Testing of Pre-Series Tile Modules at DESY II for the CMS HGCAL Upgrade

Test Beam at DESY in March 2023

Jia-Hao Li on behalf of CMS HGCAL group 19 April 2023

Outline

About this talk

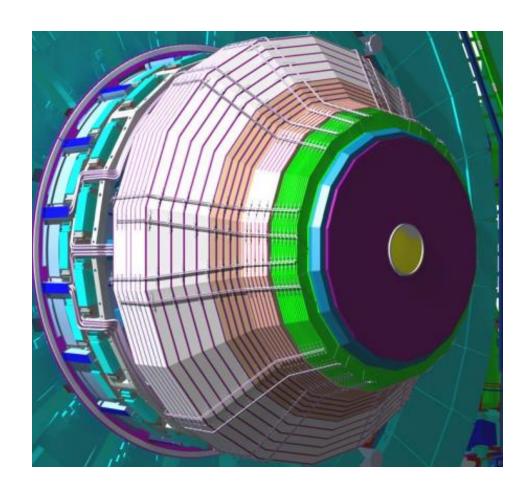
01 Introduction

- High Granularity Calorimeter (HGCAL)
- SiPM-on-tile technology and the Tilemodule
- Mini Tileboard

02 Test beam at DESY in March 2023

- Objective and data taking of the Test beam
- Measurement of the MIP spectrum and light yield
- Light yield comparison

03 Outlook and Summary

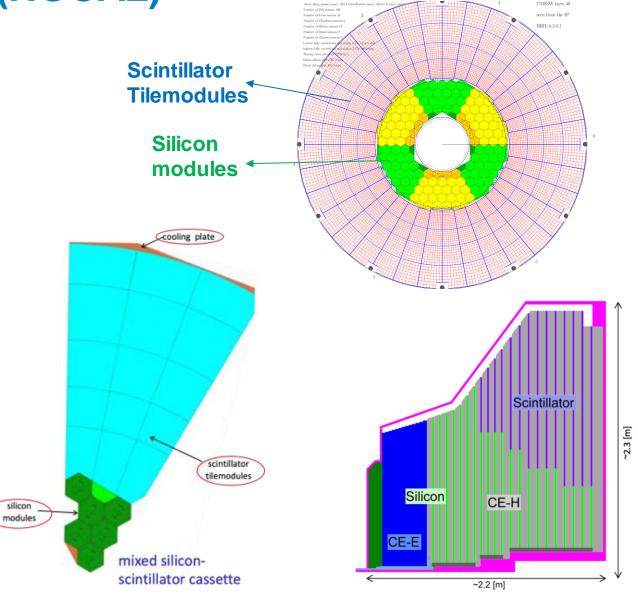

Introduction

High Granularity Calorimeter (HGCAL)

What is HGCAL. Basic structure and purpose.

What is HGCAL, and why do we need it

- Designed for the replacement of the current endcap of the CMS detector in HL-LHC.
- It's a 5-D calorimeter which can measure energy deposition, time, and shower shape.
- It is designed to cope with the larger number of interactions per bunch crossing (event pileup) and higher radiation dose in HL-LHC.

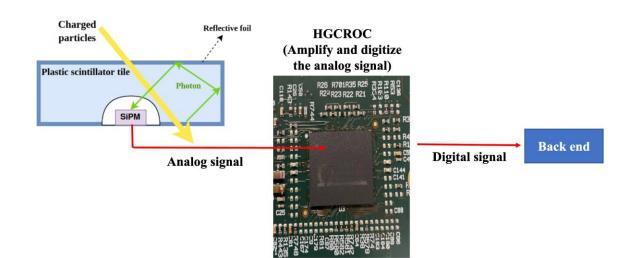


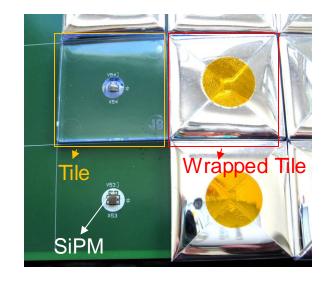
High Granularity Calorimeter (HGCAL)

What is HGCAL. Basic structure and purpose.

The basic structure of the HGCAL

- Silicon section (using silicon sensors):
 Cover the electromagnetic calorimeter
 (CE-E) and part of the Hadronic calorimeter (CE-H)
- Scintillator section (using SiPM-ontile technology): Cover the CE-H where the expected end-of-life neutron fluence is less than 5x10¹³ n/cm²

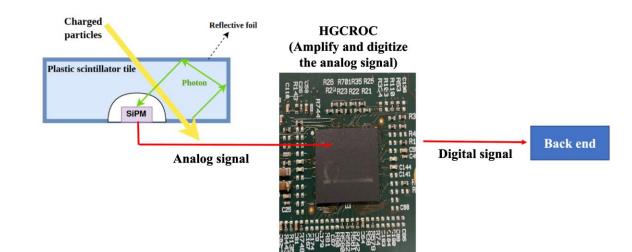


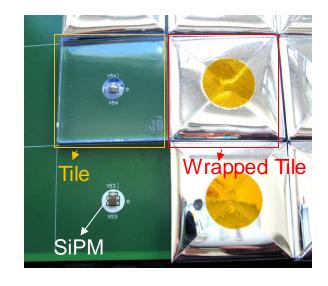

SiPM-on-tile technology in the scintillator section of HGCAL

Components, readout system

Components and readout system

- The SiPM-on-tiles include wrapped plastic scintillator tiles and silicon photomultiplier (SiPM)
- Tiles are wrapped in reflective foil.
- SiPM can detect photons from the tiles.
- Analogue signals from the SiPM are collected by a readout chip, HGCROC.

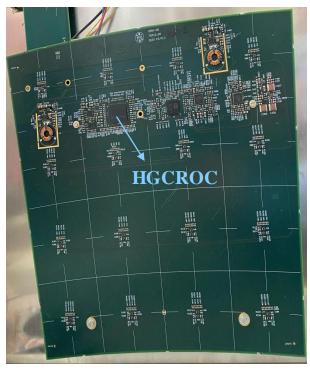

SiPM-on-tile technology in the scintillator section of HGCAL

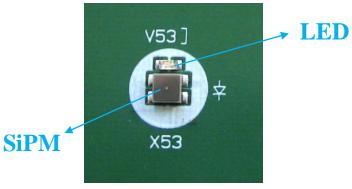

Components, readout system

Tiles and SiPMs to be examined

- There are 21 different sizes of tiles in 2 different materials.
- 2 different sizes of SiPM (4 mm² and 9 mm²)

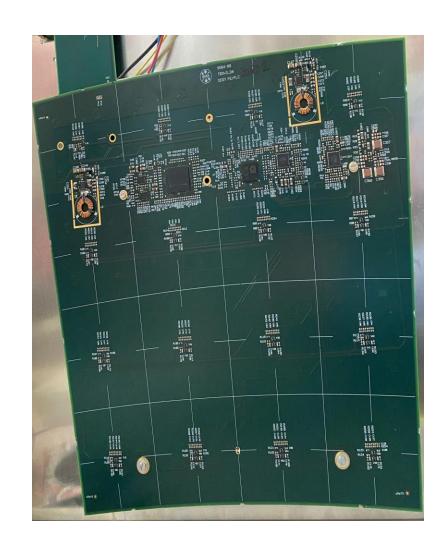
To decide which type of tiles and SiPMs have the better performance to be used in the HGCAL. We need to do test beam for measuring and comparing the light yield.




Tilemodule with SiPM-on-tile technology

Components of a Tilemodule

- A complete Tilemodule is a basic unit for particle detection in the scintillator section of the HGCAL.
- The Tilemodule includes wrapped scintillator tiles, SiPMs, HGCROC, LED calibration system, and other electronics.
- The HGCROC readout 64 channels from the Tilemodule.
- The HGCROC has 2 DAQ elinks and 4 trigger elinks (1.28 Gbps/elink) for data readback.

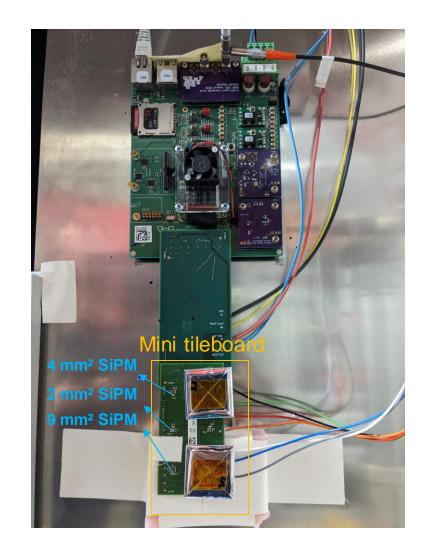


Features of Tilemodule v3 with HGCROC v3

Advantages of Tilemodule v3

Tilemodule v3

- Is the latest tileboard generation and is very similar to the final version used in the HGCAL.
- Will be used in the pre-series test, including all quality control and quality assurance steps.
- Equipped with SiPM which has the latest radiation hard package and is foreseen to be used in the final experiment.

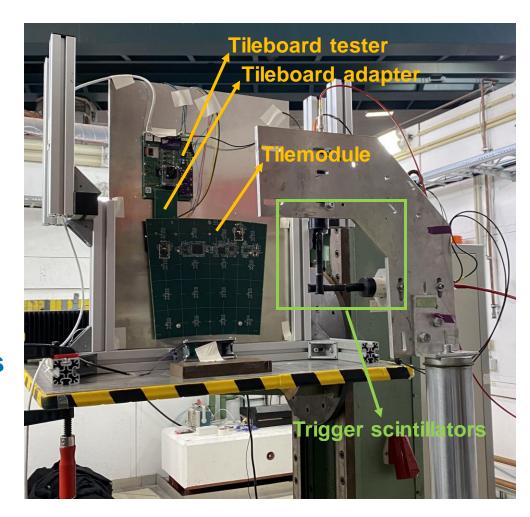

Mini Tileboard

Components of a Mini Tileboard

- The mini Tileboard contains 6 SiPM channels,
 LED system, HGCROC, and slow control chip.
- As it does not have any power regulators, all power are supplied externally.

Main motivation

- The size of the mini Tileboard can fit into most of the standard tubes used at irradiation facilities.
 - This allows us to test the radiation hardness of the whole module.

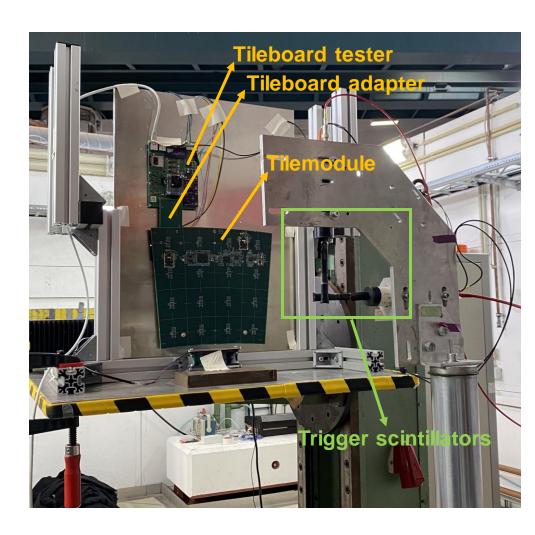

Test beam at DESY in March 2023

Objective and data taking of the Test beam

Test beam setup and goal

The goal of the test beam

- Test and measure the performance from all channels on the two v3 Tilemodules.
- Test and measure the performance from channels with 9 mm² and 4 mm² SiPM on the mini Tileboard.
 Compare the difference in light yield between 9 and 4 mm² SiPM
- Compare the performance measured from different sizes of SiPM and different sizes and materials of tiles to decide which one has a better performance.


Objective and data taking of the Test beam

Test beam setup and goal

Data taking

- Measure MIP spectrum by taking 100,000 events per channel with 3 GeV electron beam.
 - Signal responses from 3 GeV electrons are very similar to Minimum Ionizing Particles (MIPs)
 - Has been verified with muon beams of 120 GeV energy at CERN SPS

 Using the on-board LED system to measure single photon spectrum (SPS) by taking 3,000 events per channel.

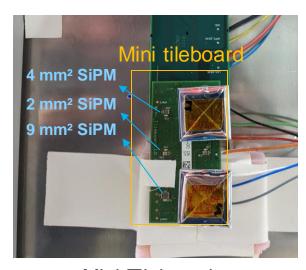
Modules tested in the test beam

Two type of module were tested in the test beam

Tilemodules

TB3 board 1
equipped with moulded tiles Batch 1
with pre-series 4mm² SiPMs

TB3 board 2
equipped with moulded tiles Batch 2
with pre-series 4mm² SiPMs



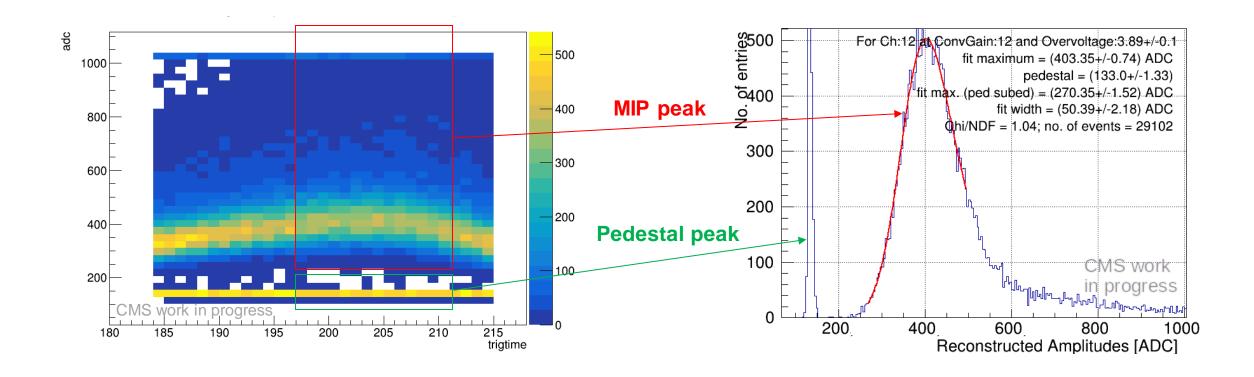
The tiles equipped here are produced by the institute expected to make the final tiles for HGCAL.

All Tilemodules use a custom-made DAQ system which is driven by Zynq FPGA for data acquisition.

Mini Tileboard

Mini Tileboard equipped with IHEP v2 tiles

with pre-series


4mm² SiPMs and

9mm² SiPMs

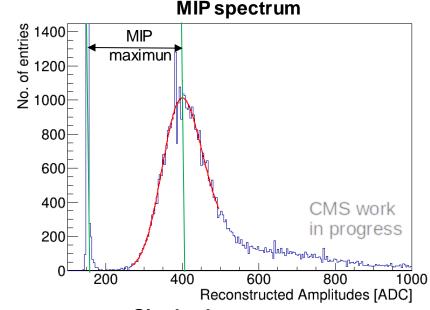
Using pulse shape and trigger information for MIP extraction

Time selection for MIP signal

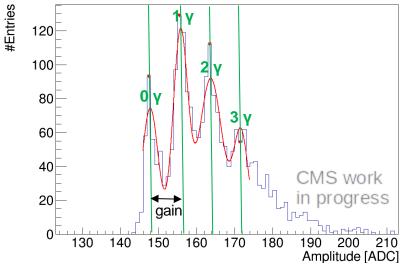
- The plot on the bottom left is the analogue SiPM signal (in ADC) received by the HGCROC with respect to the time
 when the HGCROC receive a trigger signal from the backend.
- The MIP spectrum can be found by selecting a time window which capture the peak of the SiPM signals.

Parameter definition of the MIP and SPS spectrum

The targeted parameters measured in the test beam

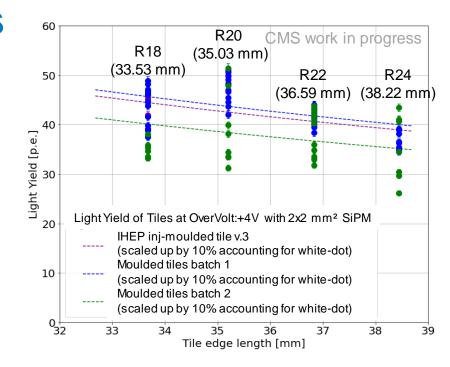

MIP maximum:

The MIP maximum can be obtained by measuring the peak value of the MIP spectrum and then **subtracting the pedestal**.


SiPM gain:

- The distance between two consecutive peaks in the single photon spectrum (SPS) is the SiPM gain.
- The SPS can be obtained for all channels using the onboard LED **system**. And the **SiPM** gain can then be measured from these SPS.
- The definition of light yield is

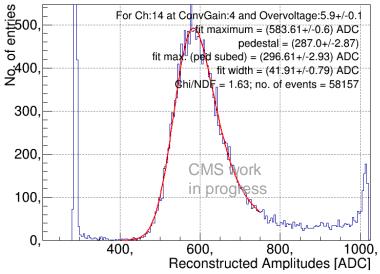
$$Light Yield[p.e.] = \frac{MIP \max[ADC]}{SiPM \ gain[ADC]}$$



Light yield comparison with different tiles

Compare light yield measured from different type and size of tiles

- The moulded tiles batch 1 (made by the current producer) has a light yield close to the IHEP inj-moulded tile v.3 (made by the previous producer, not available for tile production anymore).
- There are 4 different size of tiles on the Tilemodule tested.
 - 33.53 mm (R18), 35.03 mm (R20), 36.59 mm (R22), 38.22 mm (R24) side lengths.
- The two moulded tile batches use different material compositions. Further investigation is needed to understand the differences between these two batches.
- Light yield is inversely proportional to the squared root of the tile area, so
 smaller tiles have a larger light yield.



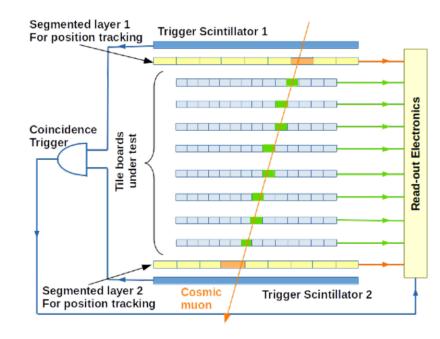
Light yield and MIP spectrum measurement for Mini Tileboard

Measurement for 4 mm² and 9 mm² SiPM

- Measure the MIP spectrum for 4 mm² and 9 mm² SiPM on the mini Tileboard with the same configuration and same type of tile (IHEP inj-molded v.2 tile).
- The MIP maximum for the 9 mm² SiPM is larger than the 4 mm² SiPM
- Apply correction to the light yield measured from 4 mm² and 9 mm² SiPM in Mini Tileboard
 - temperature correction (25°C)
 - over voltage correction (6 V)
- The light yield for 4 mm² SiPM is 46.6 p.e.
- The light yield for 9 mm² SiPM is 106.8 p.e.
- The ratio between 9 and 4 mm² SiPM is 2.29, which is close to the expected ratio, of 2.25 (estimated from the size of the two SiPMs).

MIP (9 mm² SiPM)

MIP (4 mm² SiPM)

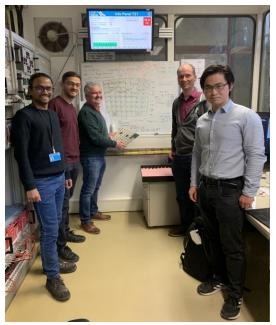


Outlook and Summary

Outlook

Plan for the next steps

- Production of more pre-series Tilemodules with different sizes of SiPMs and tiles.
- Build a cosmic test stand to be used for quality control of final Tileboards produced for HGCAL.
 - Pre-series Tilemodules to be used to develop and test the setup.
- Build an electromagnetic stack (EM stack) which use 15 preseries Tilemodules interleaved with steel absorber.
 - The same DAQ system will be used to test both the EM stack and cosmic test stand.
- Production of the first Tilemodules which will be installed on the CMS detector will begin in 2024.



Summary

Take away information

- The test beam in May 2023 at DESY tested 2 Tilemodules and 1 mini
 Tileboard.
- The Tilemodule v3 and SiPMs tested in this test beam are the latest generation which will be used in the pre-series test.
- The light yield measured from the tiles on Tilemodule v3 perform as well as the tiles used previously.
- The light yield ratio between 9 mm² and 4 mm² SiPM is very close to what we expected.
- Upcoming test beam this year at DESY and CERN to test a small electromagnetic stack with 15 pre-series Tilemodules.

Thank you

Contact

Deutsches Elektronen- Jia-Hao Li

Synchrotron DESY FTX group

jia-hao.li@desy.de

www.desy.de +49 1756246905

Backup

Terminology

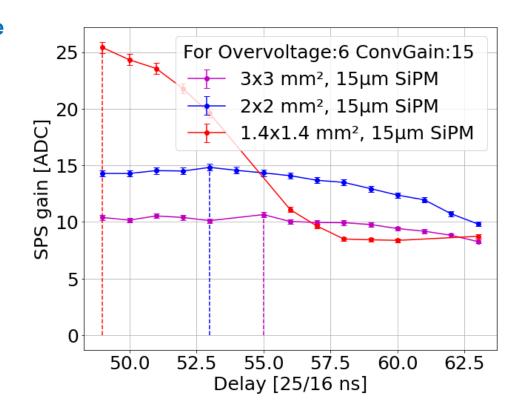
definition

• SiPM gain:

Charge amplification factor of the SiPM

$$SiPM Gain = \frac{(Charge \ Collected \ per \ SPAD)}{(Charge \ of \ an \ electron)}$$

Overvoltage (OV):


Difference between bias and breakdown voltage

 $Overvoltage = (Bias\ voltage) - (breakdown\ voltage)$

SiPM gain comparison in the Mini Tileboard

Compare SiPM gain between 2 mm², 4 mm², 9 mm² SiPM

- The SPS gain shown in the plot use special configuration to reduce the shaper capacitance in the HGCROC so that the SPS can be observed in the 9 mm² SiPM.
 - which make the signals shorter and more easier to find the peaks in the SPS.
- The Maximum value of SPS gain for all three sizes of SiPM are observed in different delay.
- This plot shows that the SPS gain changes in different delay.
- There are no tiles attached to the 2 mm² SiPM in this measurement
 - might be the reason for the early drop of the SPS gain.

