Evolution and applications of the RD51 VMM3a/SRS gaseous beam telescope

Lucian Scharenberg on behalf of the CERN EP-DT-DD GDD team

11th Beam Telescopes and Test Beams Workshop 18 April 2023

SPONSORED BY THE

Federal Ministry of Education and Research

Gas Detectors Development Group

Outline

1. Overview

- RD51 test beam campaigns and triple-GEM beam telescope
- RD51 Scalable Readout System (SRS)

2. Telescope's performance

- Detector characterisation in energy, space and time simultaneously
- Rate-capability

3. Detectors under test

Micro-resistive WELL (µRWELL)

4. Operation at NA61/SHINE

- Combining self-triggered and externally triggered readout
- Offline event-matching

18 April 2023

Test beam campaigns of RD51

- RD51: CERN-based R&D collaboration on the development of Micro-Pattern Gaseous Detectors (MPGDs)
- Test beam campaigns for detector tests: H4 beam line @ CERN's SPS (PPE 134)
- Infrastructure contains (amongst other things)
 two beam telescopes
 - \rightarrow Gas Electron Multiplier (GEM)-based
 - \rightarrow MicroMegas-based
 - \rightarrow Strip or pad readout anode
 - \rightarrow Read out with RD51 Scalable Readout System (SRS)

Test beam campaigns of RD51: Triple-GEM telescope

COMPASS-like triple-GEM detectors [1] for tracking \rightarrow filled with Ar/CO₂ (70/30 %) \rightarrow strips with 400 µm pitch

10 x 10 cm² active area (facing the beam)

RD51 SRS electronics with
 VMM3a front-end ASIC [2]
 More than 2k channels for DUTs

Readout electronics: RD51 Scalable Readout System (SRS)

 Common RD51 readout system for small R&D setups up to mid-sized experiments [1,2]

 \rightarrow Ideal for readout of beam telescope with multiple detectors

- Front-end ASICs available for beam telescopes
 - \rightarrow Since 2009: **APV25**
 - \rightarrow Since 2021: VMM3a
- Front-end ASIC plugged onto the detector via hybrid-PCB
- ASIC-specific adapter card with multiple hybrids
- Common Front-End Concentrator (FEC)
- Multiple FEC/adapter cards for larger systems

Readout electronics: ATLAS/BNL VMM3a front-end ASIC

- Specifically developed by BNL for multi-channel readout of gaseous detectors (ATLAS New Small Wheel) [1]
- Self-triggered continuous readout in SRS implementation
- High rate capability: **9 Mhits/s per VMM** in SRS implementation
- Provides only peak amplitude (10-bit charge ADC)
- Provides time of the peak with O(ns) time resolution (12+8-bit timing)
- Good for R & D applications
 - Adjustable peaking times
 - Adjustable electronics gains
 - Wide range of input capacitances (< 200 pF up to 2 nF)
- Full detector characterisation with charge, space and time information with same front-end electronics

Signal peak amplitude / ADC Values

Beam telescope's performance: Detector-based studies

Time residuals / ns

[1] <u>vmm-sdat</u>

Cathode

GFM1

GFM2

-HV

3 mm Drift

2 mm Transfer 1

2 mm Transfer 2

Beam telescope's performance: Track-based studies

- Position determination: Centre-of-gravity (COG), as well as alternative approaches [1,2]
- Event-building based on cluster time
- Tracking with Kalman filter via anamicom [3]

Efficiency not @ 100%

due to geometrical effects and

Beam telescope's performance: Rate-capability

- 80 GeV/c pion beam: particle flux from ~7 x 10⁴ particles per spill (~5 s) to 10⁷ particles per spill
- Bandwidth saturation with ~5 x 10⁶ particles per spill and more
- Limiting factors: SRS FEC's Gigabit Ethernet and 9 Mhits/s readout limit of VMM3a
 - \rightarrow Loss in number of recorded interactions
 - \rightarrow Decrease of quality of acquired data, as described in [1]

Detectors under test

Studies on the micro-resistive WELL (µRWELL)

- Attractive because of
 - \rightarrow low material budget
 - \rightarrow simple manufacturing process
- GEM-foil glued on readout PCB
- Third RD51 beam telescope to be built, based on µRWELL
- 10 x 10 cm²
- 256+256 x-y-strips, 400 µm pitch
- 3 mm drift gap
- Filled with Ar/CO₂ (70/30 %)
- Resistive layer with 40 M Ω/\Box

Not drawn to scale

[Courtesy of Djunes Janssens]

Studies on the micro-resistive WELL (µRWELL)

- µRWELL from Yi Zhou and Xu Wang from USTC [1]
- Optimised for equal charge sharing between top and bottom strips (X and Y strips)

• Simultaneous detector characterisation in energy, space and time

[1] Yi Zhou et al. (RD51 Coll. Meet.)

The NA61/SHINE experiment

- SPS Heavy Ion and Neutrino Experiment (SHINE)
 - Strong interactions (heavy ion collisions):
 - \rightarrow Phases of strongly interacting matter
 - \rightarrow Onset of deconfinement
 - Interactions of cosmic rays in the interstellar medium (light ion collisions): Pierre Auger Observatory, AMS, ...
 - Study of **target interactions** for neutrino experiments: J-PARC (**T2K**), Fermilab (**DUNE @ LBNF**), ...
- Here: T2K run (T2K replica target: ~1 m carbon rod)
 → Reduce uncertainties in neutrino oscillation experiments

[Courtesy of Marek Gazdzicki]

Self-triggered + externally triggered

- Ad-hoc interim solution for beam tracking in front of interaction target
- Five weeks non-stop operation without failure of detectors or VMM3a/SRS electronics!
- 31 GeV/c protons @ up to 50 x 10³ particles per SPS spill
- Challenge:
 - Beam telescope: self-triggered
 - NA61: externally triggered @ ~ 1 kHz
 - \rightarrow matching NA61 events with VMM3a/SRS tracks
- **Solution:** inject event-ID from NA61 trigger into the VMM3a/SRS data stream
- Split event-ID-bits on VMM readout channels
- Match tracks and events in the offline analysis

X-position / cm

Event matching: Position and alignment

- Positions needed in NA61/SHINE coordinate system
- Alignment run with external reference
- No target + **Delay Wire** Chambers (DWC) of beam instrumentation

[Courtesy of Brant Rumberger]

18 April 2023

L. Scharenberg @ BTTB11

Counts

150

Summary and outlook

- The GEM-based beam telescope of RD51 with VMM3a/SRS readout allows studying time resolution, position resolution and energy behaviour simultaneously
- Particle beams with up to 1 MHz interaction rate can be recorded
- Various detector technologies (not limited to MPGDs) can be read out
- **µRWELL** studied in view of **building a third telescope**
- Successfully operated as part of the NA61/SHINE experiment
- Currently **full self-triggered:** implement **externally triggered mode** to achieve lower thresholds
- Started efforts on distributed system: increase telescope's lever arm from 1 m to 40 m
- Integration into other experiments started (e.g. with colleagues from NA64 @ CERN or P2 @ Saclay and Mainz)

SPONSORED BY THE

Federal Ministry of Education and Research

This work has been sponsored by the Wolfgang Gentner Programme of the German Federal Ministry of Education and Research (grant no. 13E18CHA)

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA no 101004761.

The work has been supported by the CERN Strategic Programme on Technologies for Future Experiments. <u>https://ep-rnd.web.cern.ch/</u>

The authors would like to thank all the members of the NA61/SHINE Collaboration for their help and support.

Back-up slides

Improving the spatial resolution

- Position determination: Centre-of-gravity (COG) ۲
- With X-rays [1]: improvement of position • reconstruction for imaging applications by
 - Modification of COG (**Q² weighting**) •

- Review of COG systematics and modifications $x = \frac{\sum_{i} Q_{i}^{n} x_{i}}{\sum_{i} Q_{i}^{n}} \quad n = 2$ (MPGD2022): Igor Smirnov: Algebraic methods for reconstruction of coordinates in strip detectors
- VMM3a: neighbouring-logic to recover charge • below THL

Effective gain / 10³

Scanned: THL range from 1.5 fC to 5.5 fC

- **Q²** improves spatial resolution all the time
- NL only at low signal-to-threshold ratio

Modulation of readout pattern

Modulation of readout pattern

18 April 2023

L. Scharenberg @ BTTB11

Improving spatial resolution

Triple-GEM detector (256+256 x-y-strips, 400 µm pitch)

μRWELL (256+256 x-y-strips, 400 μm pitch)

