Investigating the Higgs selfcouplings through HHH production

Panagiotis Stylianou

based on work in progress with Georg Weiglein

HHH workshop, Dubrovnik

15 July 2023

Introduction

- Higgs discovery at the LHC
- Tremendous efforts from experiments to pinpoint consistency with SM Higgs
- **Most challenging:** $V(\Phi) = \lambda (\Phi^{\dagger} \Phi)^2 - \mu^2 \Phi^{\dagger} \Phi$ SM Potential: $\supset -\lambda v H^3 - \frac{\lambda}{4} H^4$

<u>BSM theories</u> \rightarrow more complicated shapes

measure κ_3

First step:

Content

Perturbative unitarity and Higgs couplings

- Process relevant for κ_3 , κ_4 is $HH \rightarrow HH$ scattering (see also [Liu et al `18])
- Jacob-Wick expansion allows to extract partial waves

 κ_3

Extension of SM potential by operators

Contributions to κ_3 , κ_4 :

SM Potential higher order terms

DESY. Panagiotis Stylianou | HHH workshop | 15/07/23

 κ_3

6

Relevant channels at LHC

• Small rates at LHC

Need dominant production & decays

gluon fusion

$$BR(H \to b\bar{b}) = 0.584$$

• <u>BRs</u>: $BR(H \to \tau^+ \tau^-) = 6.627 \times 10^{-2}$

 $BR(H \to \gamma \gamma) = 2.26 \times 10^{-3}$

 $2b4\tau$ and $4b2\gamma$ produce relatively few events even for large $\kappa_3 \gtrsim 4.5, \ \kappa_4 \gtrsim 30$

• Focus on 6b and $4b2\tau$ final states with 5 and 3 tagged b-quarks, respectively

Event generation and pre-selection

- Events generated with MadGraph5_aMC@NLO
- Higgs states decayed with MadSpin

(conservative) background K-factor of 2

signal K-factor of 1.7 [Florian, Fabre, Mazzitelli`20]

Pre-selection cuts:

Invariant mass of final states: $\gtrsim 350 \text{ GeV}$ At least one pair of tagged states with $m_{ij} \in [110, 140]$ $p_T(b) > 30 \text{ GeV}$ $p_T(\tau) > 10 \text{ GeV}$ $|\eta(\tau)| < 2.5$ $|\eta(b)| < 2.5$

Graph Embedding

1.

2.

- Fully-connected nodes for b and τ final states
- Input features: $[p_T, \eta, \phi, E, m, PDGID]$

FC: Fully-Connected

- Consider combinations of *b*-quarks and τ with reconstructed four-momentum $(p_i + p_i)$
- If $m_{ij} \in [100, 150]$ (GeV) add node H_i

RN: Reconstructed Nodes

Edge Convolution

Input features: $\vec{x}_{i}^{(0)} \rightarrow$ update iteratively with **Edge Convolution** operation:

Edge Convolution operation

GNN efficiencies

Dataset with signal & \blacksquare **GNN** background graphs **Calculate Converses** $E = \left\{ P(\text{Signal}), P(\text{Background}) \right\}$

- GNN trained on $(\kappa_3, \kappa_4) = (1,1)$ sample
- Identify NN score threshold with 99 % background rejection —

Care needed!

Background should

not be depleted

GNN efficiencies & significance

5b vs. $3b2\tau$ at parton-level

DESY. Panagiotis Stylianou | HHH workshop | 15/07/23

Showered and reconstructed results

- Showering and reconstruction of events: Pythia, FastJet, Rivet
- Include mis-tagging effects for c-quarks efficiency: $\sim 20\%$

included as uncertainty

- 'Reconstructed Nodes' embedding
- Re-train GNN and re-identify threshold corresponding to background rejection of 99 %

 κ_3

Optimistic results

but more sophisticated reconstruction/tagging techniques and combinations could yield improvements

DESY. Panagiotis Stylianou | HHH workshop | 15/07/23

14

How do Neural Networks learn?

How do Neural Networks learn?

How do Neural Networks learn?

• Insights

Integrated Gradients

- \rightarrow Integrated Gradients: [Sundararajan, Taly, Yan 1703.01365]
 - axiomatic method
 - uses Neural Network gradients \rightarrow **fast!**
 - suitable for requires a differentiable model **Neural Networks!**
- input baseline **Definition:** $\mathcal{I}_{i}(x) = (x_{i} - x_{i}') \int_{0}^{1} d\alpha \frac{\partial F(x' + \alpha(x - x'))}{\partial x_{i}}$ Gradient of Neural Attribution scores Network F \rightarrow importance of feature
- Easy to implement for Graph Neural Networks as well

Does **not** take into account graph structures

work in progress in Deep Learning community

Viable to understand important features

expect mass of reconstructed Higgs to be important

Attributions

- Tagged b-jets and τ nodes ordered by p_T
- 'Roughly' reconstructed Higgs nodes ordered by 'closeness' to 125 GeV
- p_T , E and PID more important than angular observables
- Higgs masses most important

Attribution vs. nodes

- E and p_T from leading order particles is more important
- *m* is more important for the Higgs closest to the SM

DESY. Panagiotis Stylianou | HHH workshop | 15/07/23

Lepton Colliders

- Complete picture of $(\kappa_3, \kappa_4) \rightarrow$ lepton colliders?
- Inclusive $\ell \ell \to HHH + X$ analysis with $H \to b\bar{b}$
 - At least 5 tagged *b*-quarks with $p_T(b) > 30$ GeV
 - ► Tagging efficiency: 80 %

- Important: For high energies b-quarks are not only in the central part of detector → requires extended tagging capabilities
- Negligible background from other SM processes

Lepton Collider Results

- Poissonian analysis: $\mu_{up} = \frac{1}{2} F_{\chi^2}^{-1} \left[2(n+1); CL \right]$
- Results similar to other works with dedicated analyses, e.g. [Maltoni, Pagani, Zhao `18]

DESY. Panagiotis Stylianou | HHH workshop | 15/07/23

HL-LHC vs. future lepton colliders

- HL-LHC can provide competitive results compared to $1\ {\rm TeV}$ collider
- High energy lepton collisions way more sensitive

DESY. Panagiotis Stylianou | HHH workshop | 15/07/23

But such machines

more comparable

Conclusions

- If there is a sizeable deviation in κ_3 , an even larger deviation in κ_4 is not unreasonable sizeable κ_4 deviations allowed by unitarity
- **<u>GNNs</u>** provide enhanced results at HL-LHC
 - HL-LHC should be able to probe regions allowed by unitarity
 - HL-LHC will be able to probe interesting regions which could point to linear vs. non-linear prescriptions
 - HHH not powerful enough to constrain κ_3 as well as di-Higgs bounds

BUT can provide complementary information and be used in combination with di-Higgs

- HL-LHC competitive with 1 TeV lepton colliders but higher energies more sensitive
- Neural Network interpretations useful for understanding ML techniques

Backup: Interpretation axioms

<u>Axioms:</u>

- <u>Completeness</u>: sum of attributions equal to difference of network output for input and baseline values
- **Sensitivity**: when baseline and input have different values and different NN outputs, attributions should also be different
- **Dummy**: A zero input should yield no attribution
- Implementation Invariance: If two methods are equivalent (i.e. yield same scores for all inputs despite being different) then attributions should be identical
- **Linearity**: Attributions should be linear for linear combinations of networks $aF_1 + bF_2$
- **<u>Symmetry</u>**: For a network symmetric for two variables F(x, y) = F(y, x), the attributions should be the same

Backup: Reconstructed Higgs Mass

Interpretation as expected:

If a Higgs close to 125 GeV can be found \implies signal

 Complete understanding would require to study correlations between observables → <u>future work</u>

DESY. Panagiotis Stylianou | HHH workshop | 15/07/23

Backup: Lepton collider cross sections

- Inclusive $\ell \ell \to HHH + X$ analysis with $H \to b\bar{b}$
- Cross sections small below 1 TeV

