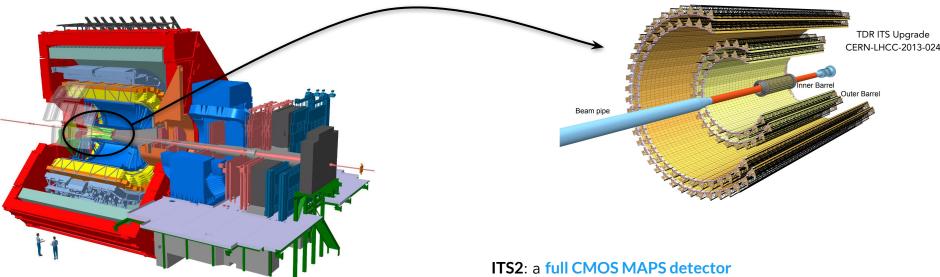


BTTB11, 17-21 April 2023

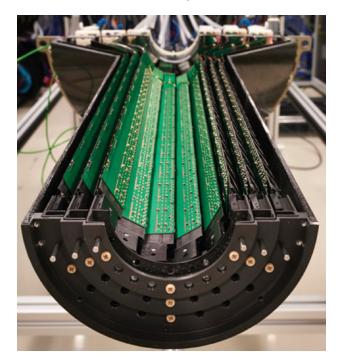

Implementation of bent pixel sensors analysis in the Corryvreckan framework

Bogdan Mihail Blidaru on behalf of the ALICE collaboration

20.04.2023

ALICE detector

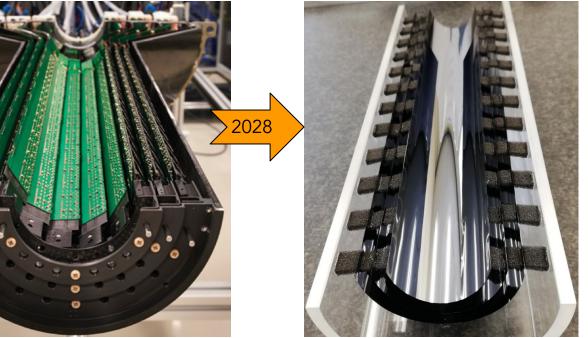
- ALICE is the heavy-ion physics focussed experiment at the LHC
- Main goal: study of the quark-gluon plasma in heavy-ion collisions
- Need high resolution vertexing and low momentum tracking in a high multiplicity environment \rightarrow must update tracker


- installed during LHC Long Shutdown 2 (2021)
- ▶ 10 m² active silicon area, 12.5 Gpx
- ▶ 7 layers of ALPIDE sensors (3 inner + 4 outer)
- Iow material budget: 0.36% X_n/layer (innermost layer)
- ▶ sensors with high detection efficiency: **> 99%**
- good intrinsic position resolution: ~5 μm

ALICE - The Inner Tracking System

ITS2 inner barrel (3 layers)

► 9 ALPIDE sensors / layer



ALICE - The Inner Tracking System upgrade(s)

ITS2 inner barrel (3 layers) ► 9 ALPIDE sensors / layer ITS3

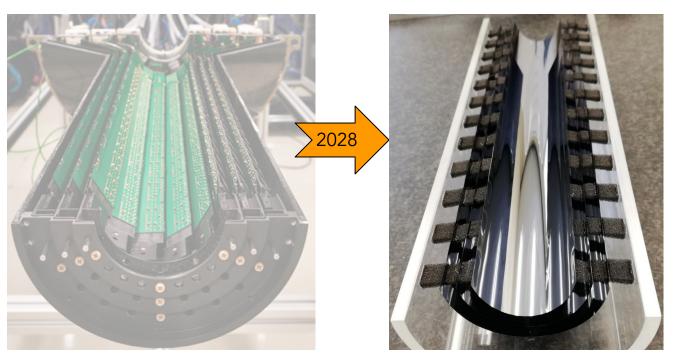
▶ 0.36% → 0.05% X0/layer (Si-only)

First prototype integration with dummy silicon

ITS3 upgrade

➡ LHC LS3 (2026-2028) ▶ replaces the 3 inner layers of the ITS2 ▶ ultra light, wafer scale, curved sensors in 65nm

ALICE - The Inner Tracking System upgrade(s)


ITS2 inner barrel (3 layers) ▶ 9 ALPIDE sensors / layer **ITS3** ► 0.36% → 0.05% X0/layer (Si-only)

ITS3 upgrade

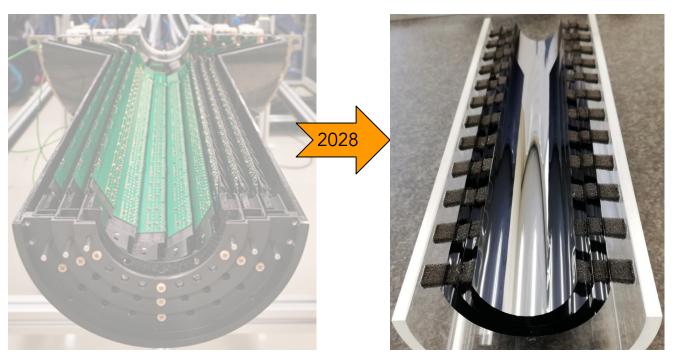
- ➡ LHC LS3 (2026-2028)
 ▶ replaces the 3 inner layers of the ITS2
 ▶ ultra light, wafer scale,
- curved sensors in 65nm

Selected R&D topics

- ▶ 65 nm testing & qualification
 G. Alocco ⇒ talk on Thu
- ► wafer scale sensors
- bending of sensors

First prototype integration with dummy silicon

ALICE - The Inner Tracking System upgrade(s)

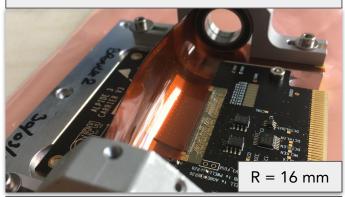

ITS2 inner barrel (3 layers) ▶ 9 ALPIDE sensors / layer **ITS3** ► 0.36% → 0.05% X0/layer (Si-only)

ITS3 upgrade

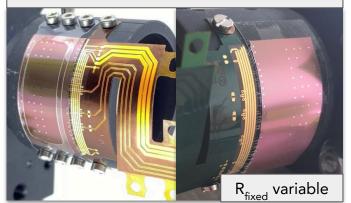
- ➡ LHC LS3 (2026-2028)
 ▶ replaces the 3 inner
- layers of the ITS2ultra light, wafer scale, curved sensors in 65nm

Selected R&D topics

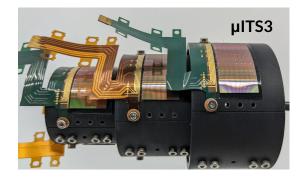
- ▶ 65 nm testing & qualification
 G. Alocco ⇒ talk on Thu
- wafer scale sensors
- bending of sensors



First prototype integration with dummy silicon


Bending ALPIDEs

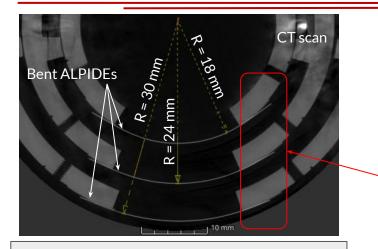
Along the short edge, compressed circuitry

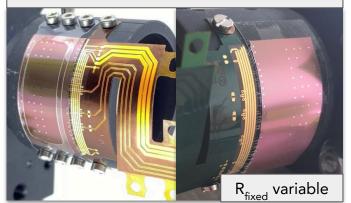

Along the long edge, stretched circuitry

Bending of ALPIDE sensors

- Functional chips bent routinely
- Electrical operation consistent (wrt flat state)
 - ▶ threshold, noise, dead pixels unaffected
- Setups that mimic the radii of the future ITS3 (18, 24, 30 mm)
 - ► proven to function effectively
 - ▶ efficiency, position resolution, stability unchanged

Bent MAPS working well! Performance unchanged!


More details: 10.1016/j.nima.2021.166280


opening in the jig behind the sensor for beam tests (no material)

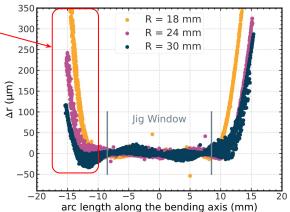
Radius control

Along the long edge, stretched circuitry

Issues observed with bending

CT and 3D profilometer scans of

sensors to assess possible deviations


at most 30 µm deviation from R_{fixed}

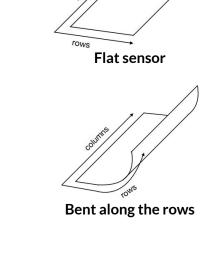
Radius control

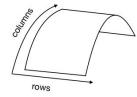
Good radius control

▶ inside the jig window

- with first prototype, sagging (Si relaxation) was observed
 - ► $R_{initial} = 16mm \rightarrow R_{data} = 22 mm \rightarrow R_{final} = 26mm$
- consequent versions built on 3D-printed jigs
 - v1: sensor glued with tape \rightarrow can detach
 - ▶ v2: kapton sleeve keeps the sensor on the jig

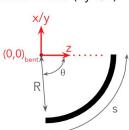
3D profilometer scan


Bogdan Blidaru | BTTB 11 | 20.04.2023 | 8


Software analysis

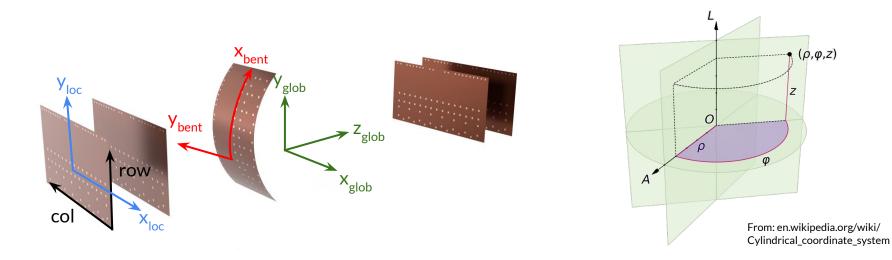
Bent sensors in code

- Corryvreckan framework used for testbeam data analysis
- > New class BentPixelDetector defined
 - new coordinate system: cartesian-bent
 - possibility to bend along rows or columns
 - Local to Global and Global to Local transformations redefined to account for bending
 - ▶ fixed **radius** of a perfect cylinder
 - ▶ rotation of sensor around the center
 - ▶ radius sign controls the orientation wrt beam axis


Bent along the columns

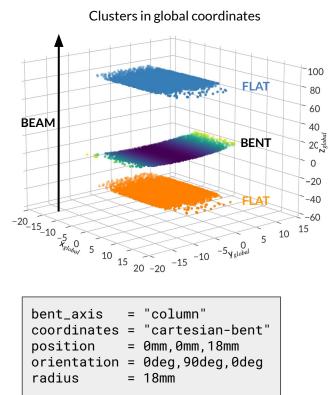
Bending along rows/columns

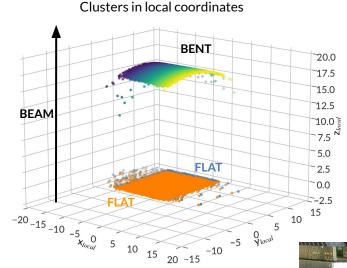
(0,0)


Positive R Negative R

Bogdan Blidaru | BTTB 11 | 20.04.2023 | 9

Coordinate system changes





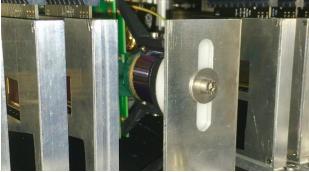
- Local position defined as a ROOT::Math::RhoZPhiVector
 - fixed radius (input from the user)
 - one direction (column/row) is bent, the other one is not sensitive to bending effects (along z in cylindrical coordinates)
 - ▶ only one bending direction is possible in the code

Local vs global coordinates

This example

- ➡ Bent sensor with R=18 mm
- Facing the beam
- ➡ Rotated by 90°
- (motivated by mechanics)

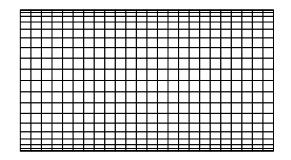
Local coordinate system


- \implies Flat sensors fixed at z=0
- Bent sensor has cylinder center at z=0

Global coordinate system

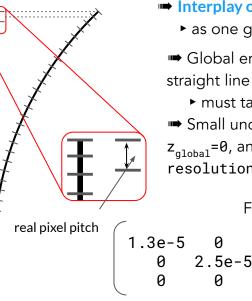
5.0

2.5

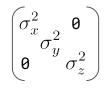

Flat sensors have the z position from the geometry file (measured)

NB: sensors are aligned

Coordinate system changes



Pixel matrix as seen by an incoming track


Bent sensors in code

- ➡ Intersection of tracks with the sensor happens at a different z position
- Non-zero residuals along z
- The incoming track sees "contracted" pixels where the sensor is bent

Interplay of resolution along bent direction and z direction

- as one grows, the other shrinks
- Global error matrix used for straight line fit
 - must take z correctly into account
- Small uncertainty if clusters close to z_{global} =0, and increasing up to resolution² for the most bent part

0

4.9e-7

For 5 µm resolution of the sensors:

2.3e-5

0

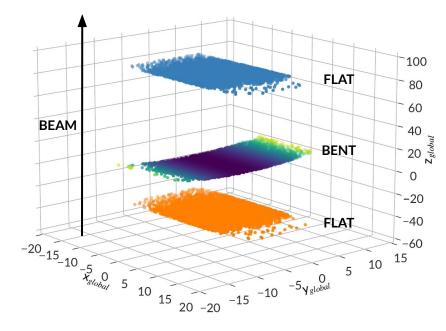
0

	1.3e-5	0	0
	0	2.5e-5	0
	0	0	1.1e-5
$\overline{\ }$			/

Example of global spatial resolution error matrix for a hit near the most bent part

▶ if hit is at a large angle, the uncertainty in z is comparable with the one in **x**

Example of global spatial resolution error matrix for a somewhat central hit (flat-like sensor error matrix)

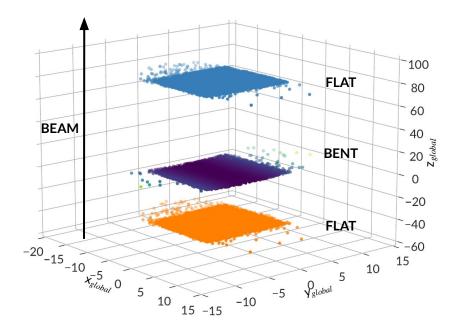

0 2.5e-5

0

 if hit is perpendicular on surface, there is almost no uncertainty in z

Clustering

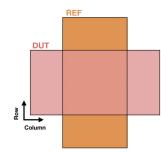
All clusters


- How does this actually look
- ➡ Plotting all clusters on all planes

trigger given by scintillator
 coincidence (area > sensor surface)

Clustering

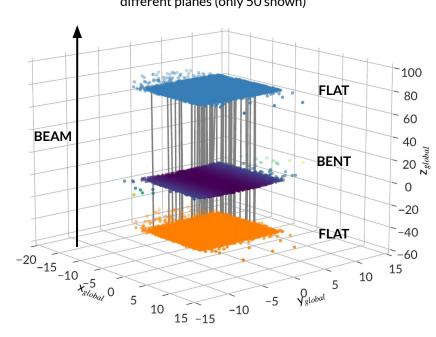
One cluster per plane per event



How does this actually look

➡ Plotting all clusters on all planes

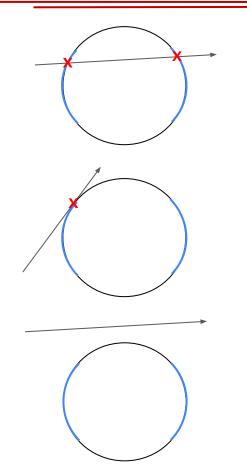
trigger given by scintillator
 coincidence (area > sensor surface)


Since bent sensor is 90° rotated wrt flat sensors, fiducial area is a square

NB: sensors are aligned

Tracking

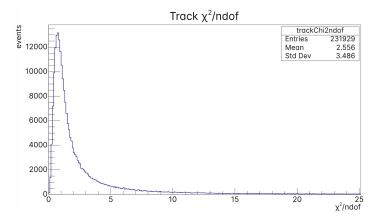
All cluster combinations from the different planes (only 50 shown)


How does this actually look

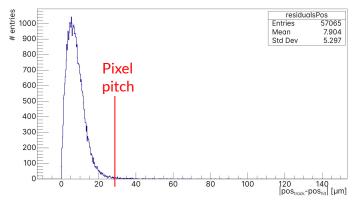
- Plotting all clusters on all planes
- trigger given by scintillator
 coincidence (area > sensor surface)
- Since bent sensor is 90° rotated wrt flat sensors, fiducial area is a square
- Tracking done with straight-line fit
- \rightarrow line intersection with a cylinder:

NB: sensors are aligned

Intersection of tracks with sensors

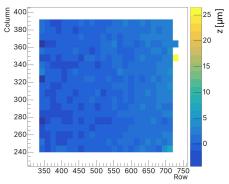


Line intersection with a cylinder

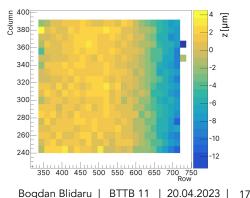

- **two** intersection points
 - select the one according to how the sensor is bent (positive R vs negative R)
 - ▶not considering cases with grazing angle geometry
- one intersection point
 tangent on the surface
- no intersection points
- further checks for finite sensor length
 if sensors have limited extent and intercepts are found outside, throw an error
 not yet implemented

A few checks

Absolute distance between track and hit in global coordinates


Control plots

- **Good alignment** (straight tracks)
- Distance between track intercept and hit position is less than a pixel pitch
- ➡ Residual mean is uniform and less than 10 µm over the surface
 ➡ Detachment of the sensor is remarked as increased values of the residual mean



NB: 5.4 GeV e⁻ (DESY)

Residuals mean in the non-bent direction (y)

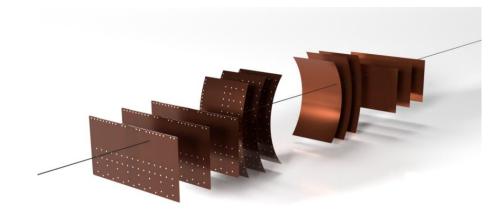
Residuals mean in the bent direction (x)

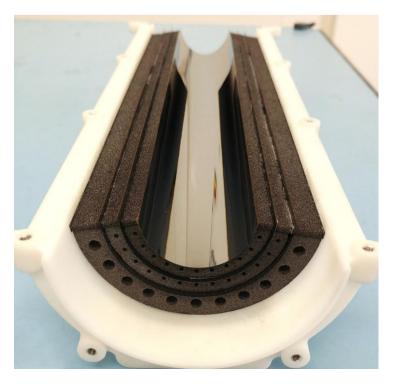
Until now

- Merge request submitted to Corryvreckan master
- Work ongoing (thanks Lennart!)

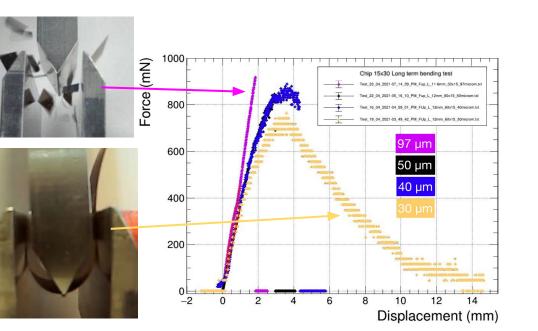
So far implemented

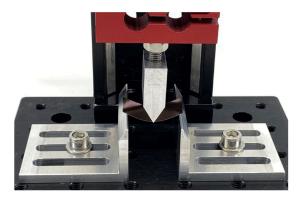
- Coordinate transformations
- Resolution in z and correct covariance matrix of spatial resolution
- Straight-line tracking and track intercept with the bent sensor


Work in progress

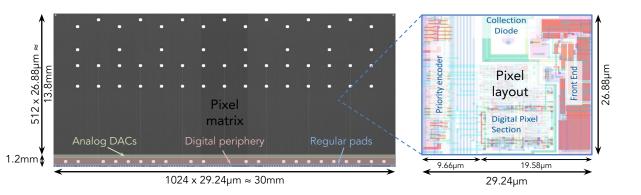

- 🗯 General Broken Line (GBL) fit
 - calculation of the Jacobian between planes assumes planar detector at position z
- Understand how degrees of freedom affect the alignment

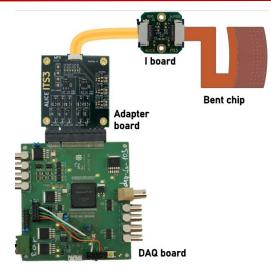
- In the near future, bent sensors will be available in Corryvreckan
- Currently working on the merge request; few more checks needed
- \blacksquare Work ongoing on tracking with GBL and alignment validation
- Input and suggestions are appreciated!



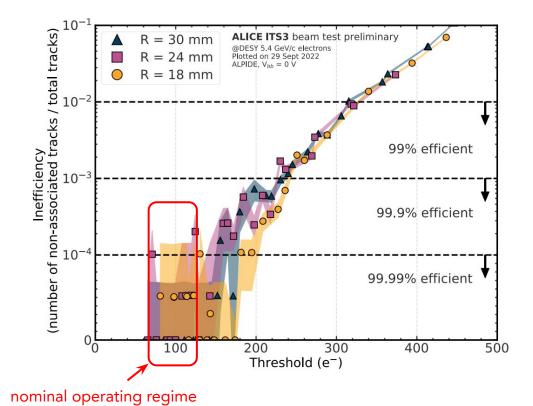


Bending tests





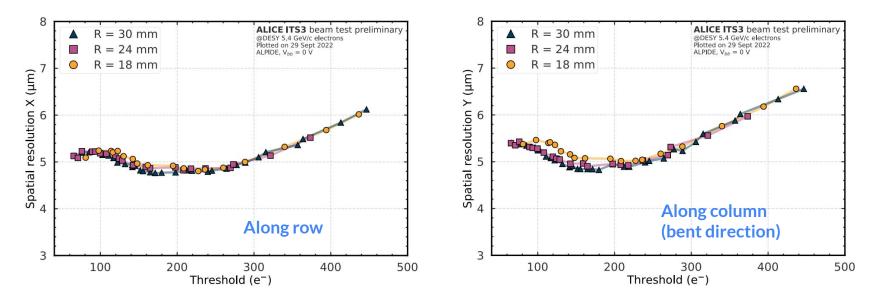
- ALPIDEs are in the right order of thickness:
 50/100 μm vs 20-30 μm (ITS3)
- Thinner is better: silicon behaves like paper
- ITS3 target radii: 18, 24, 30 mm


Design

- TowerJazz 180 nm CMOS Imaging Process
- High resistivity (>1 kΩcm) p-type epitaxial layer (25 µm)
- Small NWELL diode (2 μm) diameter (pixel: 29×27 μm²)
- \rightarrow low capacitance (~fF) \rightarrow low noise
- Reverse bias (up to -6V) used to increase depletion

Specifications

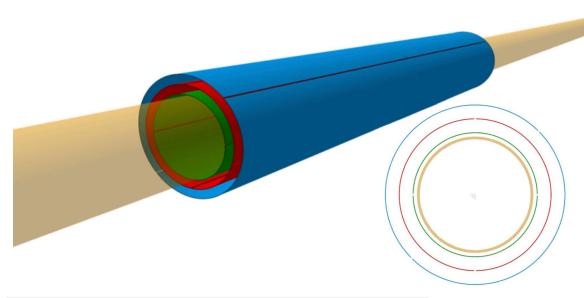
- ► 0.5 Mpx sensor
- ► 50 / 100 µm thick (IB/OB)
- ► >99.9% efficient
- \ll 10⁻⁶ fake hits/ px/ event
- ~5 μ m position resolution



- ➡ No effects on the bending radius
- Efficiency > 99% for nominal operating regime
- Compatible with flat ALPIDE
- Consistent with published results where the other bending direction was investigated

Bogdan Blidaru | BTTB 11 | 20.04.2023 | 23

Performance of bent ALPIDEs

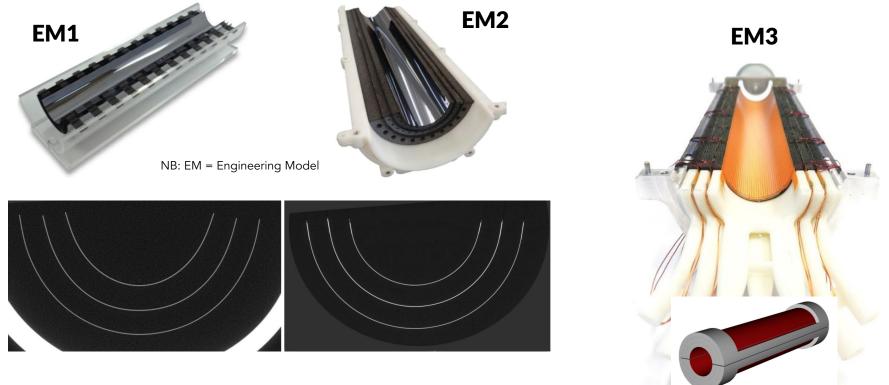


- ➡ No effects on the bending radius
- \blacksquare Spatial resolution consistent with ALPIDEs in flat state (~5 μ m)

ITS3 details

Beam pipe inner/outer radius (mm)	16.0 / 16.5		
	Layer 0	Layer 1	Layer 2
Radial distance from IP (mm)	18	24	30
Pixel sensor dimensions (mm ²)	280×56.5	280×75.5	280×94
Sensitive area length (mm)		300	
Pixel size (μm²)	O(10×10)		

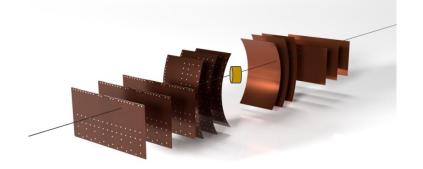
- Ultra thin and closer to the interaction point
- Layer 0: $23 \rightarrow 18 \text{ mm}$
- ► Layer thickness:

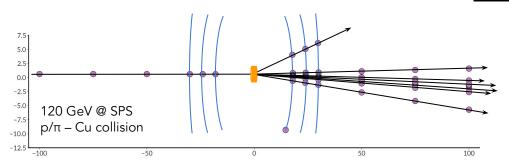

0.35 → < 0.05% X₀/layer (beampipe: 500 µm Be 0.14% X₀) ► Uniformly distributed material

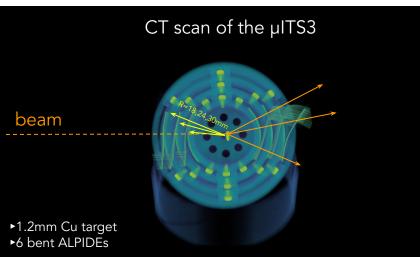
 Oniformity distributed mate (no systematic errors)

- \blacksquare Wafer scale \leftarrow stitching
- ➡ Layout based on air cooling

Carbon foam and cooling structures




 \rightarrow footprint \rightarrow imperfect radius \rightarrow nominal radius \rightarrow need to add services


Exotic geometries

 ➡ 6 reference flat ALPIDE (3+3 up/downstream)
 ➡ µITS3: probably the most compact beam telescope (6 sensors, ITS3 radii: 18, 24, 30 mm)

tracking with GBL (incl. multiple scattering)
 investigation of standalone tracking and DCA (distance of closest approach) measurements