HHH workshop 14-16th of July 2023 Dubrovnik

(A Few) Experimental ThougHHHts

HHH Workshop - Dubrovnik, Croatia, 15.07.23
Greg Landsberg, Brown University

Diagrammatics

- LO: 50 top quark loop diagrams + 50 bottom loop ones; ignore the latter
- Four classes:
- Pentagon: $\sim \mathrm{yt}^{3}$ - 24 diagrams; destructively interfere with "signal"
- Box: $\sim y_{t}{ }^{2} \lambda_{3}-18$ diagrams, proportional to λ_{3} - destructive int.
- Triangle: $\sim y_{t} \lambda_{3}{ }^{2}-6$ diagrams, proportional to $\lambda_{3}{ }^{2}$ - destructive int.
- Quartic: $\sim y_{\dagger} \lambda_{4}-2$ diagrams, sensitive to quartic coupling - don't interfere with other diagrams to the fist order
- N.B. Given the $\lambda_{3}=\lambda_{4}=0.13$ in the SM, box diagrams dominate in the SM, but not necessarily at large λ_{3}
- Challenge - identify the phase space where triangular diagrams dominate - might enhance the sensitivity to large λ_{3}

Branching Fractions

- $\mathrm{H}(\mathrm{bb})=58.1 \%, \mathrm{H}(\tau \tau)=6.26 \%, H(W W)=21.5 \%, H(g g)=8.18 \%, H(Z Z)=2.6 \%, H(\gamma \gamma)=0.23 \%$
- $\sigma_{\text {ннн }}(14 \mathrm{TeV}, \mathrm{NNLO})=0.1 \mathrm{fb}$
- Aim at $\sigma^{95}=100 \times \sigma_{H H H}=10 \mathrm{fb}$; Run $2 \times \sigma^{95} \sim 1000$ events; Run $2 \times \sigma^{95} \times \varepsilon \sim 100$ events
- To set a limit, need expected yield of 3 signal events: do not consider $\mathrm{Br}<3 \%$ for now
- HHH \rightarrow 6b: 19.5\%
- HHH \rightarrow bbbbtr: 6.3\%; bbbb $_{h} \tau_{h}$: 2.7\%
- $\mathrm{HHH} \rightarrow$ bbbbWW \rightarrow 4b4j: 9.9\%
- $\mathrm{HHH} \rightarrow$ bbbbgg \rightarrow 4b2j: 8.3\%
- $\mathrm{HHH} \rightarrow$ bbbbWW \rightarrow 4b2jlv: 5.9\%
- $\mathrm{HHH} \rightarrow$ bbтTWW $\rightarrow 2 b 2 \tau 4 j: 2.1 \%$
- $\mathrm{HHH} \rightarrow$ bbbbWW $\rightarrow 4 b 2 l 2 \mathrm{v}: 0.9 \%$
- $\mathrm{HHH} \rightarrow$ bвттг: 0.68%
- HHH \rightarrow bbbbyy: 0.23%

41\% - Focus on these topologies: 4b + jets

N.B.1: this is SIMPLER than $\mathrm{HH} \rightarrow 4 b$

All the techniques developed for that analysis can be reused if desired
Backgrounds by construction are order of magnitude or more lower
N.B.2: WW \rightarrow Ivjj, while promising, doesn't have a mass peak

Jet Merging

- Merged jets help tremendously against combinatorics:
- $\mathrm{HHH} \rightarrow 6 \mathrm{~b}: \mathrm{C}^{2}{ }_{6} \times \mathrm{C}^{2}{ }_{4} \times \mathrm{C}^{2}{ }_{2} / 3!=15 \times 6 \times 1 / 6=15$ combinations
- $\mathrm{HHH} \rightarrow 4 \mathrm{~b}+\mathrm{J}: \mathrm{C}^{2}{ }_{4} \times \mathrm{C}^{2} / 2!=6 \times 1 / 2=3$ combinations!
- $\mathrm{HHH} \rightarrow 2 \mathrm{~b}+2 \mathrm{~J}$ and $\mathrm{HHH} \rightarrow 3 \mathrm{~J}=1$ combination each!!
- N.B.1. Average Higgs boson pt in HHH production ~200 GeV - boosted topologies are not rare

Osama Karkout's talk

- N.B.2.: for a $200 \mathrm{GeV} \mathrm{p}_{\mathrm{T}}, \theta \approx 2 / \gamma \approx 1.25$, so $R \sim 1.0$ jets are effective in catching Higgs boson decays

Toward Merged Topologies

H_{1}

- Our experience: merged jet topologies offer better performance than resolved ones
- Smaller combinatorics
- Substructure variables are apparently more powerful than what we use in the resolved case
- Idea: why bother with resolved, fully merged, and partially merged topologies?
- Work with CA1.5-2.0 jets and have at least two out of three Higgs boson decays merged!
- No combinatorics, and the advantage of using jet substructure techniques!

Resonances

- We know that resonances could easily boost the HHH cross section by 2 orders of magnitude $(\mathrm{HHH} \rightarrow \mathrm{HH})$
- E.g., 2101.0031 (2RSM)
- $\mathrm{pp} \rightarrow \mathrm{h}_{3} \rightarrow \mathrm{~h}_{2} \mathrm{~h}_{1} \rightarrow \mathrm{~h}_{1} \mathrm{~h}_{1} \mathrm{~h}_{1}\left(\mathrm{~h}_{1}=\mathrm{H}(125)\right)$
- $\mathrm{M}_{3}=500 \mathrm{GeV}, \mathrm{M}_{2}=300 \mathrm{GeV}, \sigma \sim 40 \mathrm{fb}$
- At the LHC, we are good at looking at $\mathrm{pp} \rightarrow \mathrm{X} \rightarrow \mathrm{AB}(\mathrm{jj}, l l, \gamma \gamma, \mathrm{VV}, \mathrm{VH}, \mathrm{HH}, \mathrm{V} \mathrm{\gamma}, \mathrm{H} \mathrm{\gamma}, \mathrm{Va}$, aa) as well as more complex decays fr pair production: e.g., $\mathrm{pp} \rightarrow \mathrm{gg} \rightarrow 6 \mathrm{j}$
- We rarely do single resonance searches decaying in three objects
- The $Z \rightarrow X Y$ search program is still in its infancy
- Recent example: CMS search PAS EXO-22-008 for $\mathrm{pp} \rightarrow \mathrm{X} \rightarrow \mathrm{jjj}$ (either directly $\mathrm{Z}^{\prime} \rightarrow \mathrm{ggg}$, or via an intermediate resonance $\mathrm{gkk}_{\mathrm{k}} \rightarrow \mathrm{Rg} \rightarrow \mathrm{ggg}$ or $\mathrm{q}^{*} \rightarrow \mathrm{qV} \rightarrow \mathrm{qqq}$) - first of a kind at colliders (cf. $\sim 50 \mathrm{pp} \rightarrow \mathrm{X} \rightarrow \mathrm{jj}$ searches from ATLAS+CMS)
- As a side remark, we should also do VVH and VHH searches!
- The latter gives direct access to $\kappa_{2 v}$

Triggers

- In the approach I suggest, we need the same triggers (and largely the analysis!) as (boosted) $\mathrm{HH} \rightarrow 4 \mathrm{~b}$ search
- As you saw, CMS had rather efficient triggers in Run 2, and have installed even more efficient (partially parked) triggers in Run 3
- General trigger strategy: $\mathrm{H}_{\mathrm{T}} \sim 300 \mathrm{GeV}+2-3 \mathrm{~b}$ tagged jets (PNet)
- If one wishes to also pursue the $4 b+2 j+l v$ channel, isolated single-lepton triggers would suffice

My Conclusions

- Think before you get engaged into analysis!
- The difference is obvious:

My Conclusions

- Think before you get engaged into analysis!
- The difference is obvious:

ChatGPT Conclusions

- In the realm of particles so grand, Where mysteries lie in each strand, The Higgs boson takes its place, With secrets held in its embrace.
- Its self-coupling, a subtle dance, A tryst of particles in cosmic expanse. Yet direct measurements remain unseen, As scientists strive to grasp its serene.
- Indirect constraints like whispers told, Unveiling truths in the particles' fold. With bounds and limits, we seek to find, The Higgs self-coupling, an enigma entwined.

