheno }}= & -\frac{m_{h}^{2}}{2 v}\left(1+d_{3}\right) h^{3}-\frac{m_{h}^{2}}{8 v^{2}}\left(1+d_{4}\right) h^{4} \\
& +\frac{\alpha_{s}}{4 \pi}\left(c_{g 1} \frac{h}{v}+c_{g 2} \frac{h^{2}}{2 v^{2}}\right) G_{\mu \nu}^{a} G_{a}^{\mu \nu} \\
& -\left[\frac{m_{t}}{v}\left(1+\left(c_{t 1}\right) \bar{t}_{L} t_{R} h+\frac{m_{b}}{v}\left(1+c_{b 1}\right) \bar{b}_{L} b_{R} h+\text { h.c. }\right]\right. \\
& -\left[\frac{m_{t}}{v^{2}}\left(\frac{3\left(c_{t 2}\right)}{2}\right) \bar{t}_{L} t_{R} h^{2}+\frac{m_{b}}{v^{2}}\left(\frac{3 c_{b 2}}{2}\right) \bar{b}_{L} b_{R} h^{2}+\text { h.c. }\right] \\
& -\left[\frac{m_{t}}{v^{3}}\left(\frac{\left.C_{t 3}\right)}{2}\right) \bar{t}_{L} t_{R} h^{3}+\frac{m_{b}}{v^{3}}\left(\frac{c_{b 3}}{2}\right) \bar{b}_{L} b_{R} h^{3}+\text { h.c. }\right],
\end{aligned}
$$

Recover $\mathrm{D}=6$ by setting:
$d_{3}=c_{6}$,
$d_{4}=6 c_{6}$,
$c_{g 1}=c_{g 2}=c_{g}$,
$c_{f 1}=c_{f 2}=c_{f 3}=c_{f}$.

instead of c_{t}

D=6-Inspired Anomalous Couplings

- Further modify to match more closely LHC experiments' definitions:

$$
\begin{aligned}
\mathscr{L}_{\text {PhenoExp }}= & -\lambda_{\mathrm{SM}} v\left(1+d_{3}\right) h^{3}-\frac{\lambda_{\mathrm{SM}}}{4}\left(1+d_{4}\right) h^{4} \\
& +\frac{\alpha_{s}}{12 \pi}\left(c_{g 1} \frac{h}{v}-c_{g 2} \frac{h^{2}}{2 v^{2}}\right) G_{\mu \nu}^{a} G_{a}^{\mu \nu} \\
& -\left[\frac{m_{t}}{v}\left(1+c_{t 1}\right) \bar{t}_{L} t_{R} h+\frac{m_{b}}{v}\left(1+c_{b 1}\right) \bar{b}_{L} b_{R} h+\text { h.c. }\right] \\
& -\left[\frac{m_{t}}{v^{2}} c_{t 2} \bar{t}_{L} t_{R} h^{2}+\frac{m_{b}}{v^{2}} c_{b 2} \bar{b}_{L} b_{R} h^{2}+\text { h.c. }\right] \\
& -\left[\frac{m_{t}}{v^{3}}\left(\frac{c_{t 3}}{2}\right) \bar{t}_{L} t_{R} h^{3}+\frac{m_{b}}{v^{3}}\left(\frac{c_{b 3}}{2}\right) \bar{b}_{L} b_{R} h^{3}+\text { h.c. }\right]
\end{aligned}
$$

$$
\text { Defined: } \lambda_{\mathrm{SM}}=m_{h}^{2} / 2 v^{2}
$$

Obtain CMS-like parametrization by:

$$
\begin{array}{r}
\kappa_{\lambda}=\left(1+d_{3}\right), \\
k_{t}=c_{t 1}, \\
c_{2}=c_{t 2}, \\
c_{g}=c_{g 1}, \\
c_{g g}=c_{2 g}
\end{array}
$$

And ATLAS-like parametrization by:

$$
\begin{gathered}
c_{h h h}=\left(1+d_{3}\right) \\
c_{g g h}=2 c_{g 1} / 3, \\
c_{g g h h}=-c_{g 2} / 3
\end{gathered}
$$

Monte Carlo Implementation of Anomalous Couplings

- We have implemented a MadGraph5_aMC@NLO "loop" model for $\mathscr{L}_{\text {PhenoExp }}$.
- Includes Loop \times Tree level interference between the various diagrams.
[see V. Hirschi, https:/ / cp3.irmp.ucl.ac.be/projects/madgraph/wiki/LoopInducedTimesTree].
- e.g.:

Model Validation

- Most couplings validated vs. a Herwig $7 p p \rightarrow h h$ implementation, e.g.:

- The one "new" non-trivial coupling that appears, $\propto c_{t 3} t \bar{t} h^{3}$ has been validated via an "EFT" limit, in the $t \bar{t} \rightarrow h h h$ process:

Monte Carlo Implementation of Anomalous Couplings

- Get the MG5_aMC model at: https: / / gitlab.com/apapaefs/multihiggs_loop_sm.
- [A patch to MG5_aMC to enable Loop \times Tree is included].
- Can generate events either at:
- $\mathbf{S M}^{\wedge} 2+$ interference of $[\mathbf{S M} \times$ One-Insertion diagrams], i.e.:

$$
\left|\mathscr{M}^{2}=\left|\mathscr{M}_{\mathrm{SM}}\right|^{2}+2 \operatorname{Re}\left\{\mathscr{M}_{\mathrm{SM}}^{*} \mathscr{M}_{1-\mathrm{ins} .}\right\} \propto 1+c_{i}\right.
$$

or

- $\mathbf{S M}^{\wedge} 2+$ interference of [SM \times One or Two insertion diagrams] $+[$ One Insertion]^2, i.e.:

$$
\begin{aligned}
& \left|\mathscr{M}^{2}=\left|\mathscr{M}_{\mathrm{SM}}\right|^{2}+2 \operatorname{Re}\left\{\mathscr{M}_{\mathrm{SM}}^{*} \mathscr{M}_{1 \text {-ins. }}\right\}+2 \operatorname{Re}\left\{\mathscr{M}_{\mathrm{SM}}^{*} \mathscr{M}_{2-\mathrm{ins} .}\right\}+\left|\mathscr{M}_{1-\mathrm{ins} .}\right|^{2}\right. \\
& \propto 1+c_{i}+c_{j} c_{k}+c_{\ell}^{2}
\end{aligned}
$$

- Cross section as a multiple of the SM
- ($\sigma_{\mathrm{SM}} \sim 0.04 \mathrm{fb}$ at LO@13.6 TeV).
- In each 2D panel shown: all other coefficients set to zero!

Fit Coefficients for hhh Cross Sections @ 13.6 TeV

d_{3}	-0.750	0.292		$\sigma / \sigma_{\mathrm{SM}}$						$B_{i j} C_{i} C_{j}$	
d_{4}	-0.158	-0.0703	0.0340								
$c_{g 1}$	-0.278	0.0426	0.0484	0.0256							
$c_{g 2}$	1.39	-0.704	-0.0312	-0.156	0.538						
$c_{t 1}$	6.94	-3.17	-0.309	-0.850	+ 5.16	12.6					
$c_{t 2}$	-3.61	4.05	-0.872	-0.0482	- -4.15	-17.6	15.3				
$c_{t 3}$	-2.72	-1.57	1.33	0.906	-0.316	-4.64	-18.2	13.0			
$c_{b 1}$	-0.125	0.177	-0.0457	-0.00903	-0.166	-0.675	1.38	-0.941	0.0317		
$c_{b 2}$	0.106	-0.0752	0.00692	-0.00740	0.0949	0.433	-0.509	0.162	-0.0219	0.00489	
$c_{b 3}$	0.161	-0.0809	-0.00396	-0.0182	0.124	0.598	-0.474	-0.0434	-0.0189	0.0109	0.00719
	1	d_{3}	d_{4}	$c_{g 1}$	$c_{g 2}$	$c_{t 1}$	$c_{t 2}$	$c_{t 3}$	$c_{b 1}$	$c_{b 2}$	$c_{b 3}$

Table 2: Fit coefficients for leading-order Higgs boson triple production, in the form $\sigma / \sigma_{\mathrm{SM}}-1=A_{i} c_{i}+B_{i j} c_{i} c_{j}$, where $c_{i} \in\left\{d_{3}, d_{4}, c_{g 1}, c_{g 2}, c_{t 1}, c_{t 2}, c_{t 3}, c_{b 1}, c_{b 2}, c_{b 3}\right\}$, at $E_{\mathrm{CM}}=$ 13.6 TeV .

Anomalous Couplings @ LHC 13.6 TeV

- Again, using the 6 b -jet final state:
- b-jet tagging probability $\sim 75 \%$ (no miss-identification),
- $p_{T, b}>[50,40,30,25,25,25] \mathrm{GeV},\left|\eta_{b}\right|<4.0$.
- O(1) events of SM $h h h \rightarrow 6 b$ expected at $\mathrm{pp} @ 13.6 \mathrm{TeV}$ in $600 \mathrm{fb}^{-1}!$ [Note: LO, i.e. NO K-factors at present.]
- Versus: $\mathcal{O}(20)$ from QCD 6 b-jet backgrounds.
- "LHC-like" smearing applied \& $\mathbf{1 0} \%$ systematic uncertainty on background.
- Using: $\left|\mathscr{M}^{2}=\left|\mathscr{M}_{\mathrm{SM}}\right|^{2}+2 \operatorname{Re}\left\{\mathscr{M}_{\mathrm{SM}}^{*} \mathscr{M}_{1-\mathrm{ins} .}\right\}+2 \operatorname{Re}\left\{\mathscr{M}_{\mathrm{SM}}^{*} \mathscr{M}_{2-\mathrm{ins} .}\right\}+\left|\mathscr{M}_{1-\mathrm{ins} .}\right|^{2}\right.$.
- We applied the analysis on various combinations of anomalous coupling恐否coefficients, and fitted the efficiency.

Anomalous Couplings @ LHC 13.6 TeV w/ $600 \mathrm{fb}^{-1}$

- Shown: Significance (Σ) for $h h h \rightarrow 6 b$ for any two coefficients at 13.6 TeV with integrated luminosity $\sim 600 \mathrm{fb}^{-1}$.
- Dark blue regions excluded $@ \geq 2 \sigma$.
- Obviously no good constraints on triple/quartic scalar coupling modifiers (close to SM).
- But some constraints on fermion-Higgs contact interactions: $c_{t 1}, c_{t 2}, c_{t 3}$!

Anomalous Couplings @ LHC 13.6 TeV w/ $3000 \mathrm{fb}^{-1}$

- Dark blue regions excluded $@ \geq 2 \sigma$.
- Similar conclusions at $3000 \mathrm{fb}^{-1}$!
- TO-DO:
- What about higher energies, e.g. 100 TeV ?
- Comparison to SMEFT? e.g. using "SMEFT@NLO" [C. Degrande, G. Durieu, Fabio Maltoni, K. Mimasu E. Vryonidou, C. Zhang, arXiv:1607.04251]

Summary \& Outlook

- hhh is one of the few ways to probe the Higgs quartic coupling @pp colliders; extremely rare within the $\mathrm{SM} \rightarrow$ a 100 TeV SM measurement.
- Nevertheless, hhh may be enhanced by new phenomena.

- Measurement of hhh within models with extra scalars possible at the LHC:
- an avenue for solving the inverse problem in case of discovery
- and perhaps understanding electro-weak baryogenesis.
- Anomalous couplings can also modify hhh: some constraints can be obtained at the LHC! What are the possibilities at higher energies?

TRSM: https:/ / gitlab.com/apapaefs/twosinglet
Models @
Anomalous Couplings: https://gitlab.com/apapaefs/multihiggs loop_sm

Summary \& Outlook

- hhh is one of the few ways to probe the Higgs quartic coupling @pp colliders; extremely rare within the $\mathrm{SM} \rightarrow$ a 100 TeV SM measurement.
- Nevertheless, hhh may be enhanced by new phenomena.

- Measurement of hhh within models with extra scalars possible at the LHC:
- an avenue for solving the inverse problem in case of discovery
- and perhaps understanding electro-weak baryogenesis.
- Anomalous couplings can also modify hhh: some constraints can be obtained at the LHC! What are the possibilities at higher energies?

TRSM: https://gitlab.com/apapaefs/twosinglet
Models @
Anomalous Couplings: https://gitlab.com/apapaefs/multihiggs loop_sm

Supplementary material

SM + One Real Singlet Scalar [= xSM]

- Motivation: simple model for a strong first-order electro-weak phase transition:
\Rightarrow Singlet scalar field acts as a "catalyst".
\Rightarrow Can help explain matter-anti-matter asymmetry of the universe.

$$
\mathcal{V}(\phi, S)=|\phi|^{2}+■|\phi|^{4}
$$

$$
\begin{aligned}
& +\bullet S^{2}+\Delta S^{3}+\llbracket S^{4} \\
& +\boldsymbol{\triangle}|\phi|^{2} S+\llbracket|\phi|^{2} S^{2}
\end{aligned}
$$

SM + One Real Singlet Scalar [= xSM]

- Motivation: simple model for a strong first-order electro-weak phase transition:
\Rightarrow Singlet scalar field acts as a "catalyst".
\Rightarrow Can help explain matter-anti-matter asymmetry of the universe.

$$
\mathcal{V}(\phi, S)=|\phi|^{2}+\boldsymbol{\square}|\phi|^{4}
$$

$$
+\bigcirc S^{2}+\Delta S^{3}+■ S^{4}
$$

$$
+\mathbf{\Delta}|\phi|^{2} S+\square|\phi|^{2} S^{2} \leftarrow \text { "Portal" interactions. }
$$

KENNESAW STATE

SM + One Real Singlet Scalar [= xSM]

 $\mathcal{V}(\phi, S)=\bullet|\phi|^{2}+\llbracket|\phi|^{4}+\bullet S^{2}+\boldsymbol{\Delta} S^{3}+\llbracket S^{4}+\boldsymbol{\Delta}|\phi|^{2} S+\llbracket|\phi|^{2} S^{2}$
SM + One Real Singlet Scalar [= xSM] $\mathcal{V}(\phi, S)=\bullet|\phi|^{2}+\boldsymbol{\square}|\phi|^{4}+\bullet S^{2}+\Delta S^{3}+\llbracket S^{4}+\boldsymbol{\Delta}|\phi|^{2} S+■|\phi|^{2} S^{2}$

EWSB \leftrightarrow VEVs:

$$
\begin{aligned}
\phi & \rightarrow\langle\phi\rangle+h \\
S & \rightarrow\langle S\rangle+\chi
\end{aligned}
$$

SM + One Real Singlet Scalar [= xSM] $\mathcal{V}(\phi, S)=\bullet|\phi|^{2}+\boldsymbol{\square}|\phi|^{4}+\bullet S^{2}+\boldsymbol{\Delta} S^{3}+\llbracket S^{4}+\boldsymbol{\Delta}|\phi|^{2} S+\boldsymbol{\square}|\phi|^{2} S^{2}$

EWSB \leftrightarrow VEVs:
$\begin{aligned} & \phi \rightarrow\langle\phi\rangle+h \\ & S \rightarrow\langle S\rangle+\chi\end{aligned} \quad\binom{h_{1}}{h_{2}}=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)\binom{h}{\chi}$
$S \rightarrow\langle S\rangle+\chi$

Mass Eigenstates:
θ : mixing angle

Note that we choose:
$\theta \rightarrow 0$ as the SM limit.

SM + One Real Singlet Scalar [= xSM]

$$
\mathcal{V}(\phi, S)=\bullet|\phi|^{2}+\llbracket|\phi|^{4}+\bullet S^{2}+\Delta S^{3}+\llbracket S^{4}+\boldsymbol{\Delta}|\phi|^{2} S+\llbracket|\phi|^{2} S^{2}
$$

EWSB \leftrightarrow VEVs:

$$
\begin{aligned}
& \boldsymbol{\phi} \rightarrow\langle\boldsymbol{\phi}\rangle+h \longrightarrow\binom{h_{1}}{h_{2}}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{h}{\chi} \\
& S \rightarrow\langle S\rangle+\chi \\
& \theta \text { : mixing angle }
\end{aligned}
$$

\Rightarrow Two scalar particles:
$h_{1} \rightarrow$ The "SM-like" Higgs boson \&
$h_{2} \rightarrow$ a new scalar boson!
\rightarrow Prime collider targets!

Note that we choose:
$\theta \rightarrow 0$ as the SM limit.

$$
\theta \rightarrow 0 \text { as the SM limit. }
$$

Mass Eigenstates:

SM + One Real Singlet Scalar [= uSM]

$$
\mathcal{V}(\phi, S)=\bullet|\phi|^{2}+\llbracket|\phi|^{4}+\bullet S^{2}+\Delta S^{3}+\llbracket S^{4}+\boldsymbol{\Delta}|\phi|^{2} S+\llbracket|\phi|^{2} S^{2}
$$

EWSB \leftrightarrow VEVs:

$$
\phi \rightarrow\langle\phi\rangle+h \quad\binom{h_{1}}{h_{2}}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{h}{\chi}
$$

$$
S \rightarrow\langle S\rangle+\chi
$$

Mass Eigenstates:

$$
\left.\begin{array}{ll}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{h}{\chi} \quad \begin{gathered}
\text { Note that we choose: } \\
\theta \rightarrow 0 \text { as the SM limit. }
\end{gathered} \quad \begin{aligned}
& \theta: \text { mixing angle }
\end{aligned}
$$

$h_{2} \rightarrow$ a new scalar boson!
\rightarrow Prime collider targets!

[AP, White, arXiv:2010.00597]

\Rightarrow Future colliders could discover this model!

$\Rightarrow \mathrm{Q}$: Can we use th to find out more about xSM ?

$$
\begin{array}{cc}
\phi \rightarrow\langle\phi\rangle+h & \sim \\
S \rightarrow\langle S\rangle+\chi & \binom{h_{1}}{h_{2}}= \\
\left.\theta: \begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{h}{\chi} & \begin{array}{l}
\text { Note that we choose: } \\
\theta \rightarrow 0 \text { as the } S \text { M limit. }
\end{array} \\
\hline
\end{array}
$$

\Rightarrow Two scalar particles:
Hings signal strength measurements
$h_{1} \rightarrow$ The "SM-like" Hags boson \&
$h_{2} \rightarrow$ a new scalar boson!
\rightarrow Prime collider targets!

hhh in the xSM [pp@100 TeV]

- Search for hhh via: $p p \rightarrow(b \bar{b})(b \bar{b})(b \bar{b})$ [APP, Tetlalmatzi-Xolocotzi, Zaro, arXiv:1909.09166]
- About $\mathbf{2 0 \%}$ of the hhh final state!
- Parton-level events for signal/backgrounds via MadGraph5_aMC@NLO.
- Parton shower/non-perturbative effects with HERWIG 7.
- Analysis with specialised HERWIG 7 package \rightarrow "HwSim". ${ }^{[\text {APe htpps//gitlab.com/apppaesf/ /wsim] }}$
- QCD 6 b-jet by far the largest background.

hhh in the xSM and Strong First-Order Phase Transitions

- Strong First-Order Phase Transition (SFO-EWPT) benchmark points (\mathbf{B}^{*}) of
[Kotwal, Ramsey-Musolf, No, Winslow, arXiv:1605.06123].
[AP, Tetlalmatzi-Xolocotzi
Zaro, arXiv:1909.09166]

$\mathbf{h}_{1} \mathbf{h}_{1} \mathbf{h}_{1}$ system invariant mass for selected benchmark points, "B1max", "B5max", "B11max".

hhh in the xSM and Strong First-Order Phase Transitions

- Strong First-Order Phase Transition (SFO-EWPT) benchmark points (\mathbf{B}^{*}) of [Kotwal, Ramsey-Musolf, No, Winslow, arXiv:1605.06123].
[AP, Tetlalmatzi-Xolocotzi
Zaro, arXiv:1909.09166]

$\mathbf{h}_{1} \mathbf{h}_{1} \mathbf{h}_{1}$ system invariant mass for selected benchmark points, "B1max", "B5max", "B11max".

hhh in the xSM and Strong First-Order Phase Transitions

- Strong First-Order Phase Transition (SFO-EWPT) benchmark points (\mathbf{B}^{*}) of [Kotwal, Ramsey-Musolf, No, Winslow, arXiv:1605.06123].
[AP, Tetlalmatzi-Xolocotzi,

Zaro, arXiv:1909.09166]

$\mathbf{h}_{1} \mathbf{h}_{\mathbf{1}} \mathbf{h}_{\mathbf{1}}$ system invariant mass for selected benchmark points, "B1max", "B5max", "B11max".

hhh in the xSM and SFO-EWPT

Benchmark $\quad \frac{\sigma\left(h_{1} h_{1} h_{1}\right)}{\sigma(h h h)_{\mathrm{SM}}}$

B1max	60.55	
B2max	56.69	
B3max	3.01	
B4max	3.37	
B5max	2.94	
B6max	3.60	
B7max	4.70	
B8max	4.91	
B9max	2.68	
B10max	2.35	
B11max	1.03	

Cross section can be much higher than the SM hhh! : pp@100 TeV

hhh in the xSM and SFO-EWPT

Benchmark

B1max	46.6
B2max	42.9
B3max	2.9
B4max	3.7
B5max	3.0
B6max	3.8
B7max	5.3
B8max	7.8
B9max	5.9
B10max	4.9
B11max	2.3

Significance can be much higher than the SM! (c.f. ~1.7 σ)
pp@100 TeV
\Rightarrow use $\mathbf{h}_{1} \mathbf{h}_{1} \mathbf{h}_{1}$ to determine model
parameters, if a new scalar is discovered?
*Note: analysis applied as for SM.

hhh: Final states

Assume: K-factor $=2$.

[Maltoni, Vryonidou, Zaro, 1408.6542]

Singlet model details

$$
\begin{gathered}
m_{h}^{2} \equiv \frac{d^{2} V}{d h^{2}}=2 \lambda v_{0}^{2} \\
m_{s}^{2} \equiv \frac{d^{2} V}{d s^{2}}=b_{3} x_{0}+2 b_{4} x_{0}^{2}-\frac{a_{1} v_{0}^{2}}{4 x_{0}} \\
m_{h s}^{2} \equiv \frac{d^{2} V}{d h d s}=\left(a_{1}+2 a_{2} x_{0}\right) \frac{v_{0}}{2}
\end{gathered}
$$

$$
\begin{gathered}
h_{1}=h \cos \theta+s \sin \theta \\
h_{2}=-h \sin \theta+s \cos \theta
\end{gathered}
$$

$$
m_{2,1}^{2}=\frac{m_{h}^{2}+m_{s}^{2} \pm\left|m_{h}^{2}-m_{s}^{2}\right| \sqrt{1+\left(\frac{m_{h s}^{2}}{m_{h}^{2}-m_{s}^{2}}\right)^{2}}}{2}
$$

$$
\sin 2 \theta=\frac{\left(a_{1}+2 a_{2} x_{0}\right) v_{0}}{m_{1}^{2}-m_{2}^{2}}
$$

The 6b final state, analysis [AP, Gilberto Tetlalmatzi-Xolocotzi, Marco Zaro, arXiv:1909.09166]

- What can we learn about the anomalous couplings via hhh at 13.6 TeV?
- Begin by using the $\mathbf{6} \mathbf{b}$-jet final state!

1. Require 6 tagged b-jets.

The 6b final state, analysis [AP, Gilberto Tetlalmatzi-Xolocotzi, Marco Zaro, arXiv:1909.09166]

- What can we learn about the anomalous couplings via hhh at 13.6 TeV?
- Begin by using the $\mathbf{6} \mathbf{b}$-jet final state!

1. Require 6 tagged b-jets.

2. Consider pairings of the b-jets.

The 6b final state, analysis [AP, Gilberto Tetlalmatzi-Xolocotzi, Marco Zaro, arXiv:1909.09166]

- What can we learn about the anomalous couplings via hhh at 13.6 TeV?
- Begin by using the $\mathbf{6} \mathbf{b}$-jet final state!

1. Require 6 tagged b-jets.

2. Consider pairings of the b-jets.

The 6b final state, analysis [AP, Gilberto Tetlalmatzi-Xolocotzi, Marco Zaro, arXiv:1909.09166]

- What can we learn about the anomalous couplings via hhh at 13.6 TeV?
- Begin by using the $\mathbf{6} \mathbf{b}$-jet final state!

1. Require 6 tagged b-jets.

2. Consider pairings of the b-jets.
3. For each pairing construct:

$$
\chi^{2}=\sum_{q r \in \text { pairings } I}\left(M_{q r}-m_{h}^{2}\right)^{2}
$$

$$
\equiv \text { sum of squared differences from Higgs mass (} \sim 125 \mathrm{GeV} \text {) }
$$

The 6b final state, analysis [AP, Gilberto Tetlalmatzi-Xolocotzi, Marco Zaro, arXiv:1909.09166]

- What can we learn about the anomalous couplings via hhh at 13.6 TeV?
- Begin by using the $\mathbf{6} \mathbf{b}$-jet final state!

1. Require 6 tagged b-jets.

2. Consider pairings of the b-jets.
3. For each pairing construct:

$$
\chi^{2}=\sum_{q r \in \text { pairings } I}\left(M_{q r}-m_{h}^{2}\right)^{2}
$$

\equiv sum of squared differences from Higgs mass ($\sim 125 \mathrm{GeV}$)
$\Rightarrow 4$. Pairing that gives minimum χ^{2} determines "reconstructed Higgs boson".

$$
\chi_{4}^{2} \min
$$

The 6b final state, analysis

$$
h_{r \rightarrow \text { Higgs boson candidates }}^{i}
$$

$$
\begin{array}{ll}
\text { observable } & \text { cut } \\
\hline p_{T, b} & >45 \mathrm{GeV} \\
\left|\eta_{b}\right| & <3.2 \\
\Delta R_{b, b} & >0.3 \\
p_{T}\left(h_{r}^{i}\right) & >[170,120,0] \mathrm{GeV}, i=1,2,3 \\
\chi_{\min }^{2} & <17 \mathrm{GeV} \\
\Delta m_{\min , \operatorname{mid}} & <8,8,11 \mathrm{GeV} \quad \text { Higgs boson candidates } \\
\Delta R\left(h_{r}^{i}, h_{r}^{j}\right) & <[3.5,3.5,3.5],(i, j)=[(1,2),(1,3),(2,3)] \\
\Delta R_{b b}\left(h_{r}^{i}\right) & <[3.5,3.5,3.5], i=1,2,3
\end{array}
$$

signal/backgrounds after analysis

Process	$\sigma_{\text {GEN }}(\mathrm{pb})$	$\sigma_{\mathrm{NLO}} \times \mathrm{BR}(\mathrm{pb})$	$\varepsilon_{\text {analysis }}$	$N_{20 \mathrm{ab}^{-1}}^{\text {cuts }}$
$h h h$ (SM)	2.88×10^{-3}	1.06×10^{-3}	0.0131	278
QCD (bs) $(b \bar{b})(b \bar{b})$	26.15	52.30	2.6×10^{-5}	27116
$q \bar{q} \rightarrow h Z Z \rightarrow h(b \bar{b})(b \bar{b})$	8.77×10^{-4}	4.99×10^{-4}	1.8×10^{-4}	~ 2
$q \bar{q} \rightarrow Z Z Z \rightarrow(b \bar{b})(b \bar{b})$	7.95×10^{-4}	7.95×10^{-4}	1.2×10^{-5}	<1
ggF $h Z Z \rightarrow h(b \bar{b})(b \bar{b})$	1.08×10^{-4}	1.23×10^{-4}	$\mathscr{O}\left(10^{-3}\right)$	~ 2
ggF $Z Z Z \rightarrow(b \bar{b})(b \bar{b})$	1.36×10^{-5}	2.73×10^{-5}	2×10^{-5}	$\ll 1$
$h(b \bar{b})(b \bar{b})$	1.46×10^{-2}	1.66×10^{-2}	5.4×10^{-4}	179
$h h(b \bar{b})$	1.40×10^{-4}	9.11×10^{-5}	2.8×10^{-4}	~ 1
$h h Z \rightarrow h h(b \bar{b})$	4.99×10^{-3}	1.61×10^{-3}	7.2×10^{-4}	23
$h Z(b \bar{b}) \rightarrow h(b \bar{b})(b \bar{b})$	9.08×10^{-3}	1.03×10^{-2}	1.4×10^{-4}	29
$Z Z(b \bar{b}) \rightarrow(b \bar{b})(b \bar{b})(b \bar{b})$	2.87×10^{-2}	5.74×10^{-2}	1×10^{-5}	11
$Z(b \bar{b})(b \bar{b}) \rightarrow(b \bar{b})(b \bar{b})(b \bar{b})$	0.93	1.87	3×10^{-5}	1121
\sum backgrounds				2.8×10^{4}

Reducible backgrounds

process	$\sigma_{\mathrm{GEN}}(\mathrm{pb})$	$\sigma_{\mathrm{GEN}} \times \mathscr{P}(6 b-\mathrm{jets})(\mathrm{pb})$	
$(b \bar{b})(b \bar{b})(c \bar{c})$	76.8	0.768	
$(b \bar{b})(c \bar{c})(c \bar{c})$	75.6	0.00756	
$(c \bar{c})(c \bar{c})(c \bar{c})$	22.5	22.5×10^{-5}	Assuming perfect b-tagging +
$(b \bar{b})(b \bar{b})(j j)$	1.32×10^{4}	1.32	
$(b \bar{b})(j j)(j j)$	9.79×19^{5}	0.00979	$\rightarrow \sim 10 \%$ contrical analysis efficiency to QCD 6b:
$(j j)(j j)(j j)$	1.37×10^{6}	1.37×10^{-6}	backgrounds.
	for P(b-tagging $)=\mathbf{0 . 8}:$		
c.f. $\sigma_{\text {GEN }}(6 b)=26.15 \mathrm{pb}$	applied:		
	$\mathcal{P}_{c \rightarrow b}=0.1$	$\rightarrow \sim \mathbf{3 0 \%}$ contribution.	
	$\mathcal{P}_{j \rightarrow b}=0.01$		

Scalar singlet model self-couplings

triple:

$$
\begin{aligned}
\lambda_{111} & =\lambda v_{0} c_{\theta}^{3}+\frac{1}{4}\left(a_{1}+2 a_{2} x_{0}\right) c_{\theta}^{2} s_{\theta} \\
& +\frac{1}{2} a_{2} v_{0} s_{\theta}^{2} c_{\theta}+\left(\frac{b_{3}}{3}+b_{4} x_{0}\right) s_{\theta}^{3} \\
\lambda_{112} & =v_{0}\left(a_{2}-3 \lambda\right) c_{\theta}^{2} s_{\theta}-\frac{1}{2} a_{2} v_{0} s_{\theta}^{3} \\
& +\frac{1}{2}\left(-a_{1}-2 a_{2} x_{0}+2 b_{3}+6 b_{4} x_{0}\right) c_{\theta} s_{\theta}^{2}+\frac{1}{4}\left(a_{1}+2 a_{2} x_{0}\right) c_{\theta}^{3} \\
\lambda_{122} & =v_{0}\left(3 \lambda-a_{2}\right) s_{\theta}^{2} c_{\theta}+\frac{1}{2} a_{2} v_{0} c_{\theta}^{3} \\
& +\left(b_{3}+3 b_{4} x_{0}-\frac{1}{2} a_{1}-a_{2} x_{0}\right) s_{\theta} c_{\theta}^{2}+\frac{1}{4}\left(a_{1}+2 a_{2} x_{0}\right) s_{\theta}^{3} \\
\lambda_{222} & =\frac{1}{12}\left[4\left(b_{3}+3 b_{4} x_{0}\right) c_{\theta}^{3}-6 a_{2} v_{0} c_{\theta}^{2} s_{\theta}\right. \\
& \left.+3\left(a_{1}+2 a_{2} x_{0}\right) c_{\theta} s_{\theta}^{2}-12 \lambda v_{0} s_{\theta}^{3}\right]
\end{aligned}
$$

quartic:

$$
\begin{aligned}
\lambda_{1111} & =\frac{1}{4}\left(\lambda c_{\theta}^{4}+a_{2} c_{\theta}^{2} s_{\theta}^{2}+b_{4} s_{\theta}^{4}\right) \\
\lambda_{1112} & =-\frac{1}{2}\left[-b_{4}+\lambda+\left(-a_{2}+b_{4}+\lambda\right)\left(2 c_{\theta}^{2}-1\right)\right] c_{\theta} s_{\theta} \\
\lambda_{1122} & =\frac{1}{16}\left\{a_{2}+3\left(b_{4}+\lambda\right)\right. \\
& \left.+3\left(a_{2}-b_{4}-\lambda\right)\left[\left(c_{\theta}^{2}-s_{\theta}^{2}\right)^{2}-\left(s_{\theta} c_{\theta}\right)^{2}\right]\right\} \\
\lambda_{1222} & =\frac{1}{4}\left[b_{4}-\lambda+\left(-a_{2}+b_{4}+\lambda\right)\left(c_{\theta}^{2}-s_{\theta}^{2}\right)\right] s_{\theta} c_{\theta} \\
\lambda_{2222} & =\frac{1}{4}\left(b_{4} c_{\theta}^{4}+a_{2} c_{\theta}^{2} s_{\theta}^{2}+\lambda s_{\theta}^{4}\right)
\end{aligned}
$$

TRSM hhh $\mathbf{\rightarrow} \mathbf{6 b}$ analysis details

Introduce two observables: $\chi^{2,(4)}=\sum_{q r \in I}\left(M_{q r}-M_{1}\right)^{2}$

$$
\chi^{2,(6)}=\sum_{q r \in J}\left(M_{q r}-M_{1}\right)^{2}
$$

\rightarrow constructed from different pairings of 4 and 6 b -tagged jets, $M_{q r}$ is the invariant mass of the pairing $q r$.

TRSM hhh $\rightarrow \mathbf{6 b}$ analysis details

Label	$\left(M_{2}, M_{3}\right)$ $[\mathrm{GeV}]$	$<P_{T, b}$ $[\mathrm{GeV}]$	$\chi^{2,(4)}<$ $\left[\mathrm{GeV}^{2}\right]$	$\chi^{2,(6)}<$ $\left[\mathrm{GeV}^{2}\right]$	$m_{4 b}^{\mathrm{inv}}<$ $[\mathrm{GeV}]$	$m_{6 b}^{\text {inv }}<$ $[\mathrm{GeV}]$
\mathbf{A}	$(255,504)$	34.0	10	20	-	525
B	$(263,455)$	34.0	10	20	450	470
C	$(287,502)$	34.0	10	50	454	525
D	$(290,454)$	27.25	25	20	369	475
E	$(320,503)$	27.25	10	20	403	525
F	$(264,504)$	34.0	10	40	454	525
G	$(280,455)$	26.5	25	20	335	475
H	$(300,475)$	26.5	15	20	352	500
I	$(310,500)$	26.5	15	20	386	525
J	$(280,500)$	34.0	10	40	454	525

Table 3. The optimised selection cuts for each of the benchmark points within BP3 shown in table 2. The cuts not shown above are common for all points, as follows: $|\eta|_{b}<2.35, \Delta m_{\text {min, med, } \max }<$ $[15,14,20] \mathrm{GeV}, p_{T}\left(h_{1}^{i}\right)>[50,50,0] \mathrm{GeV}, \Delta R\left(h_{1}^{i}, h_{1}^{j}\right)<3.5$ and $\Delta R_{b b}\left(h_{1}\right)<3.5$. For some of the points a $m_{4 b}^{\mathrm{inv}}$ cut is not given, as this was found to not have an impact when combined with the $m_{6 b}^{\mathrm{inv}}$ cut.

TRSM hhh $\rightarrow \mathbf{6 b}$ analysis details (Signal vs Bkg)

Label	$\begin{gathered} \left(M_{2}, M_{3}\right) \\ {[\mathrm{GeV}]} \end{gathered}$	$\varepsilon_{\text {Sig. }}$	$\left.S\right\|_{300 \mathrm{fb}{ }^{-1}}$	$\varepsilon_{\text {Bkg }}$.	$\left.B\right\|_{300 \mathrm{fb}{ }^{-1}}$	$\begin{gathered} \left.\operatorname{sig}\right\|_{300 \mathrm{fb}}{ }^{-1} \\ \text { (syst.) } \end{gathered}$	$\begin{gathered} \left.\mathrm{sig}\right\|_{3000 \mathrm{fb}}{ }^{-1} \\ \text { (syst.) } \end{gathered}$
A	$(255,504)$	0.025	14.12	8.50×10^{-4}	19.16	2.92 (2.63)	9.23 (5.07)
B	$(263,455)$	0.019	17.03	3.60×10^{-5}	8.12	4.78 (4.50)	15.10 (10.14)
C	$(287,502)$	0.030	20.71	9.13×10^{-5}	20.60	4.01 (3.56)	12.68 (6.67)
D	$(290,454)$	0.044	37.32	1.96×10^{-4}	44.19	5.02 (4.03)	15.86 (6.25)
E	$(320,503)$	0.051	31.74	2.73×10^{-4}	61.55	3.76 (2.87)	11.88 (4.18)
F	$(264,504)$	0.028	18.18	9.13×10^{-5}	20.60	3.56 (3.18)	11.27 (5.98)
G	$(280,455)$	0.044	38.70	1.96×10^{-4}	44.19	5.18 (4.16)	16.39 (6.45)
H	$(300,475)$	0.054	41.27	2.95×10^{-4}	66.46	4.64 (3.47)	14.68 (4.94)
I	$(310,500)$	0.063	41.43	3.97×10^{-4}	89.59	4.09 (2.88)	12.94 (3.87)
J	$(280,500)$	0.029	20.67	9.14×10^{-5}	20.60	4.00 (3.56)	12.65 (6.66)

Table 4. The resulting selection efficiencies, $\varepsilon_{\text {Sig. }}$ and $\varepsilon_{\text {Bkg. }}$, number of events, S and B for the signal and background, respectively, and statistical significances for the sets of cuts presented in table 3. A b-tagging efficiency of 0.7 has been assumed. The number of signal and background events are provided at an integrated luminosity of $300 \mathrm{fb}^{-1}$. Results for $3000 \mathrm{fb}^{-1}$ are obtained via simple extrapolation. The significance is given at both values of the integrated luminosity excluding (including) systematic errors in the background according to Eq. (5.1) (or Eq. (5.2) with $\sigma_{b}=0.1 \times$ B).

TRSM BP3 Definition

Parameter	Value
M_{1}	125.09 GeV
M_{2}	$[125,500] \mathrm{GeV}$
M_{3}	$[255,650] \mathrm{GeV}$
$\theta_{h S}$	-0.129
$\theta_{h X}$	0.226
$\theta_{S X}$	-0.899
v_{S}	140 GeV
v_{X}	100 GeV
κ_{1}	0.966
κ_{2}	0.094
κ_{3}	0.239

TRSM BP3 Benchmark Point Info

Label	$\left(M_{2}, M_{3}\right)$	Γ_{2} $[\mathrm{GeV}]$	Γ_{3} $[\mathrm{GeV}]$	$\mathrm{BR}_{2 \rightarrow 11}$ $[\mathrm{GeV}]$	$\mathrm{BR}_{3 \rightarrow 11}$	$\mathrm{BR}_{3 \rightarrow 12}$
\mathbf{A}	$(255,504)$	0.086	11	0.55	0.16	0.49
\mathbf{B}	$(263,455)$	0.12	7.6	0.64	0.17	0.47
\mathbf{C}	$(287,502)$	0.21	11	0.70	0.16	0.47
\mathbf{D}	$(290,454)$	0.22	7.0	0.70	0.19	0.42
\mathbf{E}	$(320,503)$	0.32	10	0.71	0.18	0.45
\mathbf{F}	$(264,504)$	0.13	11	0.64	0.16	0.48
\mathbf{G}	$(280,455)$	0.18	7.4	0.69	0.18	0.44
\mathbf{H}	$(300,475)$	0.25	8.4	0.70	0.18	0.43
\mathbf{I}	$(310,500)$	0.29	10	0.71	0.17	0.45
\mathbf{J}	$(280,500)$	0.18	10.6	0.69	0.16	0.47

Table 5. The total widths and new scalar branching ratios for the parameter points considered in the analysis. For the SM-like h_{1}, we have $M_{1}=125 \mathrm{GeV}$ and $\Gamma_{1}=3.8 \mathrm{MeV}$ for all points considered. The other input parameters are specified in table 1 . The on-shell channel $h_{3} \rightarrow h_{2} h_{2}$ is kinematically forbidden for all points considered here.

hhh with Anomalous

 Couplings

