HHH workshop 14-16th of July 2023 Dubrovnik

(A Few) Experimental ThougHHHts HHH Workshop - Dubrovnik, Croatia, 15.07.23

Greg Landsberg, Brown University

Diagrammatics

- LO: 50 top quark loop diagrams + 50 bottom loop ones; ignore the latter
- Four classes:
 - Pentagon: ~yt³ 24 diagrams; destructively interfere with "signal"
 - Box: $\sim y_t^2 \lambda_3 18$ diagrams, proportional to $\lambda_3 destructive$ int.
 - Triangle: $\sim y_t \lambda_{3^2}$ 6 diagrams, proportional to λ_{3^2} destructive int.
 - Quartic: $\sim y_t \lambda_4 2$ diagrams, sensitive to quartic coupling don't interfere with other diagrams to the fist order
- N.B. Given the $\lambda_3 = \lambda_4 = 0.13$ in the SM, box diagrams dominate in the SM, but not necessarily at large λ_3
 - Challenge identify the phase space where triangular diagrams dominate - might enhance the sensitivity to large λ_3

Branching Fractions

- H(bb) = 58.1%, $H(\tau\tau) = 6.26\%$, H(WW) = 21.5%, H(gg) = 8.18%, H(ZZ) = 2.6%, $H(\chi\chi) = 0.23\%$
- $\sigma_{\text{HHH}}(14 \text{ TeV}, \text{NNLO}) = 0.1 \text{ fb}$
- Aim at $\sigma^{95} = 100 \text{ x} \sigma_{HHH} = 10 \text{ fb}$; Run 2 x $\sigma^{95} \sim 1000 \text{ events}$; Run 2 x $\sigma^{95} \text{ x} \epsilon \sim 100 \text{ events}$
- To set a limit, need expected yield of 3 signal events: do not consider Br < 3% for now
- HHH → 6b: 19.5%
- HHH \rightarrow bbbbtt: 6.3%; bbbbthth: 2.7%
- HHH \rightarrow bbbbWW \rightarrow 4b4j: 9.9%
- HHH \rightarrow bbbbgg \rightarrow 4b2j: 8.3%
- HHH \rightarrow bbbbWW \rightarrow 4b2j ℓ v: 5.9%
- HHH \rightarrow bbttWW \rightarrow 2b2t4j: 2.1%
- HHH \rightarrow bbbbWW \rightarrow 4b2 ℓ 2v: 0.9%
- HHH \rightarrow bbtttt: 0.68%
- HHH \rightarrow bbbbyy: 0.23%

41% - Focus on these topologies: 4b + jets

N.B.1: this is SIMPLER than $HH \rightarrow 4b$ All the techniques developed for that analysis can be reused if desired Backgrounds by construction are order of magnitude or more lower

N.B.2: WW \rightarrow lvjj, while promising, doesn't have a mass peak

Jet Merging

- Merged jets help tremendously against combinatorics:
 - HHH \rightarrow 6b: C²₆ x C²₄ x C²₂ / 3! = 15 x 6 x 1 / 6 = 15 combinations
 - HHH \rightarrow 4b+J: C²₄ x C²₂ / 2! = 6 x 1 / 2 = 3 combinations!
 - HHH → 2b+2J and HHH → 3J = 1 combination each!!
- N.B.1. Average Higgs boson p_{T} in HHH production ~200 GeV boosted topologies are not rare
- N.B.2.: for a 200 GeV p_T, θ ≈ 2/γ ≈ 1.25, so R ~ 1.
 are effective in catching Higgs boson decays

Toward Merged Topologies

 H_2

 H_2

- Our experience: merged jet topologies offer better performance than resolved ones
 - Smaller combinatorics
 - Substructure variables are apparently more powerful than what we use in the resolved case
- Idea: why bother with resolved, fully merged, and partially merged topologies?
 - Work with CA1.5-2.0 jets and have at least two out of three Higgs boson decays merged!
 - No combinatorics, and the advantage \bullet of using jet substructure techniques!

Resonances

- E.g., 2101.0031 (2RSM)
 - pp \rightarrow h₃ \rightarrow h₂h₁ \rightarrow h₁h₁h₁ (h₁ = H(125))
 - $M_3 = 500 \text{ GeV}$, $M_2 = 300 \text{ GeV}$, $\sigma \sim 40 \text{ fb}$
- At the LHC, we are good at looking at pp $\rightarrow X \rightarrow AB$ (ij, *ll*, $\chi\chi$, VV, VH, HH, V χ , H χ , Va, aa) as well as more complex decays fr pair production: e.g., $pp \rightarrow gg \rightarrow 6j$
- We rarely do single resonance searches decaying in three objects
 - The $Z \rightarrow XY$ search program is still in its infancy
 - searches from ATLAS+CMS)
- As a side remark, we should also do VVH and VHH searches!
 - The latter gives direct access to κ_{2V}

• We know that resonances could easily boost the HHH cross section by 2 orders of magnitude (HHH \rightarrow HH)

• Recent example: CMS search PAS EXO-22-008 for pp $\rightarrow X \rightarrow jjj$ (either directly Z' $\rightarrow ggg$, or via an intermediate resonance $g_{KK} \rightarrow Rg \rightarrow ggg$ or $q^* \rightarrow qV \rightarrow qqq$) - first of a kind at colliders (cf. ~50 pp $\rightarrow X \rightarrow jj$

Triggers

- In the approach I suggest, we need the same triggers (and largely the analysis!) as (boosted) HH \rightarrow 4b search
- even more efficient (partially parked) triggers in Run 3
- General trigger strategy: $H_T \sim 300$ GeV + 2-3 b tagged jets (PNet)
- If one wishes to also pursue the 4b+2j+lv channel, isolated single-lepton triggers would suffice

As you saw, CMS had rather efficient triggers in Run 2, and have installed

My Conclusions

- Think before you get engaged into analysis!
- The difference is obvious:

My Conclusions

- Think before you get engaged into analysis!
- The difference is obvious:

ChatGPT Conclusions

- In the realm of particles so grand, Where mysteries lie in each strand, The Higgs boson takes its place, With secrets held in its embrace.
- Its self-coupling, a subtle dance, A tryst of particles in cosmic expanse. Yet direct measurements remain unseen, As scientists strive to grasp its serene.
- Indirect constraints like whispers told, Unveiling truths in the particles' fold.
 With bounds and limits, we seek to find, The Higgs self-coupling, an enigma entwined.