
Software Sustainability Institute

www.software.ac.uk

Making software FAIR

Slides: https://doi.org/10.6084/m9.figshare.22347154

28 March 2023, Academic Training Lectures, CERN (virtual).

Neil Chue Hong (@npch), Software Sustainability Institute / EPCC
ORCID: 0000-0002-8876-7606 | N.ChueHong@software.ac.uk

Supported by:

Software Sustainability Institute

www.software.ac.uk
Research is not a
competition against each other
Our aim is knowledge for society

The pandemic showed us what
we gain from collaboration

Software Sustainability Institute

www.software.ac.uk

Open Science needs software

“Re-use and value of data can depend on
the availability of relevant metadata,
algorithms, code, and software, together
with information on workflows and the
computational environment used”
- OECD Recommendation on Access to
Research Data from Public Funding (2020)

“In the case of open source software, a
community-driven process for contribution,
attribution and governance is required to
enable reuse, improve sustainability and
reduce unnecessary duplication of effort.”
- UNESCO Recommendation on Open Science
(2021)

Software Sustainability Institute

www.software.ac.uk

Software lets others benefit

“Arman Bilge, a 10th grader at
Lexington High School in
Massachusetts, was a newbie
to phylogenetics when a
science teacher there
organized an after-school
phylogenetic tree club. In the
club, Bilge learned how to use
a variety of software
applications, including one
well known to systematic
biologists called BEAST.”

Slide courtesy of Nancy Wilkins-Diehr

BEAST software licensed under LGPL

Software Sustainability Institute

www.software.ac.uk

Culture change is hard
In 2011 Science changed its editorial
policies: “We require that all computer code used

for modeling and/or data analysis that is not
commercially available be deposited in a publicly
accessible repository upon publication.”

“Normally we do not provide this kind of information to people we

do not know. It might be that you want to check the data analysis,

and that might be of some use to us, but only if you publish your

findings while properly referring to us.”

“Thank you for your interest in our paper. For the [redacted]

calculations I used my own code, and there is no public version of

this code, which could be downloaded. Since this code is not very

user-friendly and is under constant development I prefer not to

share this code.”

“I have to say that this is a very unusual request without any

explanation! Please ask your supervisor to send me an email with a

detailed, and I mean detailed, explanation.”

“When you approach a PI for the source codes and raw data, you

better explain who you are, whom you work for, why you need the

data and what you are going to do with it.”
Stodden, Seiler, Ma. An empirical analysis of journal policy

effectiveness for computational reproducibility

https://doi.org/10.1073/pnas.1708290115

http://www.sciencemag.org/authors/science-journals-editorial-policies
https://doi.org/10.1073/pnas.1708290115

Software Sustainability Institute

www.software.ac.uk

Research relies on software
Do you use research

software?

What would happen to your

research without software

56%
Develop their

own software

71% Have no formal

software training
2014 UK Research Software Survey. DOI:

10.5281/zenodo.14809

Software Sustainability Institute

www.software.ac.uk

Software and Research

Language N %

python 235 59.19

fortran 98 24.69

c++ 92 23.17

c 65 16.37

matlab 57 14.36

r 52 13.1

bash 28 7.05

java 26 6.55

perl 10 2.52

idl 8 2.02

javascript 8 2.02

rust 7 1.76

cuda 5 1.26

julia 5 1.26

c# 4 1.01

php 3 0.76

Software N %

python 76 19

matlab 46 11.5

r 39 9.75

latex 11 2.75

mathematica 11 2.75

stata 10 2.5

git 9 2.25

pytorch 9 2.25

amber 8 2

vasp 8 2

overleaf 7 1.75

imagej 7 1.75

gaussian 7 1.75

fiji 7 1.75

paraview 7 1.75

excel 7 1.75

Most important software Most used languagesSoftware is essential to research

Most researchers develop software

UKRI Software and Skills Survey (2022)

Software Sustainability Institute

www.software.ac.uk

Research software?

Code Lifespan

https://xkcd.com/2730/

From xkcd.com

by Randall Munroe

CC-BY-NC licensed

https://xkcd.com/2730/

Software Sustainability Institute

www.software.ac.uk

Software Sustainability Institute

A national facility for cultivating better,
more sustainable, research software
to enable world-class research
• Software reaches boundaries in its

development cycle that prevent
improvement, growth and adoption

• Providing the expertise and services
needed to negotiate to the next stage

• Developing the policy and tools to
support the community developing and
using research software

Supported by all seven UK Research Councils through grants
EP/H043160/1 + EP/N006410/1 + EP/S021779/1

Software Sustainability Institute

www.software.ac.uk

Software

Policy

Training

Community

Outreach

Delivering essential software

skills to researchers via CDTs,

institutions & doctoral schools

Helping the community to

develop software that meets the

needs of reliable, reproducible,

and reusable research

Collecting evidence

on the community’s

software use & sharing

with stakeholders

Bringing together

the right people to

understand and address

topical issues

Exploiting our platform to

enable engagement,

delivery & uptake

Software Sustainability Institute

www.software.ac.uk

Research Software Tiers

• One-off “me” research

• Often not revised after publication
Analysis Code

• Research need “professorware”

• Often best-effort maintenance
Prototype Tools

• Professionalised product
Research
Software

Infrastructure

Adapted from Tom Honeyman, ARDC, after Konrad Hinsen

Software Sustainability Institute

www.software.ac.uk

Good code takes practice

• Writing good code is not easy

• But there are things that make
it easier over time

• The key is applying them and
practicing their use

• Saves you time in the future

Xkcd: Good Code by Randall Munroe

https://xkcd.com/844/

https://xkcd.com/844/

Software Sustainability Institute

www.software.ac.uk

FAIR Principles

• Findable

• Accessible

• Interoperable

• Reusable
Wilkinson, M., et al. The FAIR Guiding
Principles for scientific data
management and stewardship. Sci
Data 3, 160018 (2016).
10.1038/sdata.2016.18

The Turing Way project illustration by Scriberia.

Used under a CC-BY 4.0 licence. DOI: 10.5281/zenodo.3332807.¶

https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.5281/zenodo.3332807
https://the-turing-way.netlify.app/reproducible-research/rdm/rdm-fair.html#fair-principles

Software Sustainability Institute

www.software.ac.uk

Towards FAIR software

M6 M12 M18

FAIR principles for

research software

Implementation

guidelines

Adoption

examples

Sep 2020 Oct 2022

• A joint RDA Working Group, FORCE11 Working Group, and
Research Software Alliance (ReSA) Taskforce.
▪ 250 members, 80 active contributors.

• Coordinating of a range of existing community-led discussions on:
▪ How to define and effectively apply FAIR principles to research

software,
▪ How to achieve adoption of these principles.

Introducing the FAIR Principles for research software (Scientific Data)

FAIR Principles for Research Software (FAIR4RS Principles) v1.0 (RDA)

https://www.nature.com/articles/s41597-022-01710-x
https://doi.org/10.15497/RDA00068

Software Sustainability Institute

www.software.ac.uk

• Findable: Software, and its associated metadata, is easy for both humans
and machines to find.

• Accessible: Software, and its metadata, is retrievable via standardized
protocols.

• Interoperable: Software interoperates with other software by exchanging
data and/or metadata, and/or through interaction via application
programming interfaces (APIs), described through standards.

• Reusable: Software is both usable (can be executed) and reusable (can be
understood, modified, built upon, or incorporated into other software).

(key differences from FAIR data principles in italics)

FAIR4RS Principles

Software Sustainability Institute

www.software.ac.uk

FAIR4RS Principles
F: Software, and its associated metadata, is easy for both

humans and machines to find

F1. Software is assigned a globally unique and persistent identifier.

F1.1. Components of the software representing levels of

granularity are assigned distinct identifiers.

F1.2. Different versions of the software are assigned distinct

identifiers.

F2. Software is described with rich metadata.

F3. Metadata clearly and explicitly include the identifier of the

software they describe.

F4. Metadata are FAIR, searchable and indexable.

A: Software, and its metadata, is retrievable via standardized

protocols.

A1. Software is retrievable by its identifier using a standardized

communications protocol.

A1.1. The protocol is open, free, and universally implementable.

A1.2. The protocol allows for an authentication and authorization

procedure, where necessary.

A2. Metadata are accessible, even when the software is no longer

available.

I: Software interoperates with other software by exchanging

data and/or metadata, and/or through interaction via

application programming interfaces (APIs), described

through standards.

I1. Software reads, writes and exchanges data in a way that

meets domain-relevant community standards.

I2. Software includes qualified references to other objects

R: Software is both usable (can be executed) and reusable

(can be understood, modified, built upon, or incorporated

into other software).

R1. Software is described with a plurality of accurate and relevant

attributes.

R1.1. Software is given a clear and accessible license.

R1.2. Software is associated with detailed provenance.

R2. Software includes qualified references to other software.

R3. Software meets domain-relevant community standards.

Chue Hong, N. P., et al. (2022). FAIR Principles for Research

Software version 1.0. (FAIR4RS Principles v1.0). Research Data

Alliance. DOI: https://doi.org/10.15497/RDA00068

https://doi.org/10.15497/RDA00068

Software Sustainability Institute

www.software.ac.uk

FAIR4RS Principles

Reusable

Document, license, and follow community good practice

Interoperable

Use APIs, standards and references

Accessible

Make software and metadata easily retrievable

Findable

Use persistent identifiers and descriptive metadata

Software Sustainability Institute

www.software.ac.uk

FAIR enough principles?

Write code to be readable, reusable & testable
1. Use a code repository and version control
2. License your software
3. Document for your future self
4. Split your code into small, modular parts
5. Use libraries for common functionality
6. Share your code with others

Software Sustainability Institute

www.software.ac.uk

Licenses – key questions

• What is your objective? What impact do you seek?
▪ Disseminate research / research outcomes
▪ Supporting reproducibility
▪ Widespread usage / build community
▪ Commercial revenue / sell related services + infrastructure
▪ Social or cultural change

• Do you care whether changes made by others are made available?
• Do you care if certain people / organisations use your work?
• Does your work depend on / incorporate other works?
• Is there common practice in use already in your community?

24

Software Sustainability Institute

www.software.ac.uk

Types of software license

25

Type of license Closed source /
Proprietary

Academic / Non-
commercial2

Freeware2 Copyleft Permissive

Provides copyright protection Yes Yes Yes Yes Yes

Can be used for commercial
applications

Yes Yes Yes Yes Yes

Allows redistribution No No Yes Yes Yes

Allows reuse / modification
(including in commercial products)

No1 No1 No1 Yes Yes

Allows reuse in closed source
projects

Depends on license No (normally)1 No (normally)1 No Yes

Requires changes to be shared No (normally)1 No (normally)1 No (normally)1 Yes No

Ability to restrict categories of users Yes Yes Yes No No

Examples of license Matlab end user
license

CASTEP license,
OpenCarp license

Adobe Acrobat
Reader license

GPL, LGPL,
AGPL

BSD, MIT,
Apache

Notes: 1. Unless license specifically allows it

2. Subset of Closed Source licenses

Software Sustainability Institute

www.software.ac.uk

Why license? Protection

Protect suppliers and users

• “We used your software and it wiped our astronomy data”

• “We used your software, our lab burnt down and someone died”

Warranty

• Commitment to remedy defects

Liability

• Extent to which supplier is liable to provide remedies e.g. repairs, replacements, compensation

• Subject to fairness criteria

Indemnity

• Commitment by supplier to compensate user

Software Sustainability Institute

www.software.ac.uk

Why license? Exploiting work

Commercialising your work

• A license allows you to set out the conditions of use

• Can use to define users rights when selling software commercially

• Note: you can sell you software and have an open source license (more later)

• Choosing the right license will help you exploit your software outside the
university, e.g. if you want to setup a company based on the software you
developed

Getting more users and contributors

• A license can help users to choose software, or contribute back

• The right license can be used to build a community or encourage others to build
additional functionality or tools that work with your software

Software Sustainability Institute

www.software.ac.uk

Use community standards

• FAIR Principles for Research Software
advocate for following community standards

▪ Open formats for data

▪ Choose common licenses, programming
languages, libraries, style guides

• Improves both interoperability and reusability

▪ You may need to help facilitate standardisation

Software Sustainability Institute

www.software.ac.uk

Rich metadata description

• Document your software, ideally in a machine
readable way

▪ README, LICENSE, CONTRIBUTION

▪ Dependencies

▪ APIs

▪ Tests

Software Sustainability Institute

www.software.ac.uk

Why researchers should share
their source code

30

• Methods do not produce results, source code does
▪ Results are produced by the implementation of a method
▪ Method may be scientifically valid, but its implementation flawed

• Allow others to
▪ Validate what has been done and to determine whether conclusions are sound
▪ Replicate, reproduce and reuse research

• Preserve historical record
▪ Source code has a value even if it no longer can be compiled or run
▪ Programmatic description of the research that was done

• Improve quality and trust
• Conform to requirements of funders and publishers

Software Sustainability Institute

www.software.ac.uk

Why researchers don’t share
their source code

• Web/disk space limitations 20%
• Competitors may get an advantage 30%
• Potential loss of future publications 30%
• Legal barriers, such as copyright 33%
• Possibility of patents 40%
• Code may be used without citation 44%
• Handle questions from users 51%
• Time to clean up and document 77%
Victoria Stodden, “The Scientific Method in Practice: Reproducibility in the Computational Sciences”, 2010. DOI:10.2139/ssrn.1550193

31

Software Sustainability Institute

www.software.ac.uk

Sharing your code

Don’t be afraid to share your code with others
• Get feedback – best way of finding bugs

▪ Get a colleague to use it
▪ Ask a collaborator to contribute

• Publish your code (and data)
▪ Deposit in a repository
▪ Cite in your papers, have a clear preferred citation

• If you use someone else’s code, contribute
▪ But you shouldn’t expect anything directly in return

Software Sustainability Institute

www.software.ac.uk

Software publishing options
Code

repository

Deposit in

digital

repository

Produce

runnable

version

Register in

catalogue /

registry

Paper in

software

journal

Paper in

domain-

specific journal

Example Source code is in

GitHub, GitLab or

BitBucket with open

license

Source code

deposited in

Zenodo, Figshare or

an institutional

repository

Jupyter Notebook in

Binder, Capsule in

CodeOcean,

Docker or

Singularity

container, NextFlow

workflow. Package

for CRAN, PyPI, etc

Create an entry in a

community

registries e.g. ASCL

(astronomy), CIG

(geodynamics),

RRID, swMath

(mathematics).

NLeSC RSD.

Publish software

paper in JORS,

JOSS, SoftwareX,

etc.

Publish executable

research article in

GigaByte

Many journals now

accept papers

about software –

see

bit.ly/softwarejourna

ls

Advantages Discoverable

Fits with

development

workflow

No waiting before

available

Archived

Persistent identifier

and metadata

Little/no wait before

available

Enable direct reuse

Can be given

identifiers

Makes available in

location where

users search

Indexed

Easier to find

Often provides

identifier

May show citations

Easily citable

Peer reviewed

Can describe

software design

Easier for

developers to write

Easily citable

Easier to reach

target audience

Understood by

promotion

committees

Disadvantages Not archived

Harder to cite

Not easy to find if

poorly described /

documented

Direct software

citations not

accepted by all

journals

Normally requires

additional effort /

resources

Not available in

every domain

Many people just

Google, so must be

indexed

Software not always

archived

Not as “prestigious”

as domain-specific

journal

Software generally

not archived.

Longer time to

publishing.

Not easy to run.

https://zenodo.org/
https://figshare.com/
https://mybinder.org/
https://codeocean.com/
https://www.docker.com/
https://sylabs.io/singularity/
https://www.nextflow.io/
https://cran.r-project.org/
https://pypi.org/
http://ascl.net/
https://geodynamics.org/cig/software/
https://scicrunch.org/resources
https://swmath.org/
https://www.research-software.nl/
https://openresearchsoftware.metajnl.com/
https://joss.theoj.org/
https://www.journals.elsevier.com/softwarex/
https://gigabytejournal.com/
http://bit.ly/softwarejournals

Software Sustainability Institute

www.software.ac.uk

Zenodo

Software Sustainability Institute

www.software.ac.uk

GitHub → Zenodo

Software Sustainability Institute

www.software.ac.uk

Getting credit – Citation Files

• CITATION.cff
files are plain text
files with human-
and machine-
readable citation
information for
software.

• Include them in
repositories to let
others know how
to correctly cite
your software.

36

cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
- family-names: Druskat
given-names: Stephan
orcid: https://orcid.org/0000-0003-4925-7248

title: "My Research Software"
version: 2.0.4
doi: 10.5281/zenodo.1234
date-released: 2021-08-11

Software Sustainability Institute

www.software.ac.uk

Software Citation Checklist for Authors

❏Have I identified the software which makes a significant and specialised contribution
to my academic work?

❏Have I checked if the software has a recommended citation?
❏If this is to a paper, have I also cited the software directly?
❏If there’s no recommended citation, have I created as complete a citation as

possible?
❏Who created the software
❏When it was created
❏Title of the software (and version if available)
❏Where the software can be accessed

❏Have I referenced the software appropriately in my academic work, complying with
any citation formatting guidelines?

Checklist for authors: https://doi.org/10.5281/zenodo.3479199

Software Sustainability Institute

www.software.ac.uk

Software Citation Checklist
for Developers

❏Have I assigned an appropriate license to my software?

❏Have I described my software properly, using an appropriate metadata format, and
included this metadata file with my software?

❏Have I given my software a clear version number?

❏Have I determined the authors to be credited for this release of my software, and
included this in my metadata file?

❏Have I procured a persistent identifier for this release of my software?

❏Have I added my recommended citation to the documentation for my software?

Checklist for developers: https://doi.org/10.5281/zenodo.3482769

Software Sustainability Institute

www.software.ac.uk

In summary

• Science depends on software being reusable

• FAIR, citable software leads to collaboration

• Share your software for yourself, and others

Without data it’s difficult to validate results.
But without software, we waste the opportunity
to advance science.

Software Sustainability Institute

www.software.ac.uk

Acknowledgements
The SSI team/alumni:

- Agata Dybisz

- Aleksandra Nenadic

- Aleksandra Pawlik

- Alexander Hay

- Ania Brown

- Anita Banerji

- Arno Proeme

- Carole Goble

- Caroline Jay

- Claire Wyatt

- Clem Hadfield

- Dave De Roure

- Denis Barclay

- Devasena Prasad

- Elena Breitmoser

- Giacomo Peru

- Graeme Smith

- Iain Emsley

- Ioanna Lampaki

- Jacalyn Laird

- James Graham

- Jenny Braidwood

- Johanna Walker

- John Robinson

- Kara Moraw

- Kathleen Glass

- Kirsty Pringle

- Les Carr

- Lucia Michielin

- Malcolm Atkinson

- Malcolm Illingworth

- Mario Antonioletti

- Mark Parsons

- Mike Jackson

- Olivier Philippe

- Philly Broadbent

- Pip Grylls

- Priyanka Singh

- Rachael Ainsworth

- Raniere Silva

- Rob Baxter

- Robin Wilson

- Sam Manghan

- Selina Aragon

- Shoaib Sufi

- Simon Hettrick

- Stephen Crouch

- Tim Parkinson

- Toni Collis

- Plus the SSI Fellows

and RSE community

Research software:

- Abby Cabunoc-Reyes

- Arfon Smith

- Carlos Martinez

- Dan Katz

- Heather Piowowar

- James Hetherington

- James Howison

- Jeff Carver

- Jennifer Schopf

- Kaitlin Thaney

- Karthik Ram

- Kirstie Whittaker

- Martin Fenner

- Michelle Barker

- Shelley Stall

- Stephan Druskat

- Victoria Stodden

- Von Welch

- WSSSPE community

- ReSA and FAIR4RS

Supported by the UK Research Councils through
grants EP/H043160/1, EP/N006410/1 and
EP/S021779/1.
Additional project funding received from Jisc, Horizon
Europe, UKRI ExCALIBUR, NERC Short Courses, UKRI
DaSH.

The Carpentries

- Greg Wilson

- Tracy Teal

- Kari Jordan

- Instructor Community

Software Preservation

- Daina Bouquin

- Digital Preservation

Coalition

- Software Preservation

Network

Software Sustainability Institute

www.software.ac.uk

Reusing these slides

This work is licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). See: https://creativecommons.org/licenses/by/4.0/

You are free to:

• Share — copy and redistribute the material in any medium or format

• Adapt — remix, transform, and build upon the material for any purpose, even commercially.

Under the following terms:

• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.
You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

• No additional restrictions — You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.

You do not have to comply with the license for elements of the material in the public domain or where your use is
permitted by an applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions necessary for your intended use.
For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.

Copyright © 2021, The University of Edinburgh as lead partner of the Software Sustainability Institute

https://creativecommons.org/licenses/by/4.0/

