Geant4 Validation on Test-Beam Calorimetry Data

L. Pezzotti, A. Ribon, D. Konstantinov on behalf on the CERN EP-SFT Group

11th Beam Telescopes and Test Beams Workshop

DESY, 17-21 April 2023

Partially based on Instruments 2022, 6, 41

MDP

Article

Including Calorimeter Test Beams in Geant-val—The Physics Validation Testing Suite of Geant4

Lorenzo Pezzotti ^{1,*}, Andrey Kiryunin ², Dmitri Konstantinov ³, Alberto Ribon ¹, Pavol Strizenec ⁴ and on behalf of the Geant4 Collaboration

2

Geant4, latest news

- Geant4 is going to support all the main LHC experiments re-starting with Run3.
 Some recent history:
 - ✤ Run2 (2015-2018) simulations used Geant4 releases from Geant4.9.6 (2012) to Geant4.10.4 (2017) producing $O(10^{11})$ events.
 - To keep stable performance within the same Run, some developments in both hadronic and electromagnetic models were not included in official releases from Geant4.10.2 (2015) to Geant4.10.4 (2017).
 - The main LHC experiments currently use the Geant4-recommended Physics List FTFP_BERT, eventually with variants (e.g. ATLAS adopts FTFP_BERT_ATL).

Need new validation studies to foresee the Geant4 performance @Run3

3

 Geant4 is going to support all the main LHC experiments re-starting with Run3. Some recent history:

Geant4, latest news

- ✤ Run2 (2015-2018) simulations used Geant4 releases from Geant4.9.6 (2012) to Geant4.10.4 (2017) producing $O(10^{11})$ events.
- To keep stable performance within the same Run, some developments in both hadronic and electromagnetic models were not included in official releases from Geant4.10.2 (2015) to Geant4.10.4 (2017).
- The main LHC experiments currently use the Geant4-recommended Physics List FTFP_BERT, eventually with variants (e.g. ATLAS adopts FTFP_BERT_ATL).
- Generating calorimeter showers is the most challenging simulation task:
 - Several hadronic physics models are adopted within a single Physics List with often overlapping ranges of applicability.
 - Still the most computationally heavy tasks in HEP. Geant4-R&D ongoing to parameterize/ generate showers and to offload on GPUs the electromagnetic-shower component [e.g. Adept].

Need new validation studies to foresee the Geant4 performance @Run3

Geant-val - geant-val.cern.ch

ATLAS Tile Calorimeter beam test

◆ ATLAS TileCal:

- ✤ Mostly used to reconstruct hadronic jets in the range $|\eta| < 1.7$ thanks to 3 cylinders containing 64 modules each.
- Measures light in scintillating tiles immersed in iron. Readout is grouped in pseudo projective cells with each layer readout by two PMTs.
- Each barrel consists of 11 tile rows grouped in 3 longitudinal layers.
- TileCal beam test:
 - 2 Long Barrel Modules and 1 Extended Barrel module are regularly exposed to the SPS particle beams.
 - The 2017 beam test studied the calorimeter response and resolution for π^+ , *p* and k^+ in the energy range 16-30 GeV.
 - Cherenkov auxiliaries used to tag π^+ , p and k^+ .

6

7_

ATLAS Hadronic End-Cap Calo beam test

- The ATLAS HEC:
 - Covers the range $1.5 < |\eta| < 3.2$. Divided into two wheels (HEC1-2) each consisting of 32 azimuthal modules.
 - It uses 8.5-mm-gap LAr sampling regions inserted between parallel copper plates, with 2.5 cm (HEC1) and 5.0 cm (HEC2) thickness.
 - It has four longitudinal layers with a thickness of $\simeq 103X_0$ or $\simeq 9.7\lambda_{int}$.
- HEC beam test:
 - Tested in 2000-2001 at CERN-SPS-H6 beam line.
 - Tests performed with 3 ϕ -wedges.
 - ♣ Involving e^- , μ^- and hadrons with $6 \le E_{Beam} \le 200$ GeV.

Hadronic response (π/e) properly described by FTFP_BERT for G4 10.6, 10.7, 11.0. ^{0.85} π^+ beam

Hadronic response - FTFP_BERT (2017-2021)

• Constant increase in the hadronic response (π/e) observed from G4 10.4 to 10.5 to 10.6.

ATLAS TileCal FTFP_BERT regression testing:

Experimental data from ATLAS article

- ATLAS TileCal FTFP_BERT regression testing:
 - ✤ Hadronic response (π/e) properly described by FTFP_BERT for G4 10.6, 10.7, 11.0.

Hadronic response - G4 11.0 PL comparison

- Constant increase in the hadronic response (π/e) observed from G4 10.4 to 10.5 to 10.6.
- ATLAS TileCal G4 11.0 PL comparison:
 - Current description is in good agreement with data for FTFP_BERT and FTFP_BERT_ATL.
 - ✤ FTFP_INCLXX producing shower responses $\simeq 5 \%$ higher than the experimental reference.

Experimental data from ATLAS article

Experimental data from ATLAS article

Hadronic response - π^+ , k^+ , p

- Excellent work by ATLAS to disentangle contributions from π^+ , k^+ and p in the ATLAS TileCal:
 - ★ Visible difference in the response to *p* and π⁺: (my opinion) it is due to the baryon number conservation law for which high *f_{em}* processes (*e.g.* π⁺ + n → π⁰ + p) are prohibited for *p*-induced events.
 - Overall good description from FTFP_BERT of these effects.

π^+ response fluctuations in good agreement with data 0.12 for G4 10.4.

Hadronic resolution - FTFP_BERT (2017-2021)

We observe a constant reduction of the response fluctuations from 10.4 to 10.5 to 10.6. Currently FTFP_BERT is $\simeq 20 \%$ off w.r.t. ATLAS.

0.135

0.09

0.085

0.2

0.19

- 10.4.p03 FTFP BERT, GEANT4

11.0.p02 FTFP BERT, GEANT4

— 10.6.p03 FTFP BERT, GEANT4

0.21

0.22

0.23

10.5.p01 FTFP BERT, GEANT4

10.7.p03 FTFP_BERT, GEANT4

ATLAS, experiment

0.24

0.25

1/VE_{beam} [GeV]

Experimental data from ATLAS article

Energy resolution | Beam: pi+ | Target: ATLAS-TileCal

Hadronic resolution - FTFP_BERT (2017-2021)

- ATLAS TileCal FTFP_BERT regression testing:
 - π^+ response fluctuations in good agreement with data for G4 10.4.
 - ✤ We observe a constant reduction of the response fluctuations from 10.4 to 10.5 to 10.6.
 Currently FTFP_BERT is $\simeq 20\%$ off w.r.t. ATLAS.
- ATLAS HEC FTFP_BERT regressione testing:
 - Geant4 validation study on the ATLAS HEC shows the same pattern.

Experimental data from ATLAS article

HEC

ATLAS HEC: hadronic shower shape

- The ATLAS HEC is made of 4 longitudinal layers.
- ♦ It is possible to measure the energy profile as the energy fraction deposited in each layer: $F_i = \langle E_i \rangle / E_{sum}, E_{sum} = \Sigma \langle E_i \rangle$
- and the F_i dependence over E_{Beam} .

	HE	ر		
lc	ongitudinal	structu	re	
HEC	Number of	HEC length		
layer	LAr gaps	[cm]	$[\lambda_{int}]$	
1	8	28.05	1.45	
2	16	53.60	2.75	
3	8	53.35	2.87	
4	8	46.80	2.66	

Average shower depth:

- Extracted as the mean (L_0) of the energy profile, as a function of E_{Beam} .
- ✤ Excellent description ($\simeq 0.1 \%$) from Geant4.10.7.

CALICE SiW Calorimeter beam test

- New highly-granular calorimeters for future Higgs factories by CALICE provide unprecedented shower sampling capabilities, thus enabling superior Geant4 validation.
- The CALICE SiW calorimeter features:
 - * 30 longitudinal layers (silicon + tungsten) with a total thickness of $24X_0$ ($\simeq 1\lambda$),
 - ✤ each silicon layer readout by 36×9 Si-cells,
 - with an active area of 18×18 cm².
- Simulation recently ported by CERN EP-SFT to a standalone Geant4 application for internal validation.

Tagging nuclear breakup events

- Beam tests performed at FNAL in 2008 involving
 2, 4, 6, 8 and 10 GeV π⁻ studying the first development stages of hadronic showers.
- Energy depositions in each cell calibrated in MIP units (extracted with μ⁻ runs).
- Events with a single nuclear breakup are tagged as those with:
 - \clubsuit three consecutive layers measuring $\,>8$ MIP, or

 Starting from the first-interaction layer, it is possible to measure the longitudinal energy (or hit) distributions, as a function of the beam energy, regardless of the depth of the first interaction.

CALICE SiW: longitudinal energy distributions

10 GeV π^- , exp. data from NIM A794

FTFP_BERT Physics List regression testing 2017-2020

19/4/2023

Physics Lists comparison - Geant4.10.7.p03

G4

CALICE SiW: Iongitudinal energy distributions

6 GeV π^- , exp. data from NIM A794

FTFP_BERT Physics List regression testing 2017-2020

Physics Lists comparison - Geant4.10.7.p03

19/4/2023

11th BTTB WS (2023) - Lorenzo Pezzotti, et. al. | Geant4 Validation on Test-Beam Calorimetry Data

G4

✤ 9 towers, each containing 16 × 20 capillaries (160 Cherenkov and 160 Scintillating).

Brass capillary tube outer diameter of 2 mm and inner diameter of 1.1 mm. 1-mm-thick fibers.

EM dimensions of $10 \times 10 \times 100$ cm³,

Prototype rear end

Full prototype - 9 towers

The Bucatini Dual-Readout Calorimeter within Geant4 G4

The new capillary-tube-based dual-readout prototype features:

 $\simeq 90\%$ em containment.

Dual-Readout Calorimeter: *e*⁺ **shower shape**

- ← Tested with e^+ beam at CERN-SPS-H8 beam line with energies 10-125 GeV (highly affected by π^+ contamination).
- Lateral profile, *i.e.* the average signal carried by a fiber located at a distance *r* from the shower barycenter.
- Measurement:
 - For every event, and for every fiber we populate a scatter plot (signal vs. distance).
 - Lateral profiles are extracted as average values for every x-bin.

20

Dual-Readout Calorimeter: *e*⁺ **shower shape**

- Tested with e^+ beam at CERN-SPS-H8 beam line with energies 10-125 GeV (highly affected by π^+ contamination).
- Lateral profile, *i.e.* the average signal carried by a fiber located at a distance *r* from the shower barycenter.
- Measurement:
 - For every event, and for every fiber we populate a scatter plot (signal vs. distance).
 - Lateral profiles are extracted as average values for every x-bin.

Possible extension: Fluka hadronic models

 Recent G4/FLUKA.CERN collaboration is ongoing to create a G4 interface to FLUKA hadronic models (FLUKA PEANUT).

Goals:

- Give direct access to any G4 simulation to FLUKA hadronic models (might be extended to ion-nucleus models). At the moment targeting FORTRAN code, implementation of hadronic models in C++ (FLUKA++/FLUKA5) is a future step.
- N.B. registration to FLUKA and agreement to FLUKA license is needed.
- A Geant4 example is in preparation (to be included in G4-11.2) to show how to access FLUKA.CERN hadronic cross sections and inelastic final-states from a Geant4 application.
- Hadronic calorimeters tests housed on geant-val will soon be tested against FLUKA hadronic models with no additional efforts!

GEANT4 needs experiments and experiments need Geant4.

- ◆ Geant-val is an open project to assist developers in large validation campaigns while distributing results to the HEP Community
 → anyone is invited to try it out!
- The benefit involves much more than better physics models, *e.g.*:
 - We are close to a prototype to use external hadronic models in a single Geant4 application.
 - Having a validated Geant4 standalone simulation of your detectors let us test our GPU-offloading solutions on your needs.
 - We can adapt out speeding up solutions, especially in EM-physics, to your use-cases.
- Consider collaborating with Geant4 for next validation studies [<u>Alberto.Ribon@cern.ch</u> - <u>lorenzo.pezzotti@cern.ch</u>].

