$\begin{array}{c} Performance \mbox{ of the MIMOSIS}-\mbox{ Monolithic Active Pixel Sensor for CBM} \\ MVD \mbox{ and beyond} \end{array}$

Roma Bugiel

on behalf GSI-IKF-IPHC (CBM-MVD) Collaboration

17-21.04.2023

BTTB11, Hamburg

Overview

Introduction

- MIMOSIS for MVD
- MIMOSIS familty
- MIMOSIS design

2 Measurements

- MIMOSIS-1 activities
- Laboratory measurements
- Testbeams campaigns

MIMOSIS - sensor for MVD

MIMOSIS CMOS Monolithic Active Pixel Sensor

- \rightarrow for the CBM Micro Vertex Detector.
- \rightarrow also milestone for Future Higgs factories (5 μ s, 5 μ m, < 100 $\frac{mW}{cm^2}$, < 100 $\frac{mHz}{cm^2}$, 50 μ m thickness)
- ightarrow as a beam telescope unit for EURIZON projects
 - based on ALPIDE sensor (ALICE ITS2 [1])
 - major modifications made to comply with MVD requirements → physics or beam- structure driven.
 - 100 kHz Au+Au
 - occupancy gradient in space (almost 100%)
 - beam fluctuations in time

$\bullet\,$ major challenge $\rightarrow\,$ high non-homogeneous data rate and radiation hardness

Physics parameter	Requirements
Spatial resolution	\approx 5 μ m
Time resolution	$pprox$ 5 μ s
Power consumption	$< 100-200 \mathrm{mW/cm^2}$
Material budget	0.05% X ₀
Radiation (non-ion)	$pprox 7 imes 10^{13}\mathrm{n_{eg}/cm^2}$
Radiation (ionizing)	\approx 5 MRad
Data flow (peak hit rate)	$7 imes 10^5/(mm^2s)~(>2{ m Gbit}/s)$

MIMOSIS timeline

→ MIMOSIS-3 – final sensor production (around 2025)

MIMOSIS-1 - sensor overview

Parameter	Value
Technology	TowerJazz CIS 180 nm
Epitaxial layer	$\sim 25\mu m$, $> 1k\Omega\cdot cm$
Sensor thickness	300 µm or 60 µm
Pixel size	$26.9\mu\text{m} imes30.2\mu\text{m}$
Pixel array	1024 $ imes$ 504 pixels
Sensitive area	pprox 4.2 cm ²
Array readout time	$pprox$ 5 μ s
Power consumption	$<$ 100 mW/cm^2

MIMOSIS pixels:

- DC-pixels \rightarrow ALPIDE-like
- AC-pixels → possible improved radiation hardness with top bias possibility > 20V
- 4 submatrices with various pixel circuitry:
 - $\bullet~$ B, C $\rightarrow~$ basic pixels architectures
 - A, D \rightarrow 128-column matrices for analog pixel circuitry optimization (also C18 prototypes) not shown here

MIMOSIS-1 fabrication reticules

Front-end scheme

MIMOSIS-1 pixel matrix microscope photography

- there are two types of pixels: DC (\rightarrow ALPIDE) and AC (top bias up to > 20 V)
- each pixel has a full amplifier shaper discriminator chain similar to ALPIDE
- in-pixel digital part is non-triggered, frame based readout (global shutter)
- each pixel hosts a pulse injection for calibration
- each pixel masking possibility

Introduction

Data path

- 3-stage buffering → to cope with in-homogeneous hit density
- Region readout out @ 20 MHz \rightarrow 5 µs time of full matrix readout
- Elastic buffer \rightarrow can store variable-size frames \rightarrow required because of the data rate fluctuations
- Variable number of outputs → lower bandwidth but lower power consumption

$\mathsf{MIMOSIS-1}$ has 8 outputs each 320 Mb/s providing a required data throughput for MVD

more details: F. Morel, "The MIMOSIS pixel sensor", TIPP 2021

MIMOSIS-1 - technology

00000

- TowerJazz CIS 180 nm technology \rightarrow providing several process modifications and some flexibility on epitaxial layer thickness.
- MIMOSIS-1 available on:
 - standard process
 - gap in n-layer [n-gap]
 - additional p-implant [p-stop]
- sensors 300 $\mu m,$ also thinned to $\approx 60\,\mu m$

 \rightarrow expected improved radiation tolerance (better depletion development)

MIMOSIS-1 activities

Introduction 000000

Laboratory measurements. Noise and threshold performance

- complex phase space of MIMOSIS → tuning parameters needed
- characterization by pulse injection (room temperature)
 - threshold (from S-curves)
 - Fixed Pattern Noise
 - pixel noise (thermal dominant)

Introduction 000000

Laboratory measurements. Noise and threshold performance

- complex phase space of MIMOSIS → tuning parameters needed
- characterization by pulse injection (room temperature)
 - threshold (from S-curves)
 - Fixed Pattern Noise
 - pixel noise (thermal dominant)
- before irradiation:
 - FPN: 7-10 e ENC
 - TN: 3-5 e ENC
- after irradiation:
 - FPN: < 25 e ENC
 - TN: 10-20 e ENC
- now: $1 \text{ mV} \rightarrow 1 e^$ charge-to-voltage conversion gain used. Ongoing tests indicate $1 \text{ mV} \rightarrow \sim 2 e^- \rightarrow \text{update}$ soon
- very similar performance of AC/DC and various epi layers

Test-beams and analysis strategy

TEST BEAMS

- DESY 5 GeV e⁻
- CERN 100 GeV π^\pm
- measurements:
 - DC and AC pixels
 - back bias (0V, -1V, -3V)
 - top bias (3 V, 7 V, <u>10 V</u>, <u>15 V</u>)
 - discriminator thresholds (<u>100-250 e</u>)
 - rotation angles (<u>0</u>, 30, 45, 60)

SENSORS:

- std, p-stop, n-gap process
- non-irradiated, X-Ray irradiated, neutron irradiated, combined

SETUP :

- 6 MIMOSIS planes in stack (4 for tracking, 2 DUT)
- 15 mm distance between planes

ANALYSIS:

- TAF software, Corryvreckan foreseen
- one plane as DUT in time
- $\sigma_{tel} = 2.5 \mu m$, $\sigma_{ms}^{DESY} = 1.5 \mu m$ $\sigma_{ms}^{CERN} = 0 \mu m$

Detection efficiency - non-irradiated sensors - process comparison

- detection performance barely sensitive to processes
- detection efficiency > 99.5% for both AC and DC \rightarrow the operational values of the discrimination thresholds around 100 e^- operation point fulfilling requirements
- $V_{BB} = -1V$ extends better efficiency for AC pixels towards higher thresholds
- fake rate \rightarrow < 10⁻⁶ / pixel / frame
- chip-to-chip variation to be studied

Introduction 000000

Detection efficiency – combined irradiation – process comparison

- visible better performance of modified processes over standard
- DC and AC pixels exhibit similar

- pixel size: $\approx 27\,\mu m \times 30\,\mu m,$ spatial resolution for shorter edge shown
- $\bullet\,$ standard process exhibits larger cluster size than modified $\to\,$ cluster size translated to spatial resolution
- $\bullet\,$ spatial resolution around 4.5 μm at 150 e- for standard and 1 μm worse for modified
- longer pixel edge about 0.5 µm larger resolution

Cluster size and spatial resolution – irradiated, p-stop, AC pixels

- no major influence of radiation on cluster size
- spatial resolution: no difference after X-Ray and neutron irradiation \rightarrow typically 5-5.5 μm at 150 e–
- \bullet about $6\,\mu m$ larger after combined irradiation at $150\,e-$
- larger pixel edge $\rightarrow \approx 0.5 1\,\mu\text{m}$ more
- DC pixels ightarrow larger cluster size (but below 2) and spatial resolution 5.5 μ m at 150 e-

Conclusions and plans

MIMOSIS-1 – 1st full scale prototype for MVD detector and beyond (beam telescopes, future linear colliders, neutron detectors)

 \rightarrow performance being validated by set of complex tests and measurements \rightarrow milestone for MIMOSIS-2 development

 \blacksquare 9 test-beam campaigns in 2021/2022 \rightarrow for SEE tests and essential detector performance validation

② 3 various processes [EPI variants] (std, n-gap, p-stop) tested and two pixel types (DC, AC) → to validate designs complying with the radiation tolerance and spatial resolution required for the MVD

- required radiation tolerance verified with nominal loads expected by experiment, but also beyond
 - around 99.5% of detection efficiency after combined irradiation for AC and DC pixels on modified processes (keeping fake rate below 10^{-6} per pixel per frame)
 - spatial resolution around 5.5 μm before irradiation and around 6 μm after estimated up to 150 e^ discriminator threshold

MIMOSIS-1 fulfils experiment requirements and the project goals were reached

MIMOSIS-2 (improved and complete design) expected back from foundry in mid of 2023

		MIMOSIS-2
0	••••	00

BACKUP

 Summary
 BACKUP

 O
 O●O

CBM experiment at FAIR - introduction

• The Compressed Baryonic Matter (CBM) – fixed target experiment at FAIR in GSI

 \rightarrow to explore physics in high-energy heavy-ion collisions (QCD phase diagram at high baryon densities)

- The Micro-Vertex-Detector (MVD) vertex for CBM
 - built of four layers silicon MAPS
 - micro-tracking for e+e- pairs coming from light meson decays
 - exposed to high-rate non-homogeneous irradiation

Figure: Left: CBM, right: HADES experiments @ FAIR

Summary O O Detection efficiency – irradiation type – AC, p-stop

- AC pixels, p-stop process, all irradiation types shown
- similar results for DC, n-gap
- detection efficiency > 99.5 % up to ≈ 200 e⁻ → the operational values of the discrimination thresholds around 100 e⁻ – operation point fulfilling requirements
- fake rate \rightarrow < 10⁻⁶ per pixel per event \rightarrow work in progress

Summary O BACKUP

MIMOSIS-2

MIMOSIS-2 – highlights

- submitted in January '23, expected in 4-5 months
- validation of MSIS-1 a crucial milestone for its successor → spotted shortcomings improved (PLL PSRR, DACs, analog power grid enhancement, several others)
- new/other features finished: SEE hardening, on-chip clustering
- mostly based on the AC-coupled pixels: 896×504
- on 3 different processes (std, p-stop, n-nap) and 2 different EPI layer thickness (25 μm and 50 $\mu m) \rightarrow$ for radiation hardness vs spatial resolution optimization studies

- slightly better spatial resolution than AC
- neutron work in progress
- $\bullet\,$ about 5.5 μm for combined irradiation at 150 e-
- longer pixel edge $\rightarrow \approx 0.5 1\,\mu m$ more