

HHH workshop

Dubrovnik, 14-16 July 2023

Scrutinising *hhh* production with *b*-jets, taus and photons

Scrutinising hhh production

with b-jets, taus and photons

Benjamin Fuks

LPTHE / Sorbonne Université

The Higgs potential in the SM - very few freedoms

• The Higgs mass and vev the (known) keys

$$V_{h} = \frac{1}{2}m_{h}^{2}h^{2} + \lambda_{hhh}vh^{3} + \frac{1}{4}\lambda_{hhhh}h^{4}$$

with $\lambda_{hhh} = \lambda_{hhhh} = \frac{m_{h}^{2}}{2v^{2}}$

Simplest new physics parameterisation

• SM coupling modifiers

$$V_h = \frac{1}{2}m_h^2 h^2 + (1+\kappa_3)\lambda_{hhh}vh^3 + \frac{1}{4}(1+\kappa_4)\lambda_{hhhh}h^4$$

• In the SM $\kappa = 0$

 \rightarrow Experimental constraints at the LHC and beyond → Requires multi-Higgs production

• Signature studied: 4 *b*-jets + either 2γ or 2τ

Setting the stage...

- Higgs self-couplings: *direct* verification in order
 - → Better knowledge of EWSB
 - \rightarrow Access to an extended scalar sector
 - \rightarrow Nature of the electroweak phase transition

The golden (clean) $4b2\gamma$ mode

- Extremely efficient *b*-tagging desirable
- Good photon resolution
- 2σ reachable in the SM
- Excellent probe of BSM

The $4b2\tau$ mode

- Exploiting boosted Higgses and high-level variables
- Good double-tau tagging crucial
- 2σ reachable in the SM

[Papaefstathiou & Sakurai (JHEP`16)]

[BF, Kim & Lee (PRD`16)]

[Chen, Yan, Zhao, Zhao & Zhong (PRD`16)]

Triple Higgs production in the 4b2 γ mode

Simulation details

- Monte Carlo study + smearing of the four-momenta (à la ATLAS)
- **b-tagging performance**: two LHC-inspired working points → 70% efficient ⊕ large fake rates (18%, for c-jets, 1% for light jets)
 - \rightarrow 60% efficient \oplus small fake rates (1.8%, for *c*-jets, 0.1% for light jets)

Can we be more aggressive? Are the choices realistic?

See talks by Liu & Kolosova

- Main backgrounds: $\gamma\gamma bbjj$, $\gamma\gamma tt$, $\gamma\gamma Z_{bb}jj$, $h_{\gamma\gamma}h_{bb}Z_{bb}$, $h_{\gamma\gamma}bbbb$
- Secondary backgrounds: $\gamma\gamma bbbb, \gamma\gamma Z_{bb}Z_{bb}$

(Naive) analysis details targeting 20 ab⁻¹

- Signature: 4 jets (with m_{4i} < 600 GeV), 2 photons
- Two di-jet systems compatible with a Higgs ($m_{ii} \in [105, 140]$ GeV)
- The di-photon system compatible with a Higgs ($m_{\gamma\gamma} \in [125-M, 125+M]$ GeV)
- At least N_b b-tagged jets

What is the best *M* value? How many *b*-jets?

hhh in the 4b2 γ mode: impact of b-tagging

Scrutinising *hhh* production with *b*-jets, taus and photons

Default photon resolution

• $m_{\gamma\gamma} \in [123, 127] \text{ GeV}$

Significance (in standard dev.)

$$\sigma \equiv \sqrt{-2 \ln \frac{L(S+B)}{L(B|B)}}$$

b-tagging

- 60% working point better \rightarrow low fake rate crucial
 - \rightarrow 18% c-fake rates kills
- 4 *b*-jets better
- \rightarrow 1.5 σ vs 2.5 σ for the SM

hhh in the 4b2 γ mode: impact of photon resolution

Photons with $p_T > 20$ GeV well reconstructed ($\sigma/E \sim 0.1/\sqrt{E}$)

- A large signal efficiency \rightarrow a not too small $m_{\gamma\gamma}$ window
- A too large $m_{\gamma\gamma}$ window \rightarrow larger background contamination

The best: a 4 GeV window

Benjamin Fuks - 16.07.2023 - 5

Triple Higgs production in the 4b2 τ mode

Tau-tagging performance inspired by the LHC

- Efficiency of 50%; mistagging rate of 5%
 - \rightarrow Narrow jet with no activity around it
 - \rightarrow The fake rate potentially smaller

Various background contributions

- t/W backgrounds: $t_{\tau}t_{\tau}h_{bb}$, $t_{\tau}t_{\tau}Z_{bb}$, $t_{\tau}t_{\tau}bb$, $W_{\tau}W_{\tau}bbbb$, tttt
- $Z_{\tau\tau}/h_{\tau\tau}$ backgrounds: $X_{\tau\tau}bbbb$, $X_{\tau\tau}bbjj$, $X_{\tau\tau}t_ht_h$, $X_{\tau\tau}X_{bb}bb$, $X_{\tau\tau}X_{bb}X_{bb}$
- *hh* background

Analysis details

- Signature: 4 jets, 2 taus
- Di-tau constraints
- Semi-boosted di-*h*_{bb} system (one boosted, one resolved)
- High-level variables

hhh in the 4b2 τ mode: the di-tau system

Di-tau reconstruction: lesson learned from hh analyses

• Dedicated high-level variables ('Higgs-bound invariant mass' and 'true transverse mass')

- - \rightarrow But signal efficiency of 50%

hhh in the 4b2 τ mode: playing with h_{bb} systems

Boosted Higgs boson

- Usage of the Template Overlap Method
 - → Templates for the fat jet substructure
 - → Include higher-order effects
 - → Efficiency of 40% for a mistagging rate of 2%

[Almeida, Lee, Perez, Sterman & Sung (PRD`10)] [Almeida, Erdoğan, Juknevich, Lee, Perez & Sterman (PRD`I2)]

• $p_T > 300$ GeV, double *b*-tag, mass in [105, 135] GeV

Improvements (cost in signal efficiency large)? See talk by Karkout

One resolved Higgs boson

• Single *b*-tag, di-jet mass in [105, 135] GeV

Benjamin Fuks - 16.07.2023 - 8

Further background rejection – tricks

S/B still smaller than 0.01 cf. the t/W background

- Cut on *m*_{hhh}
- Use of the m_{T2} variable introduced in the SUSY context
 - \rightarrow Decay of states in visible and invisible objects
 - \rightarrow Minimisation of the maximum transverse mass of two branches

$$m_{T2} = \min_{\substack{p_T^{(1)} + p_T^{(2)} = p_T}} \max\left[m_T(j_1, p_T^{(1)}, m_\chi), m_T(j_2, p_T^{(2)}, m_\chi)\right]$$

[Lester & Summer (PLB`99)] [Barr, Lester & Stephens (JPG`03)]

 $\rightarrow m_{\chi}$ = an estimation of the invisible state mass

- Use of the dependence of the edge of the m_{T2} spectrum on m_{χ} \rightarrow Sharp rise with m_{χ} above its true mass
 - \rightarrow Optimisation

Scrutinising *hhh* production with *b*-jets, taus and photons

Benjamin Fuks - 16.07.2023 - 9

2σ on the SM with 30 ab⁻¹

The $4b2\tau$ mode as a probe of new physics

- Complicated analysis required
- Negative κ_3 severely constrained (larger rates)
- If κ_3 constrained otherwise, then potential κ_4 constraints
- An important fraction of the parameter space not probed
 → Destructive interferences

Potential for combination with the $4b2\gamma$ and 6b modes

- Also with more modern techniques (boosted Higgs)
- Also with better *b*-tagging performance

Strong constraints on the κ parameters obtainable from *hhh* production

- Especially for negative κ_3
- The SM point reachable at about 2σ for both channels

Outlook

- Revisiting studies with a modern perspective
- What could be done at 13 TeV?

Scrutinising *hhh* production with *b*-jets, taus and photons

Summary

